10.3 Convergence Tests: All Series

23 If Za, does not converge show that Z)a,| does not
converge.

24 Find conditions which guarantec that a; +a,—as+
a4+ as —dg + -+ will converge (negative term follows two
positive terms).

28 Ifthe terms of In 2= 1 — 3+ § — 3} + - are rearranged into
1—-4—3+4—4—75+ -, show that this series now adds to
41n 2. (Combine each positive term with the following nega-
tive term.)

26 Show that the series 1 +§5—4+4+¥—3 +
totln2

27 What is thesumof 1 +4 —4+4—-3+3 -4+

converges

28 Combine l+"'+£—1nn—»}' and 1—§+4—--—in2

toprove t +3+4—4—3 -3+ =2
29 (a) Prove that this alternating series converges:
2dx 1 dx ‘dx
I—] —+z—| — 47— — 4+
L X2 2 x 3 3 X
(b} Show that its sum is Euler's constant 7.

30 Prove that this series converges. Its sum is /2.

sin J.' Sll'l x sin x
e J e

31 The cosine of =1 radian is 1 — 2— 4' -. Compute
cos | to five correct decimals (how many terms?).

7
32 The sine of & == radians is n — 3 + 5o Compute

sin & to eight correct decimals {how many terms?).

33 If £a? and Eb? are convergent show that La,b, is abso-
lutely convergent.

Hint: (a + b)? = 0 yields 2Jab| < a® + 5%
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M Verify the Schwarz inequality (Ea.b,) <{(Za2}Zb?) if
g, =" and b, = )"

35 Under what condition does Z(a,,ﬁ —a,) converge and
what is its sum?

36 For a conditiopally convergent series, explain how the
terms could be rearranged so that the sum is + oo. All terms
must eventually be included, even negative terms.

37 Describe the terms in the product (1 + 4+ 4+ -}l + 1 +
$+ - and find their sum.

38 True or false:

(a) Every alternating series converges.

(b} L a, converges conditionally if Z|a,| diverges.

(c} A convergent series with positive terms is absolutely
convergent.

(d) If Za, and L5, both converge, so does X(a, + b,).

39 Every number x between 0 and 2 equals ! +3+%+ -
with suitable terms deleted. Why?

40 Every number s between —1 and 1 equals +4+4+4+ -
with a suitable choice of signs. (Add 1 =4 +3+3 + - 1o get
Problem 39.} Which signs give s= —1 and s =0 and 5= 4?

41 Show that no choice of signs will make + ¥+ 4+ 4+ -
equal to zero.

42 The sums in Problem 41 form a Cantor set centered at
zero. What is the smallest positive number in the set? Choose
signs to show that } is in the set,

*43 Show that the tangent of & =%(n — 1) is sin 11 —cos 1).
This is the imaginary part of s= —In{l —¢'). From
s =L e"/n deduce the remarkable sum I {sin n)fn = }{r — 1}.

44 Suppose Ea, converges and |x|< 1. Show that Za,x"
converges absolutely.

10.4 The Taylor Series for e*, sin x, and cos x TINEGNTNEGENGE

This section goes back from numbers to functions. Instead of Za, = s it deals with
Za,x" = f(x). The sum is a function of x. The geometric series has ail a, = 1 {including

a,, the constant term) and its sum is f{x) =

1/(1 — x). The derivatives of 1 + x + x> + -

match the derivatives of f. Now we choose the a, differently, to match a different

function,

The new function is ¢*. All its derivatives are ¢*. At x =0, this function and its
derivatives equal 1. To match these 1’s, we move factorials into the denominators.
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Term by term the series is

x x* x?

=1+ -+ =+
o203 M
x"/n! has the correct nth derivative (= 1), From rhe derivatives at x =0, we have built
back the function! At x =1 the right sideis 1 + 1+ 4+ 4+ -~ and the left side is e =
2.71828.... At x= — 1 the series gives 1 — 1 +4 — 4+ -, whichise™ 1.
The same term-by-term idea works for differential equations, as follows.

EXAMPLE 1 Solve dy/dx = — y starting from y=1 at x=0.

Solution The zeroth derivative at x = 0 is the function itself: y = 1. Then the equation
y=-y gives y=-1 and »"=—y=+1 The alternating derivatives
1, —1, 1, —1, ... are matched by the alternating series for e™*:

=1l-x+gx?—}x>+- ~* {the correct solution to y = — y).

EXAMPLE2 Solve d2y/dx? = — y starting from y = 1 and y’' = 0 (the answer is cos x).

Solution The equation gives " = — 1 (again at x = 0). The derivative of the equation
gives y” = — y'=0. Then y"" = — y" = + 1. The even derivatives are alternately +1
and —1, the odd derivatives are zero. This is matched by a series of even powers,
which constructs cos x:

T D S
—1—2—1x+ Rl + - =cos x.
The first terms 1 — 4x? came earlier in the book. Now we have the whole alternating
series. It converges absolutely for all x, by comparison with the series for ¢* (odd
powers are dropped). The partial sums in Figure 10.4 reach further and further before

they lose touch with cos x.

1—[ 2+~|—.r4 (13) (x'z)

'I cove / /%

- da?) () ~(x1%)
Ag. 10.4 The partial sums 1 — x*/2 + x*/24 — --- of the cosine series.

If we wanted plus signs instead of plus-minus, we could average " and e *. The
differential equation for cosh x is d*y/dx? = + y, to give plus signs:

t e 1 1 1 L
5(e‘+e )—l+-2—lx +4—’x +§x + -+ (which is cosh x).

TAYLOR SERIES
The idea of matching derivatives by powers is becoming central to this chapter. The

derivatives are given at a basepoint (say x = 0). They are numbers f(0), f'(0), .... The
derivative f“(0) will be the nth derivative of a,x", if we choose a, to be f*(0)/n!
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Then the series a,x" has the same derivatives at the basepoint as f(x):

10K The Taylor series that matches f(x) and all its derivatives at x =0 is

Z ﬂ"’(O)

JO)+ O+ 3 f/Op2 + (O + -

The first terms give the linear and quadratic approximations that we know well. The
x? term was mentioned earlier (but not used). Now we have all the terms—an “infinite
approximation” that is intended to equal f(x).

Two things are needed. First, the series must converge. Second, the function must
do what the series predicts, away from x = 0. Those are true for ¢* and cos x and
sin x; the series equals the function. We proceed on that basis.

The Taylor series with special basepoint x = 0 is also called the “Maclaurin series.”

EXAMPLE 3 Find the Taylor series for f(x)= sin x around x = 0.

Solution The numbers f™(0) are the values of f=sinx, f'=cos x, "= —sinx, ...
at x=0. Those values are 0, 1,0, —1,0, 1, .... All even derivatives are zero. To find
the coefficients in the Taylor series, divide by the factorials:

sin x=x— x>+ dgx’— 2)

EXAMPLE 4 Find the Taylor series for f(x) = (1 + x)* around x=0.

Solution This function starts at f(0) = 1. Its derivative is 5(1 + x)*, so f’(0) = 5. The
second derivative is 5-4-(1 + x)*, so f"(0)=5-4. The next three derivatives are
5:4-3,5:4-3-2,5-4-3-2-1. After that all derivatives are zero. Therefore the Taylor
series stops after the x° term:

1+5x+524 24

5-4-3){3 i 5'4°3°2x4 4 5:4-3:2-1
3! 4! 5!
You may recognize 1, 5, 10, 10, 5, 1. They are the binomial coefficients, which appear

in Pascal’s triangle (Section 2.2). By matching derivatives, we see why 0!, 1!, 2!, ... are
needed in the denominators.

X (3)

There is no doubt that x =0 is the nicest basepoint. But Taylor series can be con-
structed around other points x = a. The principle is the same—match derivatives by
powers—but now the powers to use are (x — a)". The derivatives /"(a) are computed
at the new basepoint x = a.

The Taylor series begins with f(a) + f'(a)(x — a). This is the tangent approximation
at x = a. The whole “infinite approximation” is centered at a—at that point it has
the same derivatives as f(x).

10L The Taylor series for f(x) around the basepoint x = a is

1
Jix)=fla) +f(@)(x—a) + 5 (a)(x— a)* + — xal @

EXAMPLE 5 Find the Taylor series for f(x)= (1 + x)° around x=a= 1.

Solution At x=1, the function is (1+ 1)*=32. Its first derivative 5(1 + x)* is
5+16 = 80. We compute the nth derivative, divide by n!, and multiply by (x — 1)":

32+ 80(x — 1)+ 80(x — 1) + 40(x — 1)> + 10(x — 1)* + (x — 1)*. (5

387



388

10 Infinle Serles

That Tayior series (which stops at n = 5) should agree with (1 + x)°. It does. We could
rewrite 1 + x as 2 + (x — 1), and take its filth power directly. Then 32, 16, 8,4, 2, 1 will
multiply the usual coefficients 1,5,10, 10,5,1 to give our Taylor coefficients
32, 80, 80, 40, 10, 1. The series stops as it will stop for any polynomial—because the
high derivatives are zero.

EXAMPLE 6 Find the Taylor series for f(x) = ¢* around the basepoint x = 1.

Solution At x=1 the function and all its derivatives equal e. Therefore the
Taylor series has that constant factor (note the powers of x — 1, not x):

¢ € 34
e“=e+e(x—1)+£(x—l)z+i(x-l)+ : (6)

DEFINING THE FUNCTION BY ITS SERIES

Usually, we define sin x and cos x from the sides of a {riangle. But we could start
instead with the series. Define sin x by equation (2). The logic goes backward, but it
is still correct:

First, prove that the series converges.
Second, prove properties like (sin x)' = cos x.
Third, connect the definitions by series to the sides of a triangle.

We don’t plan to do all this. The usual definition was good enough. But note first:
There is no problem with convergence. The series for sin x and cos x and &* all have
terms + x"/n!. The factorials make the series converge for all x. The general rule for
e* times ¢ can be based on the series. Equation (6) is typical: e is multiplied by
powers of {x — 1). Those powers add to e*~'. So the series proves that ¢* = ee* 1,
That is just one example of the multiplication (e*){e”) = e***:

2 2 2 2
x Y x ¥

l+x+=+ . [1+y+=+ L )=l+x+y+=+xy+=+... (7

( 3 )( y+3 ) yro txy+3 )

Term by term, muitiplication gives the series for e* Y. Term by term, diflerentiating
the series for e gives e*. Term by term, the derivative of sin x is cos x:

d x* x® xr ox?
Sl (O A 8 AR
dx(x 3 s ) 21 4 ®)

We don’t need the famous limit (sin x)/x — 1, by which geometry gave us the deriva-
tive. The identities of trigonometry become identities of infinite series. We could even
define = as the first positive x at which x —3x®+ ‘- equals zero. But it is certainly
not obvious that this sine series returns to zero—much less that the point of return
is near 3.14,

The function that will be defined by infinite series is ™. This is the exponential of
the imaginary number if (a multiple of i = \/—_1 ). The result ¢ is a complex number,
and our goal is to identify it. (We will be confirming Section 9.4.) The technique is to
treat if like all other numbers, real or complex, and simply put it into the series:

DEFINITION ¢ is the sum of 1 + (i) + 51;(1'9)2 + %(1’8)3 + (9)

Now use i2= — 1. The even powers are i*=+1, i®=—1, i*=+1,.... We are
just multiplying —1 by —1to get 1. The odd powersare i*= — i, i* = +1i, .... There-
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fore ¢*® splits into a real part (with no i’s) and an imagingry part (multiplying i):

1 1 1 i
i — — s g .. ilg— —g3 4+ —g5 — ..
e —(1 2!8 +4!B"’ )+1(6‘ 3!8 +5!8 ) (10)
You recognize those sgries. They are cos 8 and sin 8. Therefore:

Euler’s formula is ¢® = cos 0+ i sin 0. Note that ¢*™ =1,

ye-mrj:oz 847 sin 6 The real part is'x = cos # and the imaginary part is y = sin #. Those coordinates pick
. out the point ¢® in the “complex plane.” Its distance from the origin (0, 0) is r= 1,
R because (cos £) + (sin 8)° = 1. Its angle is 6, as shown in Figure 10.5. The number
1,i8 "b‘f‘m —1 is e at the distance r=1 and the angie =. It is on the real axis to the left of
2 zero. If £ is multiplied by r = 2 or ¥ = % or any r > 0, the result is a complex number
9\ . i ata distance r from the origin:
x=reos@ | Complex rumbers: re'® = ricos 8+ i sin 6)=r cos 0+ ir sin 8 = x + iy.

Ag. 105 With ¢° a negative number has a logarithm. The logarithm of —1 is imaginary
(it is im, since ¥ = — 1). A negative number also has fractional powers. The fourth
root of —1 is (—1)}* = ¢™* More important for calculus: The derivative of x> is
#x1%, That sounds old and familiar, but at x = — 1 it was never allowed.

Complex numbers tie up the loose ends left by the limitations of real numbers.

The formula ¢ = cos & + i sin 8 has been called “one of the greatest mysteries of
undergraduate mathematics.” Writers have used desperate methods to avoid infinite
series. That proof in (10) may be the clearest (I remember sending it to a prisoner
studying calculus) but here is a way to start from d/dx(e’”) = ie'.

A different proof of Euler's formula Any complex number is ¢ = Fcos 8 + i sin 8)
for some r and 8. Take the x derivative of both sides, and substitute for ie*:

{cos 8+ i sin O)dr/dx + H{—sin 8 + i cos A)d@/dx = ir{cos #+ i sin 0).

Comparing the real parts and also the imaginary parts, we need dr/dx=0 and
d@/dx = 1. The starting values r = 1 and 6 =0 are known from ¢'® = 1. Therefore r is
always | and # is x. Substituting into the first sentence of the proof, we have Euler’s
formula € = 1{cos 8 + i sin 8).
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10.4 EXERCISES

Read-through questions

The __©  serigs is chosen to match f{x) and all its _ b

at the basepoint. Around x=0 the series begins with

SO +_ ¢ x+_d  x* Thecoefficient of x"is __® . For

f(x) =e* this sertes is __t . For f{x)=rcos x the series is
@ . For f{x)==sin x the series is __h__. If the signs were

all positive in those series, the functions would be cosh x and
| . Addition gives cosh x +sinhx = __|

In the Taylor series for f(x) around x = a, the coefficient of
(x—aFish,=_ k . Then b {x—a)" has the same _ |  as
fat the basepoint. In the example f{x} = x?, the Taylor coeffi-
cients are bo=_mM hy=_Nn__ b,=_ o . The series
bo+ b (x —a)+ by{x —a)® agrees with the original _ p
The series for ¢® around x=a has b,=_a . Then the
Taylor series reproduces the identity ¢*={__ * }__ & ).

We define ¢, sin x, cos x, and also ¢ by their series. The
derivative dfdx(l + x+}x?+-)=1+x+ - translates to

t . The derivative of 1 —4x? 4+ --is _u , Using i’=
— 1 the series | +i6 + 4(i#)* + --- splits into *=__ v . Tts
square gives ¢*®=_ w  Its reciprocal is e ®=_ x
Multiplying by rgivesre® = _ v +i_ t  whichconnects
the polar and rectangular forms of a __A__ number. The

logarithm of ¢® is __ 8

1 Write down the series for ¢?* and compute all derivatives
at x = (, Give a series of numbers that adds to 2.

2 Write down the series for sin 2x and check the third
derivative at x=0. Give a series of numbers that adds to
sin 2r =10,
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In 3-8 find the derivacives of f{x) at x =0 and the Taylor series
(powers of x) with those derivatives.

I f(x)=e" 4fix)=1f{1+x)
5 fix)=1/(1 —2x) 6 f{x)=cosh x
Tfix)=In{l—x) 8 fix)=In(+x)

Problems 9-14 solve differential equations by series.

9 From the equation dy/dx =y~ 2 find all the derivatives
of y at x=0 starting from y0)= 1. Construct the infinite
series for y, identify it as a known function, and verify that
the function satisfies y' = y—2.

10 Differentiate the equation y' =cy + s (¢ and s constant)
to find all derivatives of y at x =0. If the starting value is
yo =0, construct the Taylor series for y and identify it with
the solution of ¥y =cy + s in Section §.3.

11 Find the infinite series that solves y* = — y starting from
y=0and y=1at x=0.

12 Find the infinite series that solves y = y staning from y =
i at x=3 {use powers of x— 3). Identify y as a known
function.

13 Find the infinite series {powers of x) that solves y" =
2y' — y starting from y=0and y=1at x=0.

14 Solve " =y by a series with y=1 and y =0 at x=0and
identify y as a known function.

15 Find the Taylor series for f{x}=(l + x)* around x=a =
0 and around x =a =1 (powers of x —1). Check that both
series add to (I + x)%.

16 Find all derivatives of f(x} = x* at x = 4 and write out the
Taylor series around that point, Verify that it adds to x°,

17 What is the series for (1 — x)* with basepoint e =17

18 Write down the Taylor series for f=cos x around x = 2=
and also for /= cos (x — 2n) around x =0,

In 1924 compute the derivatives of / and its Taylor series
around x =1,

19 f(x) = 1/x 20 f(x) = 1j(2 — x}
21 f(x)=In x 22 f(x)=x*
23 f(x)=¢"" 24 f(x} =¥

In 25-33 write down the first three nonzero terms of the Taylor
series around x = 0, from the series for £%, cos x, and sin x.

25 xe?* 26 cos \/; 27 (1 —cos x}x?
qg SILX 29 J‘ == dx 30 sin x?

x o X
3~ 32 pr = b 3 ¢ cos x

*34 ¥For x < 0 the derivative of x" is still nx"~1:

d n ___i iRy m=1 i'nzdlxl
dx{x}-_dx[lxie )_HIII e dx.
What is d|x|/dx? Rewrite this answer as nx" 1,

35 Why doesn’t fix) = \/; have a Taylor series around x =
0? Find the first two terms around x = 1.

36 Find the Taylor series for 2* around x = 0.

In 37—44 find the first three terms of the Taylor series around
x=0

37 fix)=tan"!x
¥ f(x)=tan x
41 f(x)= e
43 fix} = cos’x

38 f(x) =sin"!x
40 f{x)=In{cos x)
42 f(x) = tanh~'x
4 f(x}=sec’x
45 From e®=cos@ +isiné and e~ =cos § —isin 8, add
and subtract to find cos 0 and sin 8.
46 Does (¢'*)? equal cos?d + § 5in?@ or cos #% + i sin 07
47 Find the real and imaginary parts and the 9%th power of
ei:’ ei:jZ’ ein,M’ ﬂ.l'ld e—ix}ﬁ‘
48 The three cube roots of 1 are 1, ™3, ¢**i3,
{a) Find the reai and imaginary parts of ¢2"#2,
(b) Explain why (e**¥)* =1,
{c} Check this statement in rectangular coordinates.

49 The cube roots of —1=¢" are ¢™* and and
. Find their sum and their product,

50 Find the squares of 2¢™3=1+./3i and 4e™—
2./2+ iz\/f in both polar and rectangular coordinates.

51 Multiply ¢"=coss+isins times e"=cost+isint to
find formulas for cos(s + ¢) and sin(s + ).

52 Multiply ¢* times e~ " to find formulas for cos{s — ) and
sin(s — t}.

53 Find the logarithm of i. Then find another logarithm of i.
{What can you add to the exponent of ¢ without changing
the result?)

54 (Proof that e is irrational) If e = p/q then

1 t o1 !
=pl] - — —_—— —_— e b —
N P‘[e (1 TR I p!):\

would be an integer. (Why?) The number in brackets—the
distance from the alternating series to its sum !/e—is less
than the last term which is I/p! Deduce that [N| < 1 and reach
a contradiction, which proves that ¢ cannot equal p/q.

55 Solve dy/dx = y by infinite series staning from y =2 at
x=0.
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This section studies the properties of a power series. When the basepoint is zero, the
powers are x". The series is £a,x". When the basepoint is x = a, the powers are
(x — a)". We want to know when and where (and how quickly) the series converges
to the underlying function. For ¢* and cos x and sin x there is convergence for all
x—but that is certainly not true for 1/(1 — x). The convergence is best when the
function is smooth.

First I emphasize that power series are not the only series. For many applications
they are not the best choice. An alternative is a sum of sines, f(x) = Zb, sin nx. That
is a “Fourier sine series”, which treats all x’s equally instead of picking on a basepoint.
A Fourier series allows jumps and corners in the graph—it takes the rough with the
smooth. By contrast a power series is terrific near its basepoint, and gets worse as
you move away. The Taylor coefficients a, are totally determined at the base-
point—where all derivatives are computed. Remember the rule for Taylor series:

a, = (nth derivative at the basepoint)/n! = "(a)/n! (1)

A remarkable fact is the convergence in a symmetric interval around x = a.

10M A power series Za,x" either converges for all x, or it converges only at
the basepoint x =0, or else it has a radius of convergence r:

Za,x" converges absolutely if |x| < r and diverges if |x| > r.

The series Zx"/n! converges for all x (the sum is ¢*). The series Zn!x" converges for
no x (except x =0). The geometric series Zx" converges absolutely for |x| <1 and
diverges for |x| > 1. Its radius of convergence is r = 1. Note that its sum 1/(1 — x) is
perfectly good for |x| > 1—the function is all right but the series has given up. If
something goes wrong at the distance r, a power series can’t get past that point.

When the basepoint is x = a, the interval of convergence shifts over to |x —a| <r.
The series converges for x between a — r and a + r (symmetric around a). We cannot
say in advance whether the endpoints a + r give divergence or convergence (absolute
or conditional). Inside the interval, an easy comparison test will now prove con-
vergence.

PROOF OF 10M Suppose Za, X" converges at a particular point X. The proof will

show that £a,x" converges when |x| is less than the number |X|. Thus convergence

at X gives convergence at all closer points x (I mean closer to the basepoint 0). Proof:

Since X a, X" converges, its terms approach zero. Eventually |a, X"| <1 and then
la,x"| = |a, X"| |x/X|" < |x/X|".

Our series Za,x" is absolutely convergent by comparison with the geometric series
for |x/X|, which converges since |x/X| < 1.

EXAMPLE 1 The series Znx"/4" has radius of convergence r = 4.

The ratio test and root test are best for power series. The ratios between terms
approach x/4 (and so does the nth root of nx"/4"):
(n+ )x"*! [nx"  xn+1
T e

The ratio test gives convergence if L <1, which means |x| <4.

approaches L =

FN
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EXAMPLE 2 The sine series x — 3 + 5 has r = oo (it converges everywhere).

The ratio of x"*2/(n+ 2)! to x"/n! is x*/(n + 2)(n+ 1). This approaches L = 0.

EXAMPLE 3 The series (x — 5)"/n* has radius r = 1 around its basepoint a = 5.

The ratios between terms approach L = x — 5. (The fractions n?/(n + 1)* go toward
1.) There is absolute convergence if |[x — 5| < 1. This is the interval 4 < x < 6, symmet-
ric around the basepoint. This series happens to converge at the endpoints 4 and 6,
because of the factor 1/n%. That factor decides the delicate question—convergence at
the endpoints—but all powers of n give the same interval of convergence 4 < x < 6.

CONVERGENCE TO THE FUNCTION: REMAINDER TERM AND RADIUS r

Remember that a Taylor series starts with a function f(x). The derivatives at the
basepoint produce the series. Suppose the series converges: Does it converge to
the function? This is a question about the remainder R,(x) = f(x) — s,(x), which is the
difference between f and the partial sum s, = ag + - + a,(x — a)". The remainder R,
is the error if we stop the series, ending with the nth derivative term a,(x — a)".

10N  Suppose f has an (n + 1)st derivative from the basepoint a out to x. Then
for some point ¢ in between (position not known) the remainder at x equals

R, (x) = f(x) = 5,(x) = f"* e} (x — a)" **/(n + 1)! (2)

The error in stopping at the nth derivative is controlled by the (n + 1)st derivative.

You will guess, correctly, that the unknown point ¢ comes from the Mean Value
Theorem. For n= 1 the proof is at the end of Section 3.8. That was the error e(x) in
linear approximation:

R, (x)=f(x) — fla) — f'(a)(x — a) = 3f"(c)(x — a)*.
For every n, the proof compares R, with (x —a)"**. Their (n+ 1)st derivatives are
f"* Y and (n+ 1)! The generalized Mean Value Theorem says that the ratio of R, to
(x —a)"" ! equals the ratio of those derivatives, at the right point ¢. That is equation
(2). The details can stay in Section 3.8 and Problem 23, because the main point is

what we want. The error is exactly like the next term a, . ,(x — a)"*?, except that the
(n + 1)st derivative is at ¢ instead of the basepoint a.

EXAMPLE 4 When fis e*, the (n + 1)st derivative is e*. Therefore the error is

X" X"+1
=" — + x4 e+ — ]| =g )
R,=e (1 x n!) e[n+])! (3)
At x=1 and n=2, the error is e — (1 + 1 + 3) ~.218. The right side is /6. The
unknown point is ¢ = In (.218 - 6) = .27. Thus ¢ lies between the basepoint a =0 and
the error point x = 1, as required. The series converges to the function, because
R,— 0.

In practice, n is the number of derivatives to be calculated. We may aim for an
error |R,| below 10™°. Unfortunately, the high derivative in formula (2) is awkward
to estimate (except for e*). And high derivatives in formula (1) are difficult to compute.
Most real calculations use only a few terms of a Taylor series. For more accuracy we
move the basepoint closer, or switch to another series.
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There is a direct connection between the function and the convergence radius r,
A hint came for f{x)= 1/(1 — x). The function blows up at x=1—which also ends
the convergence interval for the series. Another hint comes for f= 1/x, if we expand
around x=g=1:

1 1
e =1+ (I —x)+ (1 — X+ -, 4
P g (t—x}+(1-x) (4)
This geometric series converges for |[I — x| < 1. Convergence stops at the end point
x= 0—exactly where 1/x blows up. The failure of the function stops the convergence
of the series. But note that 1/{1 + x?2), which never seems to fail, also has convergence
radius r=1;

/{1 +x*=1—-x?+x*—x%+ - converges only for |x| < 1.

When you see the reason, you will know why r is a “radius.” There is a circle, and
the function fails at the edge of the circle. The circle contains complex numbers as
well as real numbers. The imaginary points ;i and —i are at the edge of the circle,
The function fails at those points because 1/(1 +i%)= w,

Complex numbers are pulling the strings, out of sight. The circle of convergence
reaches out to the nearest “singularity” of f(x), real or imaginary or complex. For
1/(1 + x?2), the singularities at i and —i make r = 1. If we expand around a =3, the
distance to i and —i is r=\/ﬁ. If we change to In (1 + x), which blows up at
x= — 1, the radius of convergence of x —§x? +§x?— - isr=1.

Vi +iY) =0

In0and 0”7 atx =-1

a=0

In{1 + x) angd {1 + )"

1/1 + x2y = oo alsoat —i

Ag. 10.6 Convergence radius r is distance from basepoint a to nearest singularity.

THE BINOMIAL SERIES

We close this chapter with one more series. It is the Taylor series for (1 + x)?, around
the basepoint x = 0. A typical power is p =%, where we want the terms in

ST+ x=1+4x+a,x?+ -

The slow way is to square both sides, which gives 1+ x + (2a, + 3)x? on the right.
Since 1 + x is on the left, a, = —} is needed to remove the x? term. Eventually a,
can be found. The fast way is to match the derivatives of f= (1 + x)!/%:

L=l f=@Ehl 0T = - HE D+ 07

393



394

10 infinte Series

At x = 0 those derivatives are 4, — }, 3. Dividing by 11, 2!, 3! gives

HTS BT BT T a\/\2 2 T

These are the binomial coefficients when the power is p=1.

Notice the difference from the binomials in Chapter 2. For those, the power p was
a positive integer. The series (1 + x)> = 1 + 2x + x? stopped at x2. The coefficients for
p=2were1,2,1,0,0,0, .... For fractional p or negative p those later coefficients are
not zero, and we find them from the derivatives of (1 + x)*:

(1+xF pll+xy ' pp—D1+xF~2 [fO=pp—1)(p—n+1)1+xP"
Dividing by 0!, 11, 2!, ..., n! at x =0, the binomial coeflicients are

Mp=1) [0 _sp=D(p-n+])

! 2 n! n ©)

For p = n that last binomial coefficient is nl/n! = 1. It gives the final x" at the end of
(1 + x)". For other values of p, the binomial series never stops. It converges for |x| < 1:

A=Yyl @ MR DGont Y,

1+ xfP=1+px+——x>+ -
( x} px 2 x =0 ﬂ!

(6)

When p= 1,2, 3, ... the binomial coefficient p!{n!(n— p)! counts the number of ways
to select a group of n friends out of a group of p friends. I you have 20 friends, you
can choose 2 of them in (20)(19)/2 = 190 ways.

Suppose p is not a positive integer. What goes wrong with (1 + x)*, to stop the
convergence at |x| = 17 The failure is at x= —1. If p is negative, (1 + x)* blows up.
If p is positive, as in /1 + x, the higher derivatives blow up. Only for a positive
integer p = n does the convergence radius move out fo r = oo, In that case the series
for (1 + x)" stops at x", and S never fails.

A power series is a function in a new form. It is not a simple form, but sometimes
it is the only form. To compute f we have to sum the series. To square f we have to
multiply series. But the operations of calculus—derivative and integral —are easier.
That explains why power series help to solve differential equations, which are a rich
source of new functions. (Numerically the series are not always so good,) I should
have said that the derivative and integral are easy for each separate term a,x"—and
fortunately the convergence radius of the whole series is not changed.

If [(x)=Za,x" has convergence radius v, so do its derivative and its integral:
dffdx=Xna,x"~* and ff{x)dx =YXa,x"*f{n+ 1) also converge for |x| <r.

EXAMPLES The series for 1/(1 —x) and its derivative 1/(1 — x)* and its integral
— In{l — x) all have r=1 (because they all have trouble at x = 1}. The series are L x"
and Zrx""!and Ix""n+ 1)

EXAMPLE & We can inteprate ¢* (previously impossible) by integrating every term
in its series:

1 x* 1 (x*\ 1 fx7
Ty 2 e =t — =)+ ==
je“ dx-—J‘(1+x +ix + )dx—x+ 3 +2!(5)+3!(? +

This always converges (r = o). The derivative of ¢*° was never a problem.
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10.5 EXERCISES

Read-through questions

If |x| <|X} and £a,X " converges, then the series La,x" also
a . There is convergence in a __b_ interval around the
¢ . For Z(2x)" the convergence radius isr=_d__. For

Ex"/n! the radius is r=_4e . For Z{x — 3)" there is con-
vergence for [x —3]<_ 1, Then x is between _g  and
h

Starting with f{x), its Taylor series £a,x" has a,=__1
With basepoint a, the coefficient of (x—a)"is _J The
error after the x" term is called the _ kR (x}. Itis equal to

! where the unknown point ¢ ts between _m___ Thus
the error is controlled by the _n__ derivative.

The circle of convergence reaches out to the first point
where f(x) fails. For f=4/(2 — x), that point is x=_0o
Around the basepoint a = 5, the convergence radius would be
r=_p . Forsin x and cos x the radius is r=__a

The series for ./t +x is the _ r  series with p=4. Its
coeflicients are a,=__ s . Its convergence radius is _ 1
Its square is the very short series I + x.

In 1-6 find the Taylor series for /{x) around x = 0 and its radius
of convergence r. At what point does f(x) blow up?

1 fix)=1/(1 —4x) 2 f{x)= (1 —4x?)

3 fix)=e'"" 4 f(x)=tan x (through x?)
5 fix)=Inle + x) 6 fix)=1/1 +4x?%)

Find the interval of convergence and the function in 7-10,
7ﬂn=f(x;j" 8 /() =3 nx—ay

T 5
j— 2 ]' n+ 1
9 f(ﬂ—% x—a
A3

10 fix}=(x—2qm)— w— +

3

11 Write down the Taylor series for (¢ — 1)/x, based cn the
series for e*. At x =0 the function is 0/0. Evaluate the series
at x=0. Check by I'Hdpital’s Rule on {e* — 1)/x.

12 Writec down the Taylor series for xe* around x =0. Inte-
grate and substitute x =1 to find the sum of 1/nKn + 2).

13 If f(x) is an even function, so f(—x) = f(x), what can you
say about its Taylor coefficients in f= Za,x"?

14 Puzzle out the sums of the following series:
(@x+x?—x*+x*+x*—x+ -

(Ch(x—1)—$x— 1P +¥Hx— 10—

15 From the series for {1 —cos x)/x? find the limit as x =0
faster than I'Hépital’s rule.

16 Construct a power series that converges for 0 < x < 2,

17-24 are about remainders and 2536 are about binomials.

17 If the cosine series stops before x8/8! show from (2) that
the remainder R, is less than x%/8! Does this also follow
because the series is alternating?

18 If the sine series around x = 2x stops after the terms in
prablem 10, estimate the remainder from equation (2).

19 Estimate by (2) the remainder R,=x"*! + x"*2 4 --- in
the peometric series. Then compute R, exactly and find the
unknown point ¢ for n =2 and x =1%.

20 For —In{l1 — x) = x + $x2 4+ 4x* + R,, use equation (2) to
show that Ry <} at x=4.

2t Find R, in Problem 20 and show that the series converges
to the function at x = § (prove that R, — 0).

22 By estimating R, prove that the Taylor series for ¢* around
x =1 converges to ¢ as n — oo,

23 (Proof of the remainder formula when n = 2)

(a) At x=a find R;, R3, R3, RY".

(b) At x = aevaluate glx) ={x —m*and ¢’ g", &
Ry(x) = Rya) _ Rifcy),
gx)—gla) g}
Ryfe,) = Rfa) _ Rcs)
gle)—gla  g'c)
Rilez) = Rila) _ Ryle)
gle)—g@ g
{e) Combine {a-b-¢-d) into the remainder formnla (2).

(c) What rule gives

(d) In

where are ¢, and ¢, and ¢?

24 All derivatives of f{x) = ¢~ !'*’ are zero at x =0, including
Ji0)=0. What is f(.1}? What is the Taylor series around
x =07 What is the radius of convergence? Where does the
series converge to f(x)? For x=1 and n=1 what is the
remainder estimate in (2)?

25 (a) Find the first three terms in the binomial series for
1)1 —x2
{b) Integrate to find the first three terms in the Taylor

series for sin”'x.

26 Show that the binomial coefficients in 1/,/1 — x = Zag,x"
are a,=1+3+5-(2n— 1){2"n!

27 Forp= —1 and p= — 2 find nice formulas for the bino-
mial coefficients.

28 Change the dummy variable and add lower limits to make
I=px""'=ZI% (n+ 1)x",
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29 In (1 —x} '=Zx" the coefficient of x" is the number of
groups of n [riends that can be formed from | friend (not
binomial - repetition is allowed!) The coefficient is 1 and
there is only one group—the same friend » times.
{a) Describe all groups of n friends that can be formed
from 2 friends. (There are n + | groups.)

{b) How many groups of 5 friends can be formed from 3
friends?
30 fa) What is the coefficient of x* when 1 +x+x*+
multiplies 1 + x + x* + -7 Write the first three terms.
{b} What is the coefficient of x* in (Ex4*?
31 Show that thc binomial series for /1 + 4x has integer
coefficients. {Note that x" changes to (4x)". These coefficients
are important in counting trees, paths, parentheses...)

32 In the series for 1),/ 1 — 4x, show that the coefficient of x"
is (2n)! divided by (a2

Use the binomial series to compute 33-36 with error less than
1/1000.

A5
35 (1.1)!

M (1001347
3 111000

37 From sec x = 1/[1 — (1 —cos x)] find the Taylor series of
sec x up to x® What is the radius of convergence r (distance
to blowup point)?

38 From sec’x = I/[| —sin®x] find the Taylor series up to
x?. Check hy squaring the secant series in Problem 37. Check
by differentiating the tangent scries in Problem 39,

39 {Division of series) Find tan x by long division of sin x/
COS X

SRSV U SUNE S VRPN SO S
et ) T2 Tt T T s

40 (Composition of series) If f=ay+ a;x +azx* + - and
g=hx+bx?+ -~ find the 1, x, x? cocfficients of f{g{x)).
Test on /= 1/{1 + x), g=x/{1 ~ x), with f{g{x)=1—x

41 {Multiplication of series} From the sertes for sin x and
1/(1 — x) find the first four terms for /= sin x/{1 — x).

42 (Inversion of series) If f=a,x + a,x* + - find coefficients
b, by in g=b x+b,x? + - s0 that f{g(x)) = x. Compute
bibyforf=e*—1,g=f "=In{l + x).

43} From the multiplication {sin x)(sin x) or the derivatives of
fix) =sin®x find the first three terms of the series, Find the
first four terms for cos?x by an easy trick.

44 Somehow find the first six nonzero terms for f=(1 — x)/
(1 —x?

45 Find four terms of the series for 1/,/1 —x. Then square
the series to reach a geometric series.

46 Compute Ll, e % dx to 3 decimals by integrating the
pOWer series.

47 Compute {, sin’t dt to 4 decimals by power series.

48 Show that Zx"/n converges at x= —1, even though its
derivative Zx""! diverges. How can they have the same
convergence radius?

49 Compute lin‘(l) {sin x —tan x)/x? from the series.
xX

50 If the nth root of g, approaches L > 0, explain why Za, x”
has convergence radius r=1/L.

51 Find the convergence radius r around basepoints a =0
and a =1 from the blowup points of (1 + tan x){(? + x?).
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