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Planning an evaluation

• Today’s Question: 

How large does the sample need to be to 

credibly detect a given treatment effect?

• What does credibly mean?

It means that I can be reasonably sure that the 

difference between the group that received the 

program and the group that did not is due to the 

program

• Randomization removes bias, but it does not 

remove noise: it works because of the law of 

large numbers… how large much “large” be? 
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Sample size

• Important determinants of sample size

– How big an effect size are we looking for?

– How noisy is the outcome measure?

– Do we have a baseline? 

– Are individual responses correlated with each other?

– Design of the experiment: stratification, control 

variables, baseline data,  group v. individual level 

randomization
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Outline

I. Hypothesis testing

II. Type I and Type II Errors

III. Standard errors and significance 

IV. Power

V. Effect size

VI. Factors that influence power
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Hypothesis testing: Simple intuition I

• Professional gambler, claims she can get heads 

most of the time with a fair coin
– One toss: “H”

• Any inference?

– Five tosses: H,H,T,H,H

• Any inference?

– Twenty Tosses:

• T,H,T,H,T,H,H,H,T,H,T,H,T,H,H,T,H,T,H,H

• (12 Head, 8 Tails)

– One hundred tosses

• 61 Heads, 39 Tails

– One thousand tosses

• 609 Heads, 391 Tails



6

Very simple intuition II

• Second gambler, 1,000 tosses, 

– Observe 530 Heads, and 470 tails.

• Can we reject claim that he obtains H 70% of 

the time? (e.g., 20% more than 50%)?

• Can we reject claim that he obtains H 54% of 

the time (e.g., 4% more than 50%)?
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Basic set up

• At the end of an experiment, we will compare 

the outcome of interest in the treatment and the 

comparison groups. 

• We are interested in the difference: 

Mean in treatment - Mean in control

= Effect size

• For example: mean of the number of wells in villages 

with female leaders vs mean of the number of wells 

in villages with male leaders
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Estimation

• But we do not observe the entire population, 
just a sample. 
– In each village of the sample, there is a given 

number of wells. It is more or less close to the 
mean in the population.

• We estimate the mean by computing the 
average in the sample 
– If we have very few villages, the averages are 

imprecise. When we see a difference in sample 
averages, we do not know whether it comes from 
the effect of the treatment or from something else
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A tight conclusion
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Less precision

Medium Standard Deviation
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Can we conclude anything?

High Standard Deviation
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Very simple intuition

• Sample Size Matters:

– The more tosses we have, the better able we are to 

understand the true probability of heads

• The hypothesis matters

– The more fine (or more precise) the effect size we 

want to detect, the more tosses we need 

• Variability of the outcome matters

– The more “noisy” it is, the harder it is to measure 

effects
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Intuition: Confidence intervals

• We measure the length of 100 randomly selected infants, and find 

an average length of 53 cm?

• How precise is that estimate? Could it be, if we measure all the 

infants, we would in fact find an average of 54 cm? Or 60 cm?

• Confidence interval: given some data, a sense of how precise our 

estimate is

• A confidence interval of 50-56 says that with 95% probability, the 

true average length lies between 50 and 56.

• Approximate interpretation: “We know the point estimate of 53 isn’t 

exactly correct, but its close…how close? Well, it’s very likely that 

the true answer is between 50 and 56. 
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Confidence intervals

• The goal is to figure out the true effect of the program

• From our sample, we get an estimate of the program 

effect 

• What can we learn about the true program effect 
from the estimate?

• A 95% confidence interval for an estimate tells us that, 

with 95% probability, the true program effect lies within 

the confidence interval

• The Standard error (se)  of the estimate in the sample 
captures both the size of the sample and the variability 
of the outcome (it is larger with either a small sample or 
with a volatile outcome)

• Rule of thumb: a 95% confidence interval is roughly the 
effect plus or minus two standard errors. 
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Confidence intervals

• Example 1:

– Sampled women Pradhans have 7.13 years of 

education

– Sampled male Pradhans have 9.92 years of education

– The difference is 2.59 with a standard error of 0.54

– The 95% confidence interval is [1.53; 3.64]

• Example 2: 

– Control children have an average test score of 2.45

– Treated children have an average test score of 2.50

– The difference is 0.05, with a standard error of 0.26

– The 95% confidence interval is [-0.55;0.46]
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Hypothesis testing

• Often we are interested in testing the hypothesis 

that the effect size is equal to zero: 

• We want to test the null hypothesis (H0): 

Against the alternative hypothesis (Ha): 

(other possible alternatives: Ha>0, Ha<0, Ha>2). 

• Hypothesis testing asks: when can I reject the 

null in favor of the alternative?

0  sizeEffect  :aH

0 sizeEffect  :oH
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Outline

I. Hypothesis testing

II. Type I and Type II Errors

III. Standard errors and significance 

IV. Power

V. Effect size

VI. Factors that influence power
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Two types of mistakes 

• Type I error: Conclude that there is an effect, when in fact 
there are no effect. 

The significance level or size of a test is the probability 
that you will falsely conclude that the  program has an 
effect, when in fact it does not.

Example: Female Pradhan’s year of education is 7.13, and 
Male’s is 9.92 in our sample. Do female Pradhan have 
different level of education, or the same? 

If I say they are different, how confident am I in the 
answer?

So with a level of 5%, you can be 95% confident in the 
validity of your conclusion that the program had an effect

Common level of significance: 0.05, 0.01, 0.1. 
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Two types of mistakes

• Type II error: you fail to reject that the program 

had no effect, when it fact it does have an effect. 

• The Power of a test is the probability that I will be 
able to find a significant effect in my experiment 
(higher power is better since I am more likely to 
have an effect to report, if there is one.)
– Power is a planning tool. It tells me how likely it is that I 

find a significant effect for a given sample size, if there 
is one.

Example: If I run 100 experiments, in how many of them 

will I be able to reject the hypothesis that women and 

men have the same education at the 5% level, if in fact 

they are different? 
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Intuition

YOU CONCLUDE

Effective No Effect

THE 

TRUTH

Effective 
Type II Error 

(power)



No Effect

Type I Error

(size)



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Outline

I. Hypothesis testing

II. Type I and Type II Errors

III. Standard errors and significance 

IV. Power

V. Effect size

VI. Factors that influence power
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Testing equality of means

We have 

(1)       our estimate of the program effectiveness.

For example       

= Average Treated Test Score– Average Control Test Score

(2) An estimate of the “standard error” of        , which 

measures how precise our estimate is. (The same thing 

used to compute confidence intervals).

(Depends on the variability of       and sample size)

ˆ

ˆ

ˆ
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Standard error intuition

Low Standard Deviation
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Testing equality of means

We use                          

• So if t > 1.96, we reject the hypothesis of equality at a 

5% level of confidence (5% chance there is in fact no 

difference)

• It t < 1.96, we fail to reject the hypothesis of equality at a 

5% level of confidence

• Example of Pradhan’s education: 

– Difference: 2.59

– Standard error: 0.54

– We definitely reject equality at 5% level. 

)(

ˆ

se
t
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Outline

I. Hypothesis testing

II. Type I and Type II Errors

III. Standard errors and significance 

IV. Power

V. Effect size

VI. Factors that influence power
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Calculating power

• When planning an evaluation, with some preliminary 
research we can calculate the minimum sample we 
need to get to: 

– Test a pre-specified null hypothesis (e.g. treatment 
effect 0)

– For a pre-specified significance level (e.g. 0.05)

– Given a pre-specified effect size (e.g. 0.2 standard 
deviation of the outcomes of interest). 

– To achieve a given power

• A power of 80% tells us that, in 80% of the experiments 
of this sample size conducted in this population, if Ho is 
in fact false (e.g. the treatment effect is not zero), we 
will be able to reject it.  

• The larger the sample, the larger the power. 

Common Power used: 80%, 90%
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Ingredients for a power calculation
in a simple study

What we need: Where we get it:

Significance level This is conventionally set at 5%

The lower it is, the larger the sample 

size needed for a given power

The mean and the variance of the 

outcome in the comparison group

From a small survey in the same or a 

similar population

The larger the variability is, the larger 

the sample for a given power

The effect size that we want to detect What is the smallest effect that should 

prompt a policy response? 

Rationale: If the effect is any smaller 

than this, then it is not interesting to 

distinguish it from zero
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Outline

I. Hypothesis testing

II. Type I and Type II Errors

III. Standard errors and significance 

IV. Power

V. Effect size

VI. Factors that influence power
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Picking an effect size

• What is the smallest effect that should justify 
the program being adopted 
– Cost of this program vs the benefits it brings

– Cost of this program vs the alternative use of the 
money

• If the effect is smaller than that, it might as well 
be zero: we are not interested in proving that a 
very small effect is different from zero

• In contrast, any effect larger than that effect 
would justify adopting this program: we want to 
be able to distinguish it from zero

• NOT : “expected” effect size
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Standardized effect sizes

• How large an effect you can detect with a given sample 

depends on how variable the outcome is. 

– Example: If all children have very similar learning 

level without a program, a very small impact will be 

easy to detect

• The Standardized effect size is the effect size divided 

by the standard deviation of the outcome

= effect size/St.dev. 

• Common effect sizes: 
small) medium) large)
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Standardized effect sizes

An effect size of .. Is considered . . . .It means that . . .

0.2 small-modest

The average member of the 

intervention group had a better 

outcome than 58 percent of the 

members of the control group.

0.5 modest-large

The average member of the 

intervention group had a better 

outcome than 69 percent of the 

members of the control group.

0.8

The average member of the 

intervention group had a better 

outcome than 79 percent of the 

members of the control group. large
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Outline

I. Hypothesis testing

II. Type I and Type II Errors

III. Standard errors and significance 

IV. Power

V. Effect size

VI. Factors that influence power
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Power calculations using the OD software

• Choose “Power vs number of clusters” in the 

menu “clustered randomized trials”
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Cluster size

• Choose cluster with 1 unit (non-clustered 

design)
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Choose significance level and treatment 
effect

• Pick 

– Normally you pick 0.05

• Pick 

– Can experiment with 0.20 (small effect size)

• You obtain the resulting graph showing power 

as a function of sample size.
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Power and sample size
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The design factors that influence power

1. The level of randomizaion - clustered design

2. Availability of a baseline

3. Availability of control variables, and 

stratification. 

4. The type of hypothesis that is being tested.
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Intuition: Clustered design

• You want to know how close the upcoming 

national elections will be

• Method 1: Randomly select 50 people from 

entire Indian population

• Method 2: Randomly select 5 families, and ask 

ten members of each family their opinion
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Intuition: Clustered design

• If the response is correlated within a group, you 

learn less information from measuring multiple 

people in the group

• It is more informative to measure unrelated 
people

• Measuring similar people yields less information
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Clustered design

Cluster randomized trials are experiments in 
which social units or clusters rather than 
individuals are randomly allocated to 
intervention groups

Examples:

PROGRESA Village

Gender Reservations Panchayats

Flipcharts, Deworming School

Iron supplementation Family
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Reason for adopting cluster randomization

• Need to minimize or remove contamination

– Example: In the deworming program, schools was 

chosen as the unit because worms are contagious

• Basic Feasibility considerations

– Example: The PROGRESA program would not have 

been politically feasible if some families were 

introduced and not others. 

• Only natural choice

– Example: Any education intervention that affects an 

entire classroom (e.g. textbooks, teacher training). 
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Impact of clustering

• The outcomes for all the individuals within a unit 
may be correlated 
– All villagers are exposed to the same weather

– All Panchayats share a common history

– All students share a schoolmaster

– The program affect all students at the same time. 

– The member of a village interact with each other

• We call (rho) the correlation between the units 
within the same cluster
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Values of (rho)

• Like percentages, must be between 0 and 1

• When working with clustered designs, a lower is 
more desirable

• It is sometimes low, 0, .05, .08, but can be high:

Madagascar Math+language 0.5

Busia, Kenya Math+language 0.22

Udaipur, India Math+language 0.23

Mumbai, India Math+language 0.29

Vadodara, India Math+language 0.28

Busia, Kenya Math 0.62
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Implications for design and analysis

• Analysis: The standard errors will need to be 

adjusted to take into account the fact that the 

observations within a cluster are correlated.

• Adjustment factor (design effect) for given total 

sample size, clusters of size m, intra-cluster 

correlation of r, the size of smallest effect we 

can detect increases by compared 

to a non-clustered design

• Design: We need to take clustering into account 

when planning sample size

)1(*1 m



45

Example: detectable treatment size vs. rho (ρ)

________________________________

Intraclass           Randomized Group Size_ 

Correlation (ρ)

i.e. When clusters have 100 people, detectable treatment 

size more than triples …



46

1

2

3

4

5

0 0.02 0.04 0.06 0.08 0.1

s
ta

n
d
a

rd
iz

e
d

 e
ff

e
c
t 
s
iz

e

rho (ρ)

Detectable effects for different 

cluster sizes (n) and rho (ρ)

n=200

n=100

n=50

n=10

Example: detectable treatment size vs. rho (ρ)



47

Implications

• If experimental design is clustered, we now 
need to consider ρ when choosing a sample 
size (as well as the other effects)

• It is extremely important to randomize an 
adequate number of groups

• Often the number of individuals within groups 
matter less than the total number of groups
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Choosing the number of clusters with a 
known number of units

• Example: Randomization of a treatment at the 

classroom level with 20 students per class: 

– Choose other options as before

– Set the number of students per school (e.g. 20)

– set 
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Power Against number of clusters with 20 
students per cluster

38 vs. 53 

clusters 

needed for 

80% 

power
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Choosing the number of clusters when we 

can choose the number of units

• To chose how many Panchayats to survey and 
how many villages per Panchayats to detect 
whether water improvement are significantly 
different for women and men

• Mean drinking water facilities built or repaired in 
unreserved GPs: 14.7

• Standard deviation: 19

• :  0.07
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Calculating effect size

• Mean drinking water facilities built or repaired in 
unreserved GPs: 14.7

• Standard deviation: 19

• We want to detect at least a 30% increase

• 30% of 14.7 is 4.41

• 4.41/19=.23 standard deviations

• delta = 0.23

• We look for a power of 80%
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Minimum number of GP’s, fix villages per GP

• We search for the minimum number of GP we 

need if we survey 1 village per GP:

– Answer: 553
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Number of clusters for 80% power
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Minimum number of GP’s, fix villages per GP

• We search for the minimum number of GP we 

need if we survey 1 village per GP:

– Answer: 553

• We search for the minimum number of GP if we 

survey 2, 3, 4, etc… village per GP
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Power against number of clusters with 5 
villages per panchayat
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Minimum number of GP’s, fix villages per GP

• We search for the minimum number of GP we 

need if we survey 1 village per GP:

– Answer: 553

• We search for the minimum number of GP if we 

survey 2, 3, 4, etc… village per GP

• For each combination, we calculate the number 

of villages we will need to survey, and the 

budget. 
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What sample do we need?

Exercise A

Power:  80%

# of village

 per GP # of GP's

total # of 

villages

Total Cost 

(man days)

1 553 553 3041.5

2 297 594 2673.0

3 209 627 2612.5

4 162 648 2592.0

5 141 705 2749.5

6 121 726 2783.0

7 107 749 2835.5

8 101 808 3030.0
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The design factors that influence power

1. Clustered design

2. Availability of a Baseline

3. Availability of Control Variables, and 

Stratification. 

4. The type of hypothesis that is being tested.
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Availability of a baseline

• A baseline has two main uses:

– Allows you to check whether control and treatment group 
were the same or different before the treatment

– Reduces the sample size needed, but requires that you do a 
survey before starting the intervention: typically the 
evaluation cost go up and the intervention cost go down

• To compute power with a baseline:

– You need to know the correlation between two subsequent 
measurements of the outcome (for example: correlation 
between pre and post test score in school). 

– The stronger the correlation, the bigger the gain.

– Very big gains for very persistent outcomes such as tests 
scores

• Using OD

– Pre-test score will be used as a covariate, r2 is it 
correlation over time.
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The design factors that influence power

1. Clustered design

2. Availability of a Baseline

3. Availability of Control Variables, and 

Stratification.

4. The type of hypothesis that is being tested.
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Stratified samples

• Stratification will reduce the sample size needed to 
achieve a given power (you saw this in real time in the 
Balsakhi exercise). 

• The reason is that it will reduce the variance of the 
outcome of interest in each strata (and hence increase 
the standardized effect size for any given effect size)

• Example: if you randomize within school and grade 
which class is treated and which class is control:

– The variance of test score goes down because age is 
controlled for

• Common stratification variables: 

– Baseline values of the outcomes when possible

– We expect the treatment to vary in different 
subgroups
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The design factors that influence power

1. Clustered design

2. Availability of a Baseline

3. Availability of Control Variables, and 

Stratification. 

4. The type of hypothesis that is being tested.
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The hypothesis that is being tested

• Are you interested in the difference between two 

treatments as well as the difference between 

treatment and control? 

• Are you interested in the interaction between the 

treatments?

• Are you interested in testing whether the effect is 

different in different subpopulations?

• Does your design involve only partial 

compliance? (e.g. encouragement design?)
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Conclusions

• Power calculations involve some guess work.

• They also involve some pilot testing before the 

proper experiment begins

• They can tell you:

– How many treatments to have

– How to trade off more clusters vs. more observations 

per cluster

– Whether it’s feasible or not

• It’s critical to do as best you can; a study with 

low power likely wastes time and money


