
C H A P T E R  

Infinite Series 


Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x 
and cos x. They give famous numbers like n and e. Usually they produce totally 
unknown functions-which might be good. But on the painful side is the fact that 
an infinite series has infinitely many terms. 

It is not easy to know the sum of those terms. More than that, it is not certain 
that there is a sum. We need tests, to decide if the series converges. We also need 
ideas, to discover what the series converges to. Here are examples of convergence, 
divergence, and oscillation: 

The first series converges. Its next term is 118, after that is 1116-and every step 
brings us halfway to 2. The second series (the sum of 1's) obviously diverges to infinity. 
The oscillating example (with 1's and -1's) also fails to converge. 

All those and more are special cases of one infinite series which is absolutely the 
most important of all: 

= -The geometric series is 1 + x + x2 + x3 + 1 
1 -x '  

This is a series of functions. It is a "power series." When we substitute numbers for 
x, the series on the left may converge to the sum on the right. We need to know when 
it doesn't. Choose x = 4and x = 1 and x = - 1: 

1
1 + 1 + 1 + is divergent. Its sum is ----

1 
-a-

1 - 1  0 

1 
--•1+ (- 1)+ (- + is the oscillating series. Its sum should be ----

1 
1 - ( - 1  2' 

The last sum bounces between one and zero, so at least its average is 3. At x = 2 
- a - 
there is no way that 1 + 2 + 4 + 8 + agrees with 1/(1 - 2). 

This behavior is typical of a power series-to converge in an interval of x's and 
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to diverge when x is large. The geometric series is safe for x between -1  and 1. 
Outside that range it diverges. 

The next example shows a repeating decimal 1.1 1 1.. .: 
1

Set x = - The geometric series is 1 + -+
10' 10 

The decimal 1.1 11 . . . is also the fraction 1/(1 -&), which is 1019. Every 
fvaction leads to a repeating decimal. Every repeating decimal adds up (through the 
geometric series) to a fraction. 

To get 3.333..., just multiply by 3. This is 1013. To get 1.0101..., set x = 1/100. 
This is the fraction 1/(1-&), which is 100/99. 

Here is an unusual decimal (which eventually repeats). I don't really understand it: 

-- -.004 115226337448 ...I 
243 

Most numbers are not fractions (or repeating decimals). A good example is a: 

This is 3.1415.. .,a series that certainly converges. We happen to know the first billion 
terms (the billionth is given below). Nobody knows the 2 billionth term. Compare 
that series with this one, which also equals a: 

That alternating series is really remarkable. It is typical of this chapter, because its 
pattern is clear. We know the 2 billionth term (it has a minus sign). This is not a 
geometric series, but in Section 10.1 it comes from a geometric series. 

Question Does this series actually converge? What if all signs are + ? 
Answer The alternating series converges to a (Section 10.3). The positive series 
diverges to infinity (Section 10.2).The terms go to zero, but their sum is infinite. 

This example begins to show what the chapter is about. Part of the subject deals 
with special series, adding to 1019 or n: or ex. The other part is about series in general, 
adding to numbers or functions that nobody has heard of. The situation was the 
same for integrals-they give famous answers like In x or unknown answers like 
1xX dx.  The sum of 1 + 118 + 1/27 + is also unknown-although a lot of mathema- 
ticians have tried. 

The chapter is not long, but it is full. The last half studies power series. We begin 
with a linear approximation like 1 + x.  Next is a quadratic approximation like 
1 + x + x2.  In the end we match all the derivatives of f(x) .  This is the "Taylor series," 
a new way to create functions-not by formulas or integrals but by infinite series. 

No example can be better than 1/(1 - x), which dominates Section 10.1. Then we 
define convergence and test for it. (Most tests are really comparisons with a geometric 
series.) The second most important series in mathematics is the exponential series 
eX = 1 + x +$x2 +&x3+ ---.It includes the series for sin x and cos x,  because of the 
formula eix= cos x + i sin x.  Finally a whole range of new and old functions will 
come from Taylor series. 

In the end, all the key functions of calculus appear as ''infinite polynomials" (except 
the step function). This is the ultimate voyage from the linear function y = mx + b. 
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1 1 10.1 

We begin by looking at both sides of the geometric series: 

How does the series on the left produce the function on the right? How does 1/(1 - x) 
produce the series? Add up two terms of the series, then three terms, then n terms: 

For the first, 1 +x times 1 -x equals 1- x 2  by ordinary algebra. The second begins 
to make the point: 1 + x + x 2  times 1 - x gives 1 - x + x - x 2  + x2 - x3. Between 
1 at the start and -x3 at the end, everything cancels. The same happens in all cases: 
1 + --.+ xn-' times 1 - x leaves 1 at the start and -xn at the end. This proves 
equation (2)-the sum of n terms of the series. 

For the whole series we will push n towards infinity. On a graph you can see what 
is happening. Figure 10.1 shows n = 1 and n =2 and n = 3 and n = a. 

Fig. 10.1 Two terms, then three 
terms, then full series: 

The infinite sum gives a jfnite 
answer, provided x is between 
- 1 and 1. Then xn goes to zero: 

Now start with the function 1/(1 - x). How does it produce the series? One way is 
elementary but brutal, to do "long division" of 1 - x into 1 (next to the figure). 
Another way is to look up the binomial formula for (1 - x)-l. That is cheating-we 
want to discover the series, not just memorize it. The successful approach uses cal- 
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culus. Compute the derivatives o f f  (x) = 1/(1 - x): 

At x = 0 these derivatives are 1, 2, 6,24, ....Notice how -1 from the chain rule keeps 
them positive. The nth derivative at x =0 is n factorial: 

Now comes the idea. To match the series with 1/(1- x), match all those derivatives at 
x = 0. Each power xn gets one derivative right. Its derivatives at x = 0 are zero, except 
the nth derivative, which is n! By adding all powers we get every derivative right- 
so the geometric series matches the function: 

1 + x + x 2  + x 3  + has the same derivatives at x = 0 as 1/(1 - x). 

The linear approximation is 1 + x. Then comes 3f "(0)x2= x2. The third derivative 
is supposed to be 6, and x 3  is just what we need. Through its derivatives, the function 
produces the series. 

With that example, you have seen a part of this subject. The geometric series 
diverges if 1x1 2 1. Otherwise it adds up to the function it comes from (when 
-1 < x < 1). To get familiar with other series, we now apply algebra or calculus- to 
reach the square of 1/(1 - x) or its derivative or its integral. The point is that these 
operations are applied to the series. 

The best I know is to show you eight operations that produce something useful. 
At the end we discover series for In 2 and n. 

1. Multiply the geometric series by a or ax: 

The first series fits the decimal 3.333 . . . . In that case a = 3. The geometric series for 
x =& gave 1.11 1 . . . = 1019, and this series is just three times larger. Its sum is 1013. 

The second series fits other decimals that are fractions in disguise. To get 12/99, 
choose a = 12 and x = 1/100: 

Problem 13 asks about ,8787 . . . and .I23123 . . . . It is usual in precalculus to write 
a + ar + ar2 + = a/(l - r). But we use x instead of r to emphasize that this is a 
function-which we can now differentiate. 

2. The derivative of the geometric series 1 + x + x + .-.is 1/(1- x ) ~ :  

At x =& the left side starts with 1.23456789. The right side is 1/(1 -&)2 = 1/(9/10)2, 
which is 10018 1. If you have a calculator, divide 100 by 81. 

The answer should also be near (1.11 11 11 1 I ) ~ ,  which is 1.2345678987654321. 

3. Subtract 1 + x + x 2  + from 1 + 2x + 3x2 + as you subtract functions: 

Curiously, the same series comes from multiplying (5) by x. It answers a question left 
open in Section 8.4-the average number of coin tosses until the result is heads. This 
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is the sum l(pl) + 2(p2) + --. from probability, with x = f :  

The probability of waiting until the nth toss is p,, = (4)". The expected value is two 
tosses. I suggested experiments, but now this mean value is exact. 

4 .  Multiply series: the geometric series times itselfis 1/(1 - x) squared: 

The series on the right is not new! In equation (5) it was the derivative of y = 1/(1- x). 
Now it is the square of the same y. The geometric series satisfies dyldx = y2, so the 
function does too. We have stumbled onto a differential equation. 

Notice how the series was squared. A typical term in equation (8) is 3x2, coming 
from 1 times x 2  and x times x and x 2  times 1 on the left side. It is a lot quicker to 
square 1/(1 - x)-but other series can be multiplied when we don't know what func- 
tions they add up to. 

5.  Solve dyldx = y2 fvom any starting value-a new application of series: 

Suppose the starting value is y = 1 at x = 0. The equation y' = y 2  gives l2 for the 
derivative. Now a key step: The derivative of the equation gives y" = 2yy'. At x = 0 
that is 2 1 1. Continuing upwards, the derivative of 2yy1 is 2yy" + 2(y')2. At x = 0 
that is y"' = 4 + 2 = 6. 

All derivatives are factorials: 1,2,6,24, . . . . We are matching the derivatives of the 
geometric series 1 + x + x2 + x3 + . . . . Term by term, we rediscover the solution to 
y' = Y2. The solution starting from y(0) = 1 is y = 1/(1 - x). 

A different starting value is - 1. Then y' = (- = 1 as before. The chain rule gives 
y" = 2yy' = - 2 and then y"' = 6. With alternating signs to match these derivatives, the 
solution starting from - 1 is 

It is a small challenge to recognize the function on the right from the series on the 
left. The series has - x in place of x; then multiply by -1. The sum y = - 1/(1 + x) 
also satisfies y' = y2. We can solve diferential equations from all starting values by 
inJinite series. Essentially we substitute an unknown series into the equation, and 
calculate one term at a time. 

6.  The integrals of 1 + x + x2 + ..- and 1 - x +  x2 - -.. are logarithms: 

The derivative of (10a) brings back the geometric series. For logarithms we find l/n 
not l/n! The first term x and second term i x 2  give linear and quadratic approxi- 
mations. Now we have the whole series. I cannot fail to substitute 1 and 4, to find 
ln(1 - 1) and ln(1 + 1) and ln(1 - )): 
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The first series diverges to infinity. This harmonic series 1 + 4 + 4+ came into the 
earliest discussion of limits (Section 2.6). The second series has alternating signs and 
converges to In 2. The third has plus signs and also converges to In 2. These will be 
examples for a major topic in infinite series-tests for convergence. 

For the first time in this book we are able to compute a logarithm! Something 
remarkable is involved. The sums of numbers in (11) and (12) were discoveredfrom the 
sums offunctions in (10). You might think it would be easier to deal only with numbers, 
to compute In 2. But then we would never have integrated the series for 1/(1- x) and 
detected (10). It is better to work with x, and substitute special values like 4at the 
end. 

There are two practical problems with these series. For In 2 they converge slowly. 
For In e they blow up. The correct answer is In e = 1, but the series can't find it. Both 
problems are solved by adding (10a) to (lob), which cancels the even powers: 

At x = f,the right side is in 4 - In 4 = In 2. Powers off-are much smaller than powers 
of 1 or f, so in 2 is quickly computed. All logarithms can be found from the improved 
series (13). 

7 .  Change variables in the geometric series (replace x by x 2  or -x2): 

This produces new functions (always our goal). They involve even powers of x. The 
second series will soon be used to calculate n. Other changes are valuable: 

X 1 -- 2
-in place of x: 1 + + ... = ------- -
2 1 -(x/2) 2 - x 

Equation (17) is a series of negative powers x-". It converges when 1x1 is greater than 
1. Convergence in (17) is for large x. Convergence in (16) is for 1x1 < 2. 

8. The integralof 1 - x 2  + x 4 - x6  + -..yields the inverse tangent of x: 

We integrated (15) and got odd powers. The magical formula for n (discovered by 
Leibniz) comes when x = 1. The angle with tangent 1 is n/4: 

The first three terms give n z 3.47 (not very close). The 5000th term is still of size 
.0001, so the fourth decimal is still not settled. By changing to x = l / d ,  the astrono-
mer Halley and his assistant found 71 correct digits of n/6 (while waiting for the 
comet). That is one step in the long and amazing story of calculating n. The Chudnov-
sky brothers recently took the latest step with a supercomputer-they have found 
more than one billion decimal places of n (see Science, June 1989). The digits look 
completely random, as everyone expected. But so far we have no proof that all ten 
digits occur & of the time. 
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Historical note Archimedes located n above 3.14 and below 3+. Variations of his 
method (polygons in circles) reached as far as 34 digits-but not for 1800 years. Then 
Halley found 71 digits of 7116 with equation (18). For faster convergence that series 
was replaced by other inverse tangents, using smaller values of x: 

A prodigy named Dase, who could multiply 100-digit numbers in his head in 8 hours, 
finally passed 200 digits of n. The climax of hand calculation came when Shanks 
published 607 digits. I am sorry to say that only 527 were correct. (With years of 
calculation he went on to 707 digits, but still only 527 were correct.) The mistake was 
not noticed until 1945! Then Ferguson reached 808 digits with a desk calculator. 

Now comes the computer. Three days on an ENIAC (1949) gave 2000 digits. A 
hundred minutes on an IBM 704 (1958) gave 10,000 digits. Shanks (no relation) 
reached 100,000 digits. Finally a million digits were found in a day in 1973, with a 
CDC 7600. All these calculations used variations of equation (20). 

The record after that went between Cray and Hitachi and now IBM. But the 
method changed. The calculations rely on an incredibly accurate algorithm, based 
on the "arithmetic-geometric mean iteration" of Gauss. It is also incredibly simple, 
all things considered: 

The number of correct digits more than doubles at every step. By n = 9 we are far 
beyond Shanks (the hand calculator). No end is in sight. Almost anyone can go past 
a billion digits, since with the Chudnovsky method we don't have to start over again. 

It is time to stop. You may think (or hope) that nothing more could possibly be 
done with geometric series. We have gone a long way from 1/(1- x), but some 
functions can never be reached. One is ex (and its relatives sin x, cos x, sinh x, cosh x). 
Another is JG(and its relatives I/,/-, sin- 'x, sec- 'x, . . .). The exponentials 
are in 10.4, with series that converge for all x. The square-roots are in 10.5, closer to 
geometric series and converging for 1x1 < 1. Before that we have to say what con- 
vergence means. 

The series came fast, but I hope you see what can be done (subtract, multiply, 
differentiate, integrate). Addition is easy, division is harder, all are legal. Some un- 
expected numbers are the sums of infinite series. 

Added in proof By e-mail I just learned that the record for TC is back in Japan: 
230 digits which is more than 1.07 billion. The elapsed time was 100 hours (75 hours 
of CPU time on an NEC machine). The billionth digit after the decimal point is 9. 

Read-through questions 

The geometric series 1 + x + x2 + ..- adds to a . It con- 
verges provided 1x1 < b . The sum of n terms is c . 
The derivatives of the series match the derivatives of 1/(1 -x) 
at the point x = d , where the nth derivative is e . 
The decimal 1.111... is the geometric series at x = f and 

equals the fraction g . The decimal .666... multiplies this 
by h . The decimal .999.. . is the same as i . 

The derivative of the geometric series is i = k . 
This also comes from squaring the I series. By choosing 
x = .01, the decimal 1.02030405 is close to m . The 
differential equation dyldx = y2 is solved by the geometric 
series, going term by term starting from y(0)= n , 
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The integral of the geometric series is 0 = P . At 
x = 1 this becomes the q series, which diverges. At x = 

r we find In 2 = s .The change from x to -x produ-
ces the series 1/(1+ x) = t and ln(1 +x) = u . 

In the geometric series, changing to x2 or -x2 gives 
1/(1- x2)= v and 1/(1+ x2)= w . Integrating the 
last one yields x -$x + f x5.--= x . The angle whose 
tangent is x = 1 is tan-' 1= Y . Then substituting x = 1 
gives the series n = z . 

1 The geometric series is 1+x +x2+ --.= G. Another way 
to discover G is to multiply by x. Then x +x2 + x3 + ...= 

xG, and this can be subtracted from the original series. What 
does that leave, and what is G? 

2 A basketball is dropped 10 feet and bounces back 6 feet. 
After every fall it recovers 3 of its height. What total distance 
does the ball travel, bouncing forever? 

3 Find the sums of 4 + $ + & +  .-.and 1-4 +&- .--and 
10- 1 + . l - .01... and 3.040404.... 
4 Replace x by 1-x in the geometric series to find a series 

for llx. Integrate to find a series for In x. These are power 
series "around the point x = 1." What is their sum at x =O? 

5 What is the second derivative of the geometric series, and 
what is its sum at x =i? 
6 Multiply the series (1 + x +x2+ -)(1- x +x2-.-) and 

find the product by comparing with equation(14). 

7 Start with the fraction 3. Divide 7 into 1.000... (by long 
division or calculator) until the numbers start repeating. 
Which is the first number to repeat? How do you know that 
the next digits will be the same as the first? 

Note about thefractions l/q, 10/q, 100/q, ...All remainders are 
less than q so eventually two remainders are the same. By 
subtraction, q goes evenly into a power loNminus a smaller 
power loN-". Thus qc = loN- loN-"for some c and l/q has 
a repeating decimal: 

1 C c 1 
q 10N-lON-n-lON1-lO-n 

Conclusion: Every fraction equals a repeating decimal. 

8 Find the repeating decimal for and read off c. What is 
the number n of digits before it repeats? 

9 From the fact that every q goes evenly into a power loN 
minus a smaller power, show that all primes except 2 or 5 go 
evenly into 9 or 99 or 999 or ..-. 
10 Explain why .010010001... cannot be a fraction (the 
number of zeros increases). 

11 Show that .123456789101112... is not a fraction. 

12 From the geometric series, the repeating decimal 
1.065065...equals what fraction?Explain why every repeating 
decimal equals a fraction. 

13 Write .878787... and .123123... as fractions and as geo-
metric series. 

14 Find the square of 1.111... as an infinite series. 

Find the functions which equal the sums 15-24. 

tan x-$tan3x+j.tan5x- -.-24 e" +e2"+ e3"+ -.-
Multiply the series for 1/(1- x) and 1/(1+ x) to find the 

coefficients of x, x2, x3 and xn. 

26 Compare the integral of 1 +x2+x4 + ..-to equation (13) 
and find jdx/(l- x '). 

27 What fractions are close to .2468 and .987654321? 

28 Find the first three terms in the series for 1/(1- x ) ~ .  

Add up the series 29-34. Problem 34 comes from (18). 

35 Compute the nth derivative of 1 +2x + 3x2+ ... at x =0. 
Compute also the nth derivative of (1 -x ) - ~ .  

36 The differential equation dyldx =y2 starts from y(0)=b. 
From the equation and its derivatives find y', y", y"' at x =0, 
and construct the start of a series that matches those deriva-
tives. Can you recognize y(x)? 

37 The equation dyldx =y2 has the differential form dy/y2= 
dx. Integrate both sides and choose the integration constant 
so that y =b at x =0. Solve for y(x) and compare with 
Problem 36. 

38 In a bridge game, what is the average number p of deals 
until you get the best hand? The probability on the first deal 
is p, =$. Then p2 =($)(4)=(probability of missing on the 
first) times (probability of winning on the second). Generally 
p, =($y-'($). The mean value p is p1 + 2p2+ 3p3+ =--• 

39 Show that (Zan)(Zbn)=Eanbn is ridiculous. 

40 Find a series for In 4 by choosing x in (lob). Find a series 
for In 3 by choosing x in (13). How is In 3 related to In 3, and 
which series converges faster? 
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41 Compute In 3 to its second decimal place without a calcu- 45 If tan y =$ and tan z =$, then the tangent of y +z is 
lator (OK to check). (tan y + tan z)/(l -tan y tan z) = 1. If tan y =4 and tan z = 

, again tan(y +z)  = 1. Why is this not as good as 
42 To four decimal places, find the angle whose tangent is equation (20), to find n/4? 
x=&.  

46 Find one decimal of n beyond 3.14 from the series for 
43 Two tennis players move to the net as they volley the ball. 4 tan-' 4 and 4 tan-' 4. How many terms are needed in each 
Starting together they each go forward 39 feet at 13 feet per series? 
second. The ball travels back and forth at 26 feet per second. 
How far does it travel before the collision at the net? (Look 47 (Calculator) In the same way find one decimal of n 

for an easy way and also an infinite series.) beyond 3.14159. How many terms did you take? 

44 How many terms of the series 1-3 +$ -f + - - - are 
48 From equation (10a) what is Xein/n? 

needed before the first decimal place doesn't change? Which 49 Zeno's Paradox is that if you go half way, and then half 
power of f equals the 100th power of $? Which power 1/d way, and then half way.. .,you will never get there. In your 
equals 1/2l OO? opinion, does 4 +$ +9 + add to 1 or not? 

10.2 Convergence Tests: Positive Series 

This is the third time we have stopped the calculations to deal with the definitions. 
Chapter 2 said what a derivative is. Chapter 5 said what an integral is. Now we say 
what the sum of a series is-if it exists. In all three cases a limit is involved. That is 
the formal, careful, cautious part of mathematics, which decides if the active and 
progressive parts make sense. 

The series f + 4+ + converges to 1. The series 1+f + 4 + diverges to infin- 
ity. The series 1 - + 4 - -..converges to In 2. When we speak about convergence or 
divergence of a series, we are really speaking about convergence or divergence of its 
"partial sums." 

DEFINITION 1 The partial sum s, of the series a, +a2 + a, + .-.stops at a,: 

s, = sum of the f i s t  n terms = al  + a2 + -.-+ a,. 

Thus sn is part of the total sum. The example f + 4+4+ -.-has partial sums 

Those add up larger and larger parts of the series-what is the sum of the whole 
series? The answer is: The series f + 4+ .. . converges to 1 because its partial sums s, 
converge to 1. The series a, + a2 + a, + ... converges to s when its partial sums- 
going further and further out-approach this limit s. Add the a's, not the s's. 

DEFINITION 2 The sum of a series is the limit of its partial sums s,. 

We repeat: if the limit exists. The numbers s, may have no limit. When the partial 
sums jump around, the whole series has no sum. Then the series does not converge. 
When the partial sums approach s, the distant terms a, are approaching zero. More 
than that, the sum of distant terms is approaching zero. 

The new idea (2a, = s) has been converted to the old idea (s, +s). 

EXAMPLE 1 The geometric series & + &+ &+ converges to s = 4. 
The partial sums sl ,s,, s,, s, are .l ,  .11, . I l l ,  .1111. They are approaching s =4. 
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Note again the difference between the series of a's and the sequence of s's. The series 
1 + 1 + 1 + ..-diverges because the sequence of s's is 1,2, 3, .. . . A sharper example is 
the harmonic series: 1+ i+ 4+ diverges because its partial sums 1, i f ,  ... eventu-
ally go past every number s. We saw that in 2.6 and will see it again here. 

Do not confuse a, -+ 0 with s, +s. You cannot be sure that a series converges, just 
on the basis that a, +0. The harmonic series is the best example: a, = l ln  -+ 0 but 
still s, -+ oo. This makes infinite series into a delicate game, which mathematicians 
enjoy. The line between divergence and convergence is hard to find and easy to cross. 
A slight push will speed up a, +0 and make the s, converge. Even though a, +0 
does not by itself guarantee convergence, it is the first requirement: 

I 10A If a series converges (s, 4 s) then its terms must approach zero (a, -+ 0). I 
Proof Suppose s, approaches s (as required by convergence). Then also s,-, 
approaches s, and the difference s, - s, -,approaches zero. That difference is a,. So 
a, -+ 0. 

EXAMPLE 1 (continued) For the geometric series 1 + x + x2 + . a - ,  the test an+0 is 
the same as xn -+ 0. The test is failed if 1x1 2 1, because the powers of x don't go to 
zero. Automatically the series diverges. The test is passed if -1 < x < 1. But to prove 
convergence, we cannot rely on a, -+ 0. It is the partial sums that must converge: 

1 - xns, = 1+ x + .., + x"-' = - and sn -+ -
1 . This is s.

1 - x  1 - x  

For other series, first check that a, -,0 (otherwise there is no chance of con- 
vergence). The a, will not have the special form xn-so we need sharper tests. 

The geometric series stays in our mind for this reason. Many convergence tests are 
comparisons with that series. The right comparison gives enough information: 

If la,/ <iand la2[<+and ..., then a,  + a 2  + ... converges faster than f + $ +  .... 
More generally, the terms in a,  + a2 + a3 + ... may be smaller than 
ax + ax2 + ax3 + + .  .. Provided x < 1, the second series converges. Then an also 
converges. We move now to convergence by comparison or divergence by comparison. 

Throughout the rest of this section, all numbers a, are assumed positive. 

COMPARISON TEST AND INTEGRAL TEST 

In practice it is rare to compute the partial sums s, = a ,  + + a,. Usually a simple 
formula can't be found. We may never know the exact limit s. But it is still possible 
to decide convergence- whether there is a sum- by comparison with another series 
that is known to converge. 

100 (Comparison test) Suppose that 0 <a, 4b. and 1b, converges. Then I I
zanconverges. 

The smaller terms an add to a smaller sum: 1an is below 1bn and must converge. 
On the other hand suppose an 2 cn and cn= co.This comparison forces 1an= m. 
A series diverges if it is above another divergent series. 

Note that a series of positive terms can only diverge "to infinity." It cannot oscillate, 
because each term moves it forward. Either the s, creep up on s, passing every number 
below it, or they pass all numbers and diverge. If an increasing sequence s, is bounded 
above, it must converge. The line of real numbers is complete, and has no holes. 
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The harmonic series 1 +3+4+ + .. . diverges to infinity. 

A comparison series is 1 + 3+$ + $ +$ +$ +$ +$ + .. . . The harmonic series is 
larger. But this comparison series is really 1 +3+3+3 + .. . , because i-= a =$. 

The comparison series diverges. The harmonic series, above it, must also diverge. 

To apply the comparison test, we need something to compare with. In Example 2, 
we thought of another series. It was convenient because of those 3's. But a different 
series will need a different comparison, and where will it come from? There is an 
automatic way to think of a comparison series. It comes from the integral test. 

Allow me to apply the integral test to the same example. To understand the integral 
test, look at the areas in Figure 10.2. The test compares rectangles with curved areas. 

y (s)= -1 y ( x )  = 1 

sum + oo so 

Fig. 10.2 Integral test: Sums and integrals both diverge (p = 1) and both converge (p > 1). 

EXAMPLE 2 (again) Compare 1 +3+ 4+ . . . with the area under the curve y = 1/x. 

Every term a, = lln is the area of a rectangle. We are comparing it with a curved 
area c,. Both areas are between x = n and x = n + 1, and the rectangle is above the 
curve. SO a, > c,: 

1 
rectangular area a, = - exceeds curved area c, = 

n 

Here is the point. Those c,'s look complicated, but we can add them up. The sum 
c, + ... + c, is the whole area, from 1 to n + 1. It equals ln(n + 1)-we know the 
integral of llx. We also know that the logarithm goes to infinity. 

The rectangular area 1 + 112 + ... + lln is above the curved area. By comparison 
of areas, the harmonic series diverges to infinity-a little faster than ln(n + 1). 

Remark The integral of l /x  has another advantage over the series with 3's. First, 
the integral test was automatic. From l/n in the series, we went to l /x  in the integral. 
Second, the comparison is closer. Instead of adding only $ when the number of terms 
is doubled, the true partial sums grow like In n. To prove that, put rectangles under 
the curve. 

Rectangles below the curve give an area below the integral. Figure 10.2b omits the 
first rectangle, to get under the curve. Then we have the opposite to the first 
comparison-the sum is now smaller than the integral: 

Adding 1 to both sides, s, is below 1 + In n. From the previous test, s, is above 
ln(n + 1). That is a narrow space-we have an excellent estimate of s,. The sum of lln 
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and the integral of 1/x diverge together. Problem 43 will show that the difference
between s, and In n approaches "Euler's constant," which is y = .577 ....

Main point: Rectangular area is sn. Curved area is close. We are using integrals to
help with sums (it used to be the opposite).

Question If a computer adds a million terms every second for a million years, how
large is the partial sum of the harmonic series?
Answer The number of terms is n = 602 * 24 * 365 " 1012 < 3.2 - 1019. Therefore In n
is less than In 3.2 + 19 In 10 < 45. By the integral test s. < 1 + In n, the partial sum
after a million years has not reached 46.

For other series, 1/x changes to a different function y(x). At x = n this function
must equal an. Also y(x) must be decreasing. Then a rectangle of height an is above
the graph to the right of x = n, and below the graph to the left of x = n. The series
and the integral box each other in: left sum > integral > right sum. The reasoning is
the same as it was for a, = 1/n and y(x) = llx: There is finite area in the rectangles
when there is finite area under the curve.

When we can't add the a's, we integrate y(x) and compare areas:

10C (Integral test) If y(x) is decreasing and y(n) agrees with an, then

a, + a2 + a3 + --- and y(x) dx both converge or both diverge.

1 1 1 1
EXAMPLE 3 The "p-series" -+ P  -+ --+ + converges if p > 1. Integrate y -

2 3P 4P xP

1 f " dx p  l1 by addition 1 < dxx-< so 
/n i n=2 PP

In Figure 10.2c, the area is finite if p > 1. The integral equals [x1 -P(1 - p)]] , which
is 1/(p - 1). Finite area means convergent series. If 1/1P is the first term, add 1 to the
curved area:

1 1 1 1 p
-- +-+--+... 1+
1P  

< 
2P 3P  p- 1 p- 1

The borderline case p = 1 is the harmonic series (divergent). By the comparison
test, every p < 1 also produces divergence. Thus 11/ n diverges by comparison with
Sdxl/x (and also by comparison with l1/n). Section 7.5 on improper integrals runs

parallel to this section on "improper sums" (infinite series).
Notice the special cases p = 2 and p = 3. The series 1 + 1 + + -... converges. Euler

found it2/6 as its sum. The series 1 + + -L + "' also converges. That is proved by
comparing Z1/n3 with 11/n 2 or with 5 dx/x3 . But the sum for p = 3 is unknown.

Extra credit problem The sum of the p-series leads to the most important problem
in pure mathematics. The "zeta function" is Z(p) = I1/n P, so Z(2) = ir2/6 and Z(3) is
unknown. Riemann studied the complex numbers p where Z(p) = 0 (there are infi-
nitely many). He conjectured that the real part of those p is always ½. That has been
tested for the first billion zeros, but never proved.

COMPARISON WITH THE GEOMETRIC SERIES

We can compare any new series aI + a2 + ... with 1 + x + --. Remember that the
first million terms have nothing to do with convergence. It is further out, as n - oo,
that the comparison stands or falls. We still assume that an > 0.
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1OD (Ratio test) If a, + I/an approaches a limit L < 1, the series converges. 

10E (Root test) If the nth root approaches L c 1, the series converges. 

Roughly speaking, these tests make a, comparable with Ln-therefore convergent. 
The tests also establish divergence if L > 1. They give no decision when L = 1. Unfor- 
tunately L = 1 is the most important and the hardest case. 

On the other hand, you will now see that the ratio test is fairly easy. 

EXAMPLE 4 The geometric series x + x 2  + -..has ratio exactly x. The nth root is 
also exactly x. So L =x. There is convergence if x < 1(known) and divergence if x > 1 
(also known). The divergence of 1 + 1 + -..is too delicate (!) for the ratio test and 
root test, because L = 1. 

EXAMPLE 5 The p-series has a, = l/nP and a,+ ,/a, = nP/(n+ The limit as n -+ co 
is L = 1, for every p. The ratio test does not feel the difference between p = 2 (conver-
gence) and p = 1 (divergence) or even p = - 1 (extreme divergence). Neither does the 
root test. So the integral test is sharper. 

EXAMPLE 6 A combination of p-series and geometric series can now be decided: 

X x2 xn an+ ,- xn+' np-+-+. . .+-+. . .  has ratio ---- approaching L = x.
lP  2P nP a, (n + xn 

It is 1x1 < 1 that decides convergence, not p. The powers xn are stronger than any nP. 
The factorials n! will now prove stronger than any xn. 

EXAMPLE 7 The exponential series ex = 1 + x + i x 2+ &x3+ ... converges for all x. 

The terms of this series are xn/n! The ratio between neighboring terms is 

xn+l/(n+ l)! - x which approaches L = 0 as n -+ cc 
xn/n! n +  1' 

With x = 1, this ratio test gives convergence of zl/n! The sum is e. With x = 4, the 
larger series 4"/n! also converges. We know this sum too-it is e4. Also the sum 
of xnnP/n! converges for any x and p. Again L = 0-the ratio test is not even close. 
The factorials take over, and give convergence. 

Here is the proof of convergence when the ratios approach L < 1. Choose x halfway 
from L to 1. Then x < 1. Eventually the ratios go below x and stay below: 

U N + I / U N <  a ~ + 2 / a ~ + 1x < aN+3/aN+2< X "' 

Multiply the first two inequalities. Then multiply all three: 

Therefore a,+ ,+ a,+, + a,+, + -.. is less than a,(x + x2 + x3 + ...). Since x < 1, 
comparison with the geometric series gives convergence. 

EXAMPLE 8 The series l/nn is ideal for the root test. The nth root is ljn. Its 
limit is L = 0. Convergence is even faster than for e = zl /n!  The root test is easily 
explained, since (an)ll" < x yields a, < xn  and x is close to L < 1. So we compare with 
the geometric series. 
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SUMMARY FOR POSITIVE SERIES

The convergence of geometric series and p-series and exponential series is settled. I
will put these an's in a line, going from most divergent to most convergent. The
crossover to convergence is after 1/n:

1 1 1 n 1 4" 1 11 + 1 + (p < 1) nP 
> 

n n 
(p 1) 2" 2" n! n! n"

10A l0B and 10C IOD and I0E

(an 0) (comparison and integral) (ratio and root)

You should know that this crossover is not as sharp as it looks. On the convergent
side, 1/n(In n)2 comes before all those p-series. On the divergent side, 1/n(ln n) and
1/n(ln n)(ln In n) belong after 1/n. For any divergent (or convergent) series, there is
another that diverges (or converges) more slowly.

Thus there is no hope of an ultimate all-purpose comparison test. But comparison
is the best method available. Every series in that line can be compared with its
neighbors, and other series can be placed in between. It is a topic that is understood
best by examples.

1 1
EXAMPLE 9 C diverges because - diverges. The comparison uses In n < n.

In n n

EXAMPLE1 dx 1 f dx
EXAMPLE 10 )2 < 00 E 00.

n(ln n)2  x(ln x)2  n(ln n) x(n x)

The indefinite integrals are - 1/In x and In(In x). The first goes to zero as x - co; the
integral and series both converge. The second integral In(In x) goes to infinity-very
slowly but it gets there. So the second series diverges. These examples squeeze new
series into the line, closer to the crossover.

1 1 1 1 1 1 1 1
EXAMPLE 11 2 < so - + - + -- + - < - +  + + I --- (convergence).

n + 1 n2 2 5 10 1 4 9

The constant 1 in this denominator has no effect-and again in the next example.

1 1 111 111
EXAMPLE 12 1l- > - so - + - + - + > - + - + -• + .

2n-1 2n 1 3 5 2 4 6

1/2n is 1/2 times E 1/n, so both series diverge. Two series behave in the same
way if the ratios an/b, approach L > 0. Examples 11-12 have n2/(n2 + 1) -+ 1 and
2n/(2n - 1) -> 1. That leads to our final test:

1OF (Limit comparison test) If the ratio an/bn approaches a positive limit L,
then E an and E bn either both diverge or both converge.

Reason: an is smaller than 2Lb, and larger than ½Lbn , at least when n is large. So the
two series behave in the same way. For example C sin (7/nP) converges for p > 1,
not for p < 1. It behaves like 1 1/np (here L = 7). The tail end of a series (large n)
controls convergence. The front end (small n) controls most of the sum.

There are many more series to be investigated by comparison.

9
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1 0.2 EXERCISES 

Read-through questions 

The convergence of a, + a, + - is decided by the partial sums 
s, = a . If the s, approach s, then Za, = b . For the Establish convergence or divergence in 11-20 by a comparison 

c series 1 + x + s . 0  the partial sums are s, = d . In test. 
that case s, + 1/(1- x) if and only if . In all cases the 1 1 

limit s, + s requires that a, + t . But the harmonic series 
a, = l/n shows that we can have a, + g and still the series 

h . 

The comparison test says that if 0 d a, < b, then i . In 
case a decreasing y(x) agrees with a, at x = n, we can apply 

16 z -$ cos the 1 test. The sum Za, converges if and only if k . (i) 
By this test the p-series Z l/nP converges if and only if p is 

I . For the harmonic series (p = I), s, = 1 + .-. + l/n is 
close to the integral f(n) = m . 

The n test applies when a,, , /a, + L. There is con- 
vergence if o , divergence if P , and no decision if 

q . The same is true for the r test, when (an)ll" + L. 
For a geometric-p-series combination a, = xn/nP, the ratio For 21-28 find the limit L in the ratio test or root test. 
a,, ,/a, equals s . Its limit is L = t so there is con- 

3" 1 vergence if u . For the exponential ex = Zxn/n! the limit- 21 C- 
ing ratio a,, ,/a, is L = v . This series always w n ! 22 C;;i 
because n! grows faster than any xn or nP. 

There is no sharp line between x and Y . But if 
E b, converges and a,/b, + L, it follows from the test 
that Za, also converges. 

1 Here is a quick proof that a finite sum 1 + 4 + 3 + s 
is impossible. Division by 2 would give 4 + b + & + 

= 

-.- = is .  
Subtraction would leave 1 + 3. + 4 + ... = is. Those last two 
series cannot both add to 3s because . 29 ( j  - 4) + (4 - 4) + ($ - 4) is "telescoping" because 3 and 

cancel and Add the infinite telescoping series 2 Behind every decimal s = .abc. .. is a convergent series - 4 - 5. 
a110 + b/100 + + By a comparison test prove 
convergence. 

3 From these partial sums s,, find a, and also s = Zy a,: 30 Compute the sum s for other "telescoping series": 
1 2n 

(a) s, = 1 - - (b) s, = 4n (c) S, =In - 
n n +  1' 

4 Find the partial sums s, = a, + a, + + a,: 
(b) In ++ln  $+ln $+ 

(a) a, = 113"-' (b) a, = In - n 
(c) a, = n n + l  31 In the integral test, what sum is larger than JI y(x) dx and 

5 Suppose 0 < a, < b, and Za, converges. What can be what sum is smaller? Draw a figure to illustrate. 
deduced about Z b,? Give examples. 

32 Comparing sums with integrals, find numbers larger and 
6 (a) Suppose b, + c, c a, (all positive) and Za, converges. smaller than 

What can you say about Zb, and Zc,? 
+ 1 1 1 1 (b) Suppose a, < b, c, (all positive) and Can diverges. s , = l + - + . - + -  and s,= 1 + -  +.-. $3.  

3 2n- 1 8 n What can you say about Z b, and Xc,? 
33 Which integral test shows that 1; l/en converges? What 
is the sum? 

Decide convergence or divergence in 7-10 (and give a reason). 
34 Which integral test shows that CT n/en converges? What 
is the sum? 
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Decide for or against convergence in 35-42, based on Jy(x) dx. 
1 1 

35 C m 56kz 
n 

x37 C nZ+l 38 x n (is 5decreasing? 

43 (a) Explain why D, = 

by using rectangles as in Figure 10.2. 
(b) Show that D,,, is less than D, by proving that 

(c)(Calculator)The decreasingD,'s must approach a limit. 
Compute them until they go below .6 and below .58 
(when?). The limit of the D, is Euler's constant y = .577.. .. 

44 In the harmonic series, use s, x .577 + In n to show that 
1 

s, = 1 + -1 + ... + -needs more than 600 terms to reach s, >7.
2 n 

How many terms for s, > lo? 

45 (a) Show that 1 -
1 1 
- + - - 1 --..- 1 1 

-- 1+ ...+ -by
2 3 4 2n n + l  2n 

(b) Why is the right side close to In 2n -1n n? Deduce that 
1-4 +3 -6 + ...approaches In 2. 

46 Every second a computer adds a million terms of 
l/(n in n). By comparison with J dx/(x in x), estimate the 

partial sum after a million years (see Question in text). 
1000 1 

47 Estimate 1 -by comparison with an integral. 
100 n2 

48 If C a, converges (all a, >0) show that X a: converges. 

49 If I:a, converges (all a, >0) show that Z sin a, converges. 
How could Z sin a, converge when C a, diverges? 

50 The nth prime number p, satisfies p,/n In n -* 1. Prove that 

1 1 1 1 1 1- - -+-+-+-+-+. . .  diverges.
2 3 5 7 11 

Construct a series E a, that converges faster than C b, but 
slower than I:cn(meaning a,/b, +0, a,/c, -,a). 

51 b, = l/n2, c, =1/n3 52 b, =n($)", c, =(+)" 

53 b, = 1In!, c, = 1/nn 54 b, = l/ne, c, = l/en 

In Problem 53 use Stirling's formula J2nn nn/e"n!-t 1. 

55 For the series 3 +3 +6 +6 +& +4 + -.- show that the 
ratio test fails. The roots (a,)'In do approach a limit L. Find 
L from the even terms a,, = 1/2k.Does the series converge? 

56 (For instructors) If the ratios a,, ,/a, approach a positive 
limit L show that the roots (a,)'In also approach L. 

Decide convergence in 57-66 and name your test. 
1 1 

57 1 "IF 

1 
(test all p) 64 CpIn n 

(test all p)
63 1-

67 Suppose a,/b, -* 0 in the limit comparison test. Prove that 
C a, converges if X b, converges. 

68 Can you invent a series whose convergence you and your 
instructor cannot decide? 

10.3 Convergence Tests: All Series 

This section finally allows the numbers a, to be negative. The geometric series 1 -
f ++++ ... -- is certainly allowed. So is the series n = 4 -$ + - + .--.If we5 7 
change all signs to +,the geometric series would still converge (to the larger sum 2). 
This is the first test, to bring back a positive series by taking the absolute value la,[ 
of every term. 

DEFINITION The series Z a, is "absolutely convergent" if Z la,[ is convergent. 
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Changing a negative number from a, to Ia,l increases the sum. Main point: The
smaller series Y a, is sure to converge if I la,,l converges.

4OG If Y a, converges then I a,, converges (absolutely). But I a,, might con-
verge, as in the series for 7, even if I fa,. diverges to infinity.

EXAMPLE 4 Start with the positive series + 1 + + . Change any signs to minus.
Then the new series converges (absolutely). The right choice of signs will make it
converge to any number between -1 and 1.

EXAMPLE 2 Start with the alternating series 1-½+- + +. which converges to
In 2. Change to plus signs. The new series 1 + +½+ ... diverges to infinity. The
original alternating series was not absolutely convergent. It was only "conditionally
convergent." A series can converge (conditionally) by a careful choice of signs-even
if Ila,,l = co.

If I la,n, converges then I a, converges. Here is a quick proof. The numbers a, + la,I
are either zero (if a, is negative) or 21a,l. By comparison with I 21an, which converges,
Y (a, + lan) must converge. Now subtract the convergent series I Ian,. The difference
I a, also converges, completing the proof. All tests for positive series (integral, ratio,
comparison, ...) apply immediately to absolute convergence, because we switch to
la,n.

EXAMPLE 3 Start with the geometric series + 4± + + + " which converges to -.
Change any of those signs to minus. Then the new series must converge (absolutely).
But the sign changes cannot achieve all sums between - 1 and 4. This time the sums
belong to the famous (and very thin) Cantor set of Section 3.7.

EXAMPLE 4 (looking ahead) Suppose I a,x" converges for a particular number x.
Then for every x nearer to zero, it converges absolutely. This will be proved and used
in Section 10.6 on power series, where it is the most important step in the theory.

EXAMPLE 5 Since Y 1/n2 converges, so does I (cos n)/n 2. That second series has
irregular signs, but it converges absolutely by comparison with the first series (since
I cos ni < 1). Probably I (tan n)/n2 does not converge, because the tangent does not
stay bounded like the cosine.

ALTERNATING SERIES

The series 1 - 1+- 4 + ... converges to In 2. That was stated without proof. This
is an example of an alternating series, in which the signs alternate between plus and
minus. There is the additional property that the absolute values 1, 1, 1, , ... decrease
to zero. Those two facts-decrease to zero with alternating signs-guarantee
convergence.

IOH An alternating series a, - a2  a3 - a4 .. converges (at least condition-
ally, maybe not absolutely) if every a,,, 1 < a. and a, -4 0.

The best proof is in Figure 10.3. Look at a, - a2 + a3. It is below a,, because a3 (with
plus sign) is smaller than a2 (with minus sign). The sum of five terms is less than the
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• I
I

a -a 2

+a 3

I I
i I -a 4

I +a 5  I
II I

0 s2 S4  S S5  S3  S1

Fig. 10.3 An alternating series converges when the absolute values decrease to zero.

sum of three terms, because a5 is smaller than a4 . These partial sums s1 , s 3, ss,...
with an odd number of terms are decreasing.

Now look at two terms a, - a2 , then four terms, then six terms. Adding on a3 - a4
increases the sum (because a3 > a4 ). Similarly s6 is greater than s4 (because it includes
a5 - a6 which is positive). So the sums s2, s4 , s6, ... are increasing.

The difference between s. _, and s, is the single number + a,. It is required by 10H
to approach zero. Therefore the decreasing sequence sj, s3, ... approaches the same
limit s as the increasing sequence S2, s4, .... The series converges to s, which always
lies between s, _ 1 and s,.

This plus-minus pattern is special but important. The positive series Xa, may not
converge. The alternating series is I(- 1)n+ 1a,.

EXAMPLE 6 The alternating series 4 - 4+ 4- -. is conditionally convergent (to
7n). The absolute values decrease to zero. Is this series absolutely convergent? No.
With plus signs, 4(1 + + - + ... ) diverges like the harmonic series.

EXAMPLE 7 The alternating series 1 - 1 + 1 - 1 + ... is not convergent at all. Which
requirement in 10H is not met? The partial sums s1 , S3 , s5 , ... all equal 1 and
s2, s , s6, ... all equal 0-but they don't approach the same limit s.4

MULTIPLYING AND REARRANGING SERIES

In Section 10.1 we added and subtracted and multiplied series. Certainly addition
and subtraction are safe. If one series has partial sums s, -+ s and the other has partial
sums t, -+ t, then addition gives partial sums s, + t, - s + t. But multiplication is
more dangerous, because the order of the multiplication can make a difference. More
exactly, the order of terms is important when the series are conditionally convergent.
For absolutely convergent series, the order makes no difference. We can rearrange
their terms and multiply them in any order, and the sum and product comes out
right:

i01 Suppose Ia, converges absolutely. If A, A2 , ... is any reordering of the
a's, then l An = Ian. In the new order Y A, also converges absolutely.

iOJ Suppose an= s and b = t converge absolutely. Then the infinitely
many terms aibj in their product add (in any order) to st.

Rather than proving 10I and 10J, we show what happens when there is only condi-
tional convergence. Our favorite is 1- + - + ... , converging conditionally to

83
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In 2. By rearranging, it will converge conditionally to anything! Suppose the desired 
sum is 1000. Take positive terms 1 +5 + until they pass 1000. Then add negative 
terms -;-;-... until the subtotal drops below 1000. Then new positive terms 

bring it above 1000, and so on. All terms are eventually used, since at least one new 
term is needed at each step. The limit is s = 1000. 

We also get strange products, when series fail to converge absolutely: 

On the left the series converge (conditionally). The alternating terms go to zero. On 
the right the series diverges. Its terms in parentheses don't even approach zero, and 
the product is completely wrong. 

I close by emphasizing that it is absolute convergence that matters. The most 
important series are power series Eanxn.Like the geometric series (with all a, = 1) 
there is absolute convergence over an interval of x's. They give functions of x, which 
is what calculus needs and wants. 

We go next to the series for ex, which is absolutely convergent everywhere. From 
the viewpoint of convergence tests it is too easy-the danger is gone. But from the 
viewpoint of calculus and its applications, ex is unconditionally the best. 

10.3 EXERCISES 

Read-through questions 13 Suppose Za, converges absolutely. Explain why keeping 
the positive a's gives another convergent series. 

The series Ea, is absolutely convergent if the series a is 
convergent. Then the original series Ea, is also b . But 14 Can Ea, converge absolutely if all a, are negative? 
the series Za, can converge without converging absolutely. 15 Show that the alternating series 1 -4 +$ -4+5 -& + -.-
That is called c convergence, and the series d is an does not converge, by computing the partial sums s2, s4, . . . .
example. Which requirement of 10H is not met? 

For alternating series, the sign of each a,+ ,is to the 16 Show that 4 -3 +4 -8 + .-.does not converge. Which 
sign of a,. With the extra conditions that f and g , requirement of 10H is not met? 
the series converges (at least conditionally). The partial sums 
s l ,  s3, ... are h and the partial sums s,, s,, . .. are i . 17 (a) For an alternating series with terms decreasing to zero, 
The difference between s, and s,- is i . Therefore the why does the sum s always lie between s,- and s,? 
two series converge to the same number s. An alternating (b) Is s -s, positive or negative if s, stops at a positive a,? 
series that converges absolutely [conditionally] (not at all) is 

18 Use Problem 17 to give a bound on the difference between k r I 1 ( m ). With absolute [conditional] con-
s, = 1 -4 +5 -6 +4 and the sum s = ln 2 of the infinite vergence a reordering (can or cannot?) change the sum. 
series. 

1 1Do the series 1-12 converge absolutely or conditionally? 
19 Find the sum 1 --+ -1 

--+ ...=s. The partial sum s4 
2! 3! 4! 

is (above s)(below s) by less than . 
20 Give a bound on the difference between sloe= 
1 1 1 1 
12 22 + j r  -- and s =C(- 1)"' '/n2. 

1 002 
1 1 1 n2

21 Starting from 1+ 7+ 3+ -.-= - with plus signs, 
1 2 3 6 '  

show that the alternating series in Problem 20 has s = n2/12. 

22 Does the alternating series in 20 or the positive series in 
21 give n2 more quickly? Compare 1/1012- 1/102' + with+ - a  

1/1012+ 1/1022+ -.-. 
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23 If Za, does not converge show that Zla,l does not 34 Verify the Schwarz inequality (C a, bJ2 <(C aZ)(Z bi) if 
converge. a, =(4)" and b, = (4)". 

a2
24 Find conditions which guarantee that a, + a, -a3+ 35 Under what condition does ?(a,+, -an) converge and 
a, +a5-a, + -.-will converge (negative term follows two what is its sum? 
positive terms). 

36 For a conditionally convergent series, explain how the 
25 If the terms of In 2 = 1-4 +3-f + --.are rearranged into terms could be rearranged so that the sum is + co. All terms 
1-3-6 +4 - - & + --.,show that this series now adds to must eventually be included, even negative terms. 4 In 2. (Combine each positive term with the following nega- 
tive term.) 37 Describe the terms in the product (1 +4 + f + .--)(I+4 + 
26 Show that the series 1 +4 - +4 +4- + converges 4 + ---)and find their sum. 

to 4 In 2. 
38 True or false: 

27 What is the sum of 1 +*-$+*-f + 4 - & +  - . a ?  (a) Every alternating series converges. 
1

28 Combine 1 + - - .  + - - l n n + y  and 1 - $ + ~ - . - + l n 2  (b) Za, converges conditionally if Z la,l diverges. 
n (c) A convergent series with positive terms is absolutely 

to prove 1+ * + 4 - 3 - $ - & +  = ln2. convergent. 

29 (a) Prove that this alternating series converges: (d) If Can and Cb, both converge, so does C(a, +b,). 

39 Every number x between 0 and 2 equals 1 +4 +4+ ..-
with suitable terms deleted. Why? 

(b) Show that its sum is Euler's constant y. 40 Every numbers between -1 and 1 equals +f f$ f$ f --. 
with a suitable choice of signs. (Add 1 =4+f +4 + --.to get 30 Prove that this series converges. Its sum is 42.  
Problem 39.) Which signs give s = - 1 and s =0 and s =i? 
41 Show that no choice of signs will make +4+4$&+ .--
equal to zero. 

1
31 The cosine of 8 = 1 radian is 1 --+ -.-

1 .--.Compute 42 The sums in Problem 41 form a Cantor set centered at 2! 4! 
cos 1 to five correct decimals (how many terms?). zero. What is the smallest positive number in the set? Choose 

signs to show that 4is in the set. 
It3 715 

m a . .32 The sine of 8 = 7~ radians is n --
3! 

+-
5! 
- Compute "43 Show that the tangent of 0 =q(n - 1) is sin 1/(1 -cos 1). 

sin 7~ to eight correct decimals (how many terms?). This is the imaginary part of s = - ln(1 -ei). From 
s =Z ein/n deduce the remarkable sum C (sin n)/n =q(7~- 1).

33 If Xai and Zbi are convergent show that Za,b, is abso- 
lutely convergent. 44 Suppose Can converges and 1x1 < 1. Show that Ca,xn 
Hint: (a fb)2 2 0 yields 2)abJ <a2+b2. converges absolutely. 

10.4 The Taylor Series for ex,sin x, and cos x -
This section goes back from numbers to functions. Instead of Xu, = s it deals with 
Xanxn=f(x). The sum is afunction of x. The geometric series has all a, = 1 (including 
a,, the constant term) and its sum is f(x) = 1/(1- x). The derivatives of 1 + x +x2 + --. 
match the derivatives off. Now we choose the an differently, to match a different 
function. 

The new function is ex. All its derivatives are ex. At x =0, this function and its 
derivatives equal 1. To match these l's, we move factorials into the denominators. 
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