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18.1 Introduction

Newton (1687, book 2, propositions 48-50) and Laplace
(1799) were aware that the principles governing the
ocean tides would also govern the atmospheric tides.
Helmholtz (1889) showed that ocean waves and billow
clouds were manifestations of the same hydrodynamic
instability, and he speculated that storms were caused
by a similar instability. Had he known the structure of
the Gulf Streams meanders, he might have speculated
on their dynamic similarities to storms as well. Such
intercomparisons were natural to the great hydrody-
namicists of the past who took the entire universe of
fluid phenomena as their domain. Although a degree
of provincialism was introduced in the late nineteenth
and early twentieth centuries by the exigencies of
weather forecasting, it was just the practical require-
ments of weather observation that stimulated the de-
velopment of modem dynamic meteorology and led to
the deepening of its connections with physical ocean-
ography. The recent explosive growth of the three-di-
mensional data base, the exploration of other planetary
atmospheres, and the resulting increase in theoretical
activity have greatly extended the list of ocean-atmos-
phere analogues. Indeed, it is now no exaggeration to
say that there is scarcely a fluid dynamical phenomenon
in planetary atmospheres that does not have its coun-
terpart in the oceans and vice versa. This had led to
the discipline, geosphysical fluid dynamics, whose
guiding principles are intended to apply equally to
oceans and atmospheres.

Within this discipline the dominance of the earth's
rotation defines a subclass of large-scale phenomena
whose dynamics may for the most part be derived from
quasi-geostrophy. For several years the authors have
conducted a graduate course at MIT on the dynamics
of large-scale ocean and atmospheric circulations in
the belief that a parallel consideration of large-scale
oceanic and atmospheric motions would broaden the
range of our students' experience and deepen their un-
derstanding of the principles of fluid geophysics. C.-G.
Rossby (1951) put the matter well:

It is fairly certain that the final formulation of a com-
prehensive theory for the general circulation of the
atmosphere will require intimate cooperation between
meteorologists and oceanographers. The fundamental
problems associated with the heat, mass and momen-
tum transfer at the sea surface concern both these sci-
ences and demand a joint effort for their solution. How-
ever, an even stronger reason for that pooling of
intellectual resources .. . may be found in the fact that
the various theoretical analyses of the large-scale
oceanic and atmospheric circulation patterns which
have been called into being by our sudden wealth of
observational data, appear to have so much in common
that they may be looked upon as different facets of one
broad general study, the ultimate aim of which might
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be described as an attempt to formulate a comprehen-
sive theory for fluid motion in planetary envelopes.

He went on to say that "comparisons between the
circulation patterns in the atmosphere and in the
oceans provide us with a highly useful substitute for
experiments with controlled variations of the funda-
mental parameters."

Needless to say, we subscribe to Rossby's views and
therefore have willingly undertaken the task of review-
ing the fluid dynamics of a number of phenomena that
have found explanation in one medium and are deemed
to have important analogues in the other. Where the
analogues have already been explained, we have given a
brief review of some of their salient features, but where
little is known, we have not refrained from interpolat-
ing simple models or speculations of our own. In doing
so, we were aware that the subject has grown so large
that it includes most of geophysical fluid dynamics,
and that, even if it were limited to large-scale, quasi-
geostrophic motions, it could not be encompassed in
a review article of modest size. At least two excellent
review articles on this topic, by N. Phillips (1963) and
by H.-L. Kuo (1973), have already appeared, and there
is now a text by Pedlosky (1979a) on geophysical fluid
dynamics. For these reasons we have decided tto limit
ourselves to a small number of topics having to
do primarily with disturbances of the principal at-
mospheric and oceanic currents, their propagation
characteristics, their interactions with the embed-
ding currents, and, to a lesser degree, with their self-
interactions.

It is perhaps no accident that both Phillips and Kuo
are meteorologists. Dynamic meteorology has bene-
fited from a wealth of observational detail that has
been denied to physical oceanography. Consequently,
meteorologists have been the first to observe and ex-
plain many typical large-scale phenomena. This has by
no means always been the case, but it has been so
sufficiently often to justify the title of our review.

18.2 The General Circulations of Oceans and
Atmospheres Compared

If it had been possible in a meaningful way, it would
have been useful and instructive to make detailed dy-
namical comparisons of the general circulations of the
atmosphere and oceans. This has not been so, and we
must content ourselves with a few general remarks.
Because of its relative transparency to solar radiation,
the earth's atmosphere is heated from below; the
oceans, like the relatively opaque atmosphere of Venus,
are heated from above. The differential heating of the
atmosphere produces a mean circulation that carries
heat upward and poleward. Its baroclinic instabilities
do likewise. These heat transports, combined with in-

ternal radiative heat transfer, tend to stabilize the at-
mosphere statically, and their effects are augmented by
moist convection which drives the temperature lapse-
rate toward the moist-adiabatic. The net result is that
the atmosphere is rather uniformly stable for dry proc-
esses up to the tropopause. Above the tropopause, it is
made increasingly more stable by absorption of solar
ultraviolet radiation in the ozone layer. The oceans are
rendered statically stable by heating from above, but
heating cannot take place everywhere because the
oceans, unlike the atmosphere, cannot dispose of in-
temal heat by radiation to space; they must carry it
back to the surface layers, where it can be lost by
surface cooling. The most stable parts of the oceans are
in the subtropical gyres, where the oceans are heated
and Ekman pumping transfers the heat downward. The
least stable parts are in the polar regions, where cold
water is formed and carried downward by convection.
The atmospheric troposphere has sometimes been
compared with the waters above the thermocline, the
tropopause with the thermocline, and the stratosphere
with the deep waters below the thermocline (cf. De-
fant, 1961b). This comparison may be justified by the
fact that it is in the atmospheric and oceanic tropo-
spheres that the horizontal temperature gradients and
the kinetic and potential energy densities are greatest.
But from the standpoint of static stability, the absorp-
tion of radiation at the surface of the oceans makes its
upper layers more analogous to the stratosphere. The
static stability for the bulk of the atmosphere and
oceans is determined by deep convection occurring in
small regions. The analogy between deep convection
in the atmosphere and deep convection in the oceans
is between the narrow intertropical convergence zones
over the oceans and the limited areas of cumulus con-
vection over the tropical continents on the one hand,
and the limited regions of deep-water formation in the
polar seas on the other. From this standpoint, the ocean
waters below the thermocline are more analogous to
the atmospheric troposphere. Both volumes comprise
more than 80% of the total by mass and both are
controlled by deep convection.

It is remarkable that the regions of pronounced rising
motion in the atmosphere and sinking motion in the
oceans are so confined horizontally. Stommel (1962b)
was the first to offer an explanation for the smallness
of the regions of deep-water formation. His work mo-
tivated several attempts to explain the asymmetries in
the circulation of a fluid heated differentially from
above or below. We may cite as examples the experi-
mental work of H. T. Rossby (1965) and the theoretical
work of Killworth and Manins (1980) on laboratory
fluid systems, and the papers of Goody and Robinson
(1966) and Stone (1968) on the upper circulation of
Venus. Because of its cloudiness, Venus has been as-
sumed to be heated primarily from above, although it
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now is known that sunlight does penetrate into the
lower Venus atmosphere and that the high tempera-
tures near the surface are due to a pronounced green-
house effect (Keldysh, 1977; Young and Pollack, 1977;
Tomasko, Doose, and Smith, 1979). When a fluid is
heated from below, the rising branches are found to be
narrow and the sinking branches broad; when it is
heated from above the reverse is true. One may offer
the qualitative explanation that it is the branch of the
circulation that leaves the boundary and carries with
it the properties of the boundary that has the greatest
influence on the temperature of the fluid as a whole:
convection is more powerful than diffusion. In the case
of differential heating from below, the rising warm
branch causes most of the fluid to be warm relative to
the boundary and therefore gravitationally stable ex-
cept in a narrow zone at the extreme of heating where
the intense rising motion must occur. In the case of
differential heating from above, the sinking cold branch
causes the bulk of the fluid to be cold and gravitation-
ally stable except in a narrow region at the extreme of
cooling where the intense sinking motion must occur.
Theoretical models of axisymmetric, thermally driven
(Hadley) circulations in the atmosphere (Charney,
1973) show the same effect: a narrow rising branch and
a broad sinking branch. This effect is strengthened by
cumulus convection (Charney, 1969, 1971b; Bates,
1970; Schneider, 1977). The narrow rising branch of
the Hadley circulation directly controls the dynamic
and thermodynamic properties of the tropics and sub-
tropics and indirectly influences the higher-latitude
circulations. Similarly, the small sinking branches of
the ocean circulation determine the near-homogeneous
deep-water properties as well as some of the interme-
diate-water properties. But there is a difference: we
know how the heat released in the ascending branch
of the Hadley circulation is disposed of; we do not
know how the cold water in the abyssal circulation is
heated. Whatever the process, the existence of a pre-
ponderant mass of near-homogeneous water at depth
forces great static stability in the shallow upper regions
of the ocean. It demands a thermocline.

Again we have an analogy between the upper circu-
lation of the oceans and the upper circulation of Venus.
Rivas (1973, 1975) has shown that the intense circu-
lation of Venus is confined to a thin layer within and
just below the region of intense heating and cooling by
radiation. The more or less independent circulation
produced by the separate heat sources of the atmos-
pheric stratosphere is similarly analogous to the upper
ocean circulation. And here there is an atmosphere-
ocean analogy pertaining to our knowledge of transfer
processes. While the mechanisms of heat transfer in
the stratosphere are fairly well known, the mechanism
of transfer of thermally inactive gases or suspended

particles is not, for the latter involves a knowledge of
particle trajectories, which are not easily determined.
The large-scale eddies in the atmosphere, insofar as
they are nondissipative, cannot transfer a conserved
quantity across isentropic surfaces. Thermal dissipa-
tion is required for parcels to move from the low-en-
tropy troposphere to the high-entropy stratosphere.
Atmospheric chemists sometimes postulate an ad hoc
turbulent diffusion to explain the necessary vertical
transfers of such substances as the oxides of nitrogen
and the chlorofluoromethanes into the ozone layers.
But it is doubtful whether this type of diffusion is
needed to account for the actual transfer, because there
already exists the nonconservative mechanism of ra-
diative heat transfer, and this, together with the large-
scale eddying motion, can by itself account for the
transfers (Andrews and McIntyre, 1978a; Matsuno and
Nakamura, 1979). The analogous oceanic problem has
already been mentioned: how is heat or salt transferred
from the deep ocean layers into the upper wind-stirred
layers? The cold deep water produced in the polar seas
and the intermediate salty water produced in the Med-
iterranean Sea must eventually find their way by dis-
sipative processes to the surface, where they can be
heated or diluted. While a number of internal dissipa-
tion mechanisms have been proposed in a speculative
way (double diffusion, low-Richardson-number insta-
bility zones, internal-wave breaking) one may invoke
Occam's razor, as has been done so successfully to
explain the Gulf Stream as an inertial rather than a
frictional boundary layer (Chamey, 1955b; Morgan,
1956) and postulate no internal dissipative mechanism
at all. Then, outside of the convective zones, properties
will be advected by the mean flow or by eddies along
isentropic surfaces, and move from one such surface to
another only at the boundaries of the ocean basins
where we may assume turbulent dissipation does oc-
cur. It would be interesting to see how far one could
go with boundary dissipation alone. Welander (1959)
and Robinson and Welander (1963) have taken a first
step by investigating the motions of a conservative
system communicating only with an upper mixed
layer.

18.3 The Transient Motions

Meteorologists, pressed with the necessity of forecast-
ing the daily weather, have always been concerned
with the transient motions of the atmosphere. At-
tempts to understand the processes leading to growth,
equilibration, translation and decay of these "synoptic-
scale" (order 1000 km) eddies' have produced theories
of baroclinic instability (Charney, 1947; Eady, 1949),
Rossby wave motion (Rossby et al., 1939; Haurwitz,
1940b) and Ekman pumping (Charney and Eliassen,
1949). It was first recognized by Jeffreys (1926) and
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demonstrated conclusively by Starr (1954, 1957) and
Bjerknes (1955, 1957) that the dynamics of the mean
circulation are strongly influenced by the transports of
heat and zonal momentum by the eddies [for a review
of these developments, see Lorenz (1967)]. This has
prompted research on eddy dynamics and also on the
parameterization of eddy fluxes (cf. Green, 1970;
Rhines, 1977; Stone, 1978; Welander, 1973).

The study of eddy motions in the ocean is a new
development. Although the existence of fluctuations
in the Gulf Stream was reported by early observers
such as Laval (1728) and Rennell (1832), actual predic-
tion of ocean eddies has never been a particularly prof-
itable exercise (perhaps the recent interest of yachts-
men in Gulf Stream rings may presage a change). The
serious study of deep ocean fluctuations really began
with M. Swallow (1961), Crease (1962), and J. Swallow
(1971). At this point, oceanographers began to realize
that the mid-ocean variable velocities were not, as
might perhaps have been reasonably inferred from at-
mospheric experience, comparable to the mean flows
but rather were an order of magnitude larger. This has
spurred intensive experimental and theoretical inves-
tigations of the dynamics of the oceanic eddies and
their roles in the general circulation (see chapter 11).

Comparisons between the oceanic and atmospheric
eddies may be made in respect to their generation,
propagation, interaction (both eddy-mean flow and
eddy-eddy) and decay. In the sections below we shall
describe some of the theoretical approaches to these
problems.

In the atmosphere, energy conversion estimates (cf.
Oort and Peixoto, 1974) clearly show a transformation
of zonal-available potential energy into eddy-available
potential energy, then into eddy kinetic energy and
finally into heat by dissipation, with some transfer
from eddy to zonal kinetic energy. The similarity of
the growth phase of this cycle to that exhibited in the
theory of small traveling perturbations of a baroclini-
cally unstable (but barotropically stable) flow, leads
naturally to the identification of the source of the
waves as the baroclinic instability of the zonal flow.
This idea has been supported further by the fact that
the energy spectrum has peaks near zonal wavenumber
six, which simple models predict to be the most rapidly
growing wavenumber. However, attempts to apply
these models directly to the atmosphere lead to prob-
lems: one expects that nonuniform mean flows, non-
homogeneous surface conditions, variable horizontal
and vertical shears, etc., will alter the dynamics; and
one may also wonder about the applicability of the
small perturbation-normal mode approach.

The topographically and thermally forced standing
eddies also draw upon zonal available potential energy
(Holopainen, 1970). The processes by which they do
this are not yet clearly understood; they may be related

to the form-drag instability to be described in section
18.7.3. The standing eddies, like the transient eddies,
also transport heat and momentum.

Overall energetic analyses have not been applied to
oceanic data. However, budgets for basin-averaged ki-
netic and potential energy have been calculated for the
"eddy-resolving general circulation models." These are
reviewed by Harrison (1979b). In all but one of the 21
cases he considered, the eddy kinetic energy came from
both mean kinetic and mean potential energy. Collec-
tively, the eddies seem to be acting as dissipative
mechanisms, but Harrison cautions that because the
model statistics are inhomogeneous, the overall results
may not be representative of the actual dynamics in
any limited region. Indeed, the eddies may be acting as
a negative viscosity in parts of the domain. Thus, Hol-
land (1978) suggests that the eddies generated in the
upper layer of his two-layer model drive the mean flows
in the lower layer.

Oceanographers have examined local energy bal-
ances. The best known of these studies, by Webster
(1961 a), has often been interpreted as an indication that
the Gulf Stream is accelerated by the eddies. However,
Schmitz and Niiler (1969) have pointed out that the
cross stream-averaged value of u'v'vx is not distin-
guishable from zero, so that Webster's results may be
an indication merely of transfer of energy from the
offshore to the onshore side of the jet and not a mean-
flow generation. Even this result is not unambiguous,
since the divergence term (u'v'v), is not small com-
pared to the terms -(u'vv') and u'v'v,, representing,
respectively, the eddy-mean flow and the mean flow-
eddy conversions. The same problem occurs in at-
tempts to compute regional energy budgets in numer-
ical models (cf. Harrison and Robinson, 1978) unless
considerable care is taken.

The conversion of mean-flow potential energy is
sometimes inferred from the tilting of the phase lines
of the temperature wave with height. This tilt is taken
as evidence that the wave is growing by baroclinic
instability of the mean flow. Here one must be careful:
it is the lagging of the temperature wave behind the
pressure wave and the consequent tilting of the phase
line of the pressure trough toward the cold air that is
important; the temperature phase line may tilt in any
direction or not at all. Thus in the Eady model of
baroclinic instability the temperature wave has the
opposite slope from the pressure wave, whereas in the
Chamey model it has the opposite slope at low levels
and the same slope at high levels (Chamey, 1973, chap-
ter IX). It is appropriate, then, to caution that the
oceanically most readily available quantity, the phase
change of the buoyancy (or entropy) with height, may
not lead to a straightforward determination of the sign
of the buoyancy flux.
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This discussion should make it clear that very little
is settled concerning the source of the eddies in the
ocean and their effects on the mean flow. "Local" gen-
eration mechanisms, such as baroclinic or barotropic
instability, flow over topography, and wind forcing are
still being considered, and atmospheric analogues are
much in mind. But the fact that the transient atmos-
pheric perturbation velocities are comparable to those
of the mean flow, whereas the particle speeds for mid-
ocean mesoscale eddies are an order of magnitude
greater than the mean speeds, suggests that energy may
be generated only in limited regions (e.g., the western
boundary currents) and propagate from there to other
regions.

Oceanic eddies propagate in much the same manner
as atmospheric eddies, although there are differences
because of the upper-surface boundary conditions: at-
mospheric waves may propagate upward without re-
flection, whereas oceanic waves are reflected at the
upper boundary. In the atmosphere, the potential vor-
ticity gradients associated with the mean flow play an
important role in determining the vertical structure
and horizontal propagation for atmospheric waves,
whereas this role is played primarily by the gradient of
the earth's vorticity for mid-oceanic waves.

The interaction mechanisms may be classified as
wave-mean flow interactions and wave-wave inter-
actions. As mentioned above, the concrete evidence for
significant wave-mean flow interaction is much
greater for the atmosphere than for the ocean. There is
not, of course, much oceanic data-Reynolds stresses
have been calculated only along a few north-south
sections (Schmitz, 1977). Moreover, these records are
not very long and the spatial resolution is not sufficient
to compute accurate gradients of the Reynolds stresses
(given the great inhomogeneity).

The wave-wave interactions, however, seem similar
in the two media. The crucial parameter is the Rossby
wave steepness parameter M = U/1L2, which distin-
guishes wavelike regimes (M < 1) from more turbulent
(M > 1) regimes as illustrated in the experiments of
Rhines (1975).2 The oceans are similar to the atmos-
phere in that this parameter is of order unity for both,
although it appears to vary considerably from one
oceanic region to another.

The physical mechanisms for dissipation of atmos-
pheric and oceanic eddies are thought to be similar
with respect to bottom friction and transfer of energy
to gravity wave motions or turbulence (though radia-
tion is a further factor in damping atmosphere waves),
but their relative importance may be quite different.
The crucial differences for the large-scale circulations
between the atmosphere and the ocean may not be in
the details of the dissipation mechanisms but rather in
their overall time scales. In the atmosphere, damping
times are of the order of a few days, comparable to the

eddy velocity advection time LIU, whereas the damp-
ing time in the ocean may be as long as several years
(cf. Cheney and Richardson, 1976) while the advection
time is of the order of a week.

18.4 The Geostrophic Formalism

18.4.1 The Development of the Geostrophic
Formalism
The discovery that the atmospheric winds are approx-
imately geostrophic is usually attributed to Buys Ballot
(1857). Ferrel (1856) suggested that ocean currents
might also have this property. But it took nearly a
century before this knowledge was used dynamically.
Because the geostrophic and hydrostatic equations ex-
press only a condition of balance, it is necessary to
consider the slight imbalances produced by forcing,
dissipation, and transience in order to predict the ev-
olution and to understand the processes that maintain
the balance. One of the first to exploit geostrophy was
Bjerknes (1937) in a seminal work on the upper tropos-
pheric long waves and their role in cyclogenesis. Basing
his analysis on semiempirical considerations of the
gradient wind and the variation with latitude of the
Coriolis parameter, he gave the first explanation of the
eastward propagation of the upper wave at a speed
slower than the mean wind. It was this work that led
Rossby et al. (1939) to their vorticity analysis of the
upper wave as an independent entity in planar flow.
Chamey (1947) and Eady (1949) derived quasigeos-
trophic equations in their analyses of baroclinic insta-
bility for long atmospheric waves. General derivations
of these equations for arbitrary motions were presented
by Charney (1948), Eliassen (1949), Obukhov (1949),
and Burger (1958). A particularly simple form which
will be used in this review was given by Chamey (1962)
and Charney and Stem (1962).

In addition to these commonly used approximations,
there have been a number of simplifications of the
equations of motion which apply the concept of near-
geostrophic balance in a less restrictive form. When
flows become nongeostrophic in one horizontal dimen-
sion while remaining geostrophic in the other, as in
frontogenesis, flow over two-dimensional mountain
barriers, and in the western boundary currents of the
oceans, a set of "semigeostrophic" equations derived
from Eliassen's original formulation has often been
found useful (Robinson and Niiler, 1967; Hoskins,
1975). Both the quasi- and semigeostrophic equations
are special cases of the "balance equations" proposed
by Bolin (1955), Chamey (1955c, 1962), P. Thompson
(1956), and Lorenz (1960). They may be derived from
the consideration that in a large class of atmospheric
flows the constraints of the earth's rotation and/or
gravitational stability so inhibit vertical motion that
the horizontal flow, even when it is not quasi-geo-
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strophic, remains quasi-nondivergent. The equations
derived by Eliassen (1952) for slow thermally and fric-
tionally driven circulations in a circular vortex are a
special case of the balance equations; they represent
the laws of conservation of angular momentum and
entropy and the requirement of equilibrium among the
meridional components of the pressure, gravity, and
centrifugal forces. For the equilibrium condition to be
valid, the flow must be gravitationally and inertially
stable. This implies that the potential vorticity must
be positive in the northern hemisphere and negative in
the southern hemisphere, and it may be shown that
this condition on the potential vorticity is also required
for the general asymmetric case.

One must also explain why external sources of en-
ergy excite quasi-geostrophic flows rather than gravity
wave motions to begin with and why so little energy
is transferred by nonlinear interactions into the gravity
modes afterward. The tendency toward geostrophy is
sometimes explained as an adjustment of an initially
unbalanced flow by radiation of gravity waves in the
manner discussed by Rossby (1938) (see also Blumen,
1968). However, since much of the forcing is applied
slowly, rather than impulsively, the calculations of
Veronis and Stommel (1956), who consider the nature
of the exciting forces, are perhaps more relevant. They
showed that the flows will be geostrophically balanced
when the forcing period is very large compared to the
inertial period. Thus we expect most of the energy will
go into geostrophic motions.

The question of how much transfer occurs from geo-
strophic to nongeostrophic motions through nonlinear
interactions remains a matter of concern. Errico's
(1979) work suggests that equipartition of energy be-
tween gravity waves and geostrophic motions will oc-
cur in a conservative, rotating system in statistical
equilibrium at sufficiently high energy. But in dissi-
pative systems resembling the atmosphere and oceans,
the energy will remain in the geostrophic modes be-
cause the gravity waves are dissipated on time scales
that are small in comparison with those of their gen-
eration. This problem has elements in common with
the so-called initialization problem in numerical
weather prediction: to find initial values of a flow field
that are at once compatible with the incomplete data
and at the same time minimize the initial gravity-wave
energy and its production rate (cf. Machenhauer, 1977;
Daley, 1978).

The problems of transfer from geostrophic into grav-
ity-wave energy are related to those of the production
of hydrodynamic noise by a turbulent flow, first stud-
ied by Lighthill (1952). An excellent review is presented
by Ffowcs Williams (1969). Here the problem is to
calculate the generation of acoustic energy in a tur-
bulent flow in which most of the energy resides in
nondivergent motions. Since the turbulence is confined

within a limited domain and radiates sound waves into
the surrounding medium, there is no possibility of
equipartition. An atmospheric or oceanographic anal-
ogy to the Lighthill problem would be the generation
of internal gravity waves by turbulence in a planetary
boundary layer (Townsend, 1965), except that here the
generation takes place, not within the layer, but at its
interface with the neighboring stable stratum.

Physicists, too, have struggled with problems in
which many scales interact simultaneously (cf. Wilson,
1979), but it is not known whether their renormaliza-
tion group methods can be usefully applied to atmos-
pheric or oceanic problems.

18.4.2 Natural Oscillations of the Atmosphere and
Oceans
The quasi-geostrophic equations have been derived for
ranges of the various nondimensional parameters that
are of interest in dealing with particular classes of at-
mospheric and oceanic motions. It is not to be expected
that they will remain uniformly valid throughout the
entire range of rotationally dominated flows, even
when the primary balance is geostrophic. Burger (1958)
was the first to point out explicitly that when the 3-
plane approximation L/a << 1, where L is the charac-
teristic horizontal scale and a is the radius of the earth,
is no longer valid, the dynamics of the motion change
radically. On a planetary scale the motion becomes
even more strongly geostrophic, but the vorticity bal-
ance changes. Sverdrup (1947) made implicit use of this
dynamics in his treatment of the steady, wind-driven
circulation of the oceans, and it has been used for the
treatment of steady thermohaline circulations of the
oceans by Robinson and Stommel (1959) and Welander
(1959). [See the review articles by Veronis (1969,
1973b), and chapter 5.]

In this section we present a classification of natural
oscillations in atmospheres and oceans in which rota-
tion plays a dominant role, paying special attention to
the domain of validity of the 3-plane, quasi-geostrophic
equations, the nature of the oscillations for which
these equations are not valid, and the effects of nonlin-
earity, which, especially in the oceans, may give rise
to solitary wave behavior.

Although the wave forcing is very different in the
oceans and the atmosphere, there are many features of
the responses that strongly resemble one another. This
results because the response of a forced system depends
strongly on the characteristics of the natural oscilla-
tions, and these have many similarities in the atmos-
phere and oceans. We shall discuss both the linear and
nonlinear natural (unforced and nondissipative) oscil-
lations of a simple model consisting of a single-layer,
homogeneous, incompressible fluid with a free surface
on a /3-plane. This is a much oversimplified model, and
we must regard the conclusions to be drawn merely as
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suggestions of the way in which the fully stra
spherical system would behave. The most inter
implication-that the dynamics of scales interm
between the Rossby radius and the radius of the
may be dominated by solitary waves, in which n
ear density advection balances linear dispersi
fects-may not be very sensitive to the part
model chosen.

At the beginning of each subsection to follc
shall describe briefly the methods used and the 
obtained in order to make it possible for the rea
omit the more detailed derivations. We begin tI
cussion of the normal modes of oscillation by s
the shallow-water equations in a reference frame
ing with the wave. The Bernoulli and potential 
ity integrals then give two equations relating the
streamfunction 4 to the surface elevation ,r abo'
mean level H. These equations contain an unk
functional X, the Bernoulli function, which we c
by requiring the equations to hold for vanishing
'1n

We then obtain two coupled nonlinear partial
ential equations defining an eigenvalue problem I
phase speed c. These equations have three nond
sional parameters: E, a Rossby number measurib
ratio of the inertial to the Coriolis forces; 3, a
stability parameter measuring the ratio of the
mation scale LR to the wave scale L; and , th{
tional change in the Coriolis parameter over the
scale. In the standard quasi-geostrophic range (E -
1, 3 - 1), when motions have small Rossby nur
length scales comparable to the deformation r
the Bernoulli equation to lowest order is simply a
ment of geostrophic balance, and the potential vol
equation becomes the linear quasi-geostrophic
equation.

The single-layer equations will be written in d
sional form

Du
Dt- Ifo + 13y)v = -gq,

Dv
D+ (f + fo + y)u = -g,
D

Dt + (H + q)(ux + v) = 0,

D a a a
Dt= t ox ay'

where qr is the displacement of the surface from
sea level, H is the mean depth of the fluid, g
gravitational acceleration (we shall use a reduced
ity value here), f, = 2c1 sin e, , = 2(1 cos O/a, y =
where 0 is the central latitude and AO is the ax
distance from 0. In nondimensional form these
tions become

Du - 1 + Ay)v = -71,
Dt

3 Dv + (1 + 3y)u = -*!Y,

Dt + (1 + r)(u, + vy) = 0,

(18.2)

D a a a
Dt at f S + V a Y

where both x and y are scaled by L, 'r is scaled geo-
strophically by LUfo/g, and the nondimensional param-
eters are i = fL/fo = L cot 0/a L/LA, e = U/foL, and
S = gH/f2L2 - L/L 2. We have also introduced the
definitions of two scales which turn out to be impor-
tant in determining the boundaries between various
types of behavior: the -scale Lp = fo/f = a tan 0, at
which variations in the vertical component of the
earth's angular velocity are order of the angular veloc-
ity itself, and the Rossby radius of deformation LR =
Vg-H/fo (Rossby, 1938). We shall use 3500 km for L;
(corresponding to 0 - 300) and 50 km (oceanic) or 1000
km (atmospheric) for LB. We have also made the choice
of the long-wave period for the time scale so that T =L L-.

The quasi-geostrophic potential vorticity equation
may be derived by expanding (18.2) in powers of for

- E << 1 and 3 - 1, giving

[at +(S a _ 71Y a77X ) (V2 _ 3 + YIf)
= laOX.I( 

_
= 0. (18.3)

The failure of this equation at small space or time
scales and near the equator is well known. Meterorol-
ogists since Burger (1958) have also recognized that
some larger than synoptic-scale motions also do not
evolve according to this equation. Rather, the appro-
priate equations are derived by assuming 3 and to be
small (because L is very large) and i to be of order 1.
The resulting velocities remain geostrophic:

1
u = 1 + 

1
v = 1 + , X (18.4)

(18.1) and the height field evolves according to

at 71 11 +2 = ) (18.5)

Equations (18.3) and (18.5) have very different proper-
ties: the quasi-geostrophic equation has uniformly
propagating linear-wave solutions which are essen-
tially dispersive even at large amplitudes (cf. Mc-
Williams and Flierl, 1979), while the Burger equation
does not have uniformly propagating linear-wave so-
lutions and initial disturbances steepen because of non-
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linearity. We shall demonstrate that there is an inter-
mediate band of length scales in which nonlinearity
and dispersion can balance to give cnoidal or solitary
waves. In the ocean, as we shall see, the change from
quasi-geostrophic to intermediate dynamics to Burger
dynamics occurs at a relatively small scale because the
deformation radius is so small compared to the radius
of the earth.

We may elucidate these differences by considering
the shallow-water equations under the assumption that
the motions are translating steadily at speed c:

(v -ci).Vv + (f0 + py) x v = -gVq,
(18.6)

(v -ci).Vr + (H + )V-v = 0,

where x and 2 are unit vectors in the positive x and z
directions. We may define a transport streamfunction
in the coordinate system moving with the wave

(v -c)(H + q) = £ x Vw

and write the Bernoulli and potential vorticity integrals
of motion:

IV( + cHy)12 + g(H + ) + c(H + )2 (oy + )

= (H + i7)
2
g6(4 + cHy), (18.7)

V. V(4 + cHy) + (fo + fly) = (H + 9l)t'(0 + cHy),

where we have isolated the wave part of the stream-
function = - cHy. We require that (18.7) hold as
d, 1 -7- 0; this determines the Bernoulli functional

,9(Z) = C2 + gH + Z + Z2.2 H 2cH2 (18.8)

The choice of a single-valued, well-behaved Bernoulli
functional implies that only motions which reduce
smoothly to linear waves will be considered; thus the
solutions of Stern (1975b) or Flierl, Larichev, Mc-
Williams, and Reznik, (1980) which involve closed
streamlines and a multiple-valued R will not be ex-
amined here.

In nondimensional form, equations (18.7) become

--2 1 +- Sc1 + 1 + 7)

= 82Sc1 (1 + 1) + 0 + ) (1 + 7)
0

<Co

4

(18.9)
E 2 

+ S 2c ( + ) ,

= {1 + y) x 1 + +c 1 ++- I

We show in figure 18.1 the dependence upon L and
U of our three basic parameters A = L/L = iLffo =
L cot 0/a (the ratio of the wave scale to the radius of
the earth scale), E = UIfoL (the Rossby number), and S =
LR/L2 (the inverse of the rotational Froude number).
Note immediately the differences in scale separation
for oceanic versus atmospheric conditions. In the at-
mosphere LA is very close to LR, so that there is only
a short range between the usual baroclinic Rossby wave
scales ( - 1, << 1) and the Burger range (S << 1, (3 -
1); in the ocean there is a large scale gap. Thus one
might expect the different dynamics to be seen more
clearly in the ocean.

Linear Waves ( = 0) The first step toward understand-
ing the various types of large-scale free motion is to
consider the linearized solutions. When the Rossby
number is very small, the two equations can be com-
bined into a single streamfunction equation which gov-
erns both gravity and Rossby waves. The Rossby wave-
phase speed increases as the length scales of the wave
increase, leveling off for L > LR. For still larger scales,
however, the speed again increases as the wave ampli-
tude begins to be more pronounced equatorially. We
demonstrate that the natural dividing scale here is
what we call the "intermediate" scale LI = (L LLR)1,
where S = fi (see figure 18.1). This is the scale at which

L (km)

Figure 8.I Values of the Rossby number , inverse Froude
number £, and beta parameter A as functions of the length

(18.10) scale L and velocity scale U for oceanic and atmospheric
values of the deformation radius.

5II
Oceanic Analogues of Atmospheric Motions



the relative vorticity changes become as small as the
variations in vortex stretching due to the f3 term. Al-
ternatively, one could say that the rule, "f equals a
constant except when differentiated," breaks down
near the intermediate scale. The phase speed continues
to increase and, for large enough north-south scales,
the wave domain crosses the equator. Then the wave
becomes equatorially trapped and the phase speed again
becomes independent of L.

For the parameters we have chosen-Lo = 3500 km,
LR = 50 km (ocean), 1000 km (atmosphere)-the inter-
mediate scale L = 210 km (ocean), 1500 km (atmos-
phere) is not very large. It represents the upper bound
to the scales for which the standard quasigeostrophic
equations are valid. It may again be seen that there is
a significantly greater separation among the various
scales in the ocean compared to the atmosphere. This
suggests that the ocean mesoscale motions may be a
cleaner example of quasi-geostrophic flow than the
synoptic-scale motions of the atmosphere; the approx-
imations used for the latter are less exact.

For linear motions, the Bernoulli equation (18.9) de-
fines q1 in terms of 4; '1 may then be eliminated from
the potential vorticity equation (18.10) to yield a single
equation for the streamfunction

SV21 - - (1 + fiy)20 = fi2g2C24,. (18.11)
c

Since the coefficients do not involve x, we may set
4 = eixG(y;L). The resulting equation together with
boundary conditions presents an eigenvalue problem
for c(L) and the wave structure G(y;L).

It has three eigenvalues, corresponding to two grav-
ity-wave modes and one Rossby-wave mode. We can
identify the gravity modes with the retention of the
right-hand term in (18.11). For mid-latitude modes this
term is significant only when fi2S2C2 - S or c2 (dimen-
sional) - gH; it is small for the Rossby mode solutions.
For equatorially trapped Rossby modes, the y scale con-
tracts so that S4'y dominates both gS4xx and fi,22C24,.

Eliminating the right-hand side corresponds to
retaining only the underlined terms in (18.9)-(18.10).
The filtered linear equation becomes

V2 - = (1 + y)2.,
C

-J
z
0V)z
W
Li
z0z

,

EQ _ X2 2 AL

10 102 103 I04

L (kim)

Figure I8.2 Phase speed nondimensionalized by LR as a func-
tion of the x scale L (wavelength/27r) in a channel of width
rL. Also shown are typical shapes of the y structure function

G(y;L for the various classes of motion.

domain similar. We can identify four different types of
behavior.

Midlatitude Rossby waves (<< 1, - 1): For these
motions, first described by Rossby et al. (1939), the
streamfunction satisfies

V24 - 1 = '
C

(18.13)

which has solutions in the box

(A = e ix cosy

with

c = -1/(1 + 2), (18.14)

or, more generally, for waves oriented in any direction,
(18.12) we have

which has been discussed extensively by Lindzen
(1967) and others. Here we comment on the various
types of solution primarily as a guide to our later dis-
cussion of the effects of nonlinearity.

Figure 18.2 shows the nondimensional phase speed
as a function of L for atmospheric or oceanic parame-
ters under the simplifying boundary conditions = 0
at y = -r7r/2, which make the x and y scales of the

af = eikx

with

c = -1/(1 + kik) (18.15)

(see the discussion in chapter 10).
Intermediate scale waves ( - << 1): The Rossby-

wave dispersion relation (18.14) remains valid for
<< 3 << 1 and becomes
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c = -1 + 2,

so that for a sufficiently small 3 the waves are nondis-
persive c (dimensional) = -L. However, when L in-
creases to the point where - << 1, the small cor-
rection in the formula above becomes invalid. This
occurs when the y term becomes comparable to the
3 V2(p term, that is, when L - (LL2)113, which is 210 km
for the oceans or 1500 km for the atmosphere. We
denote this scale as the "intermediate scale" L1. The
wave structure is determined by expanding (18.12) in
3 (or ). Setting = (0) + (1) + and c = -1 +
c'' + ... , we obtain

(V2 + C(M - 2y/1)(0) °' = 0. (18.16)

When L > L, the y dependence of f can no longer be
neglected, the y scale becomes order of the interme-
diate scale, and the solutions begin to be concentrated
toward the equator (see figure 18.2). As L continues to
increase, decreases but increases and the phase
speed is no longer insensitive to L but begins to in-
crease; c behaves like -1 + O(A) rather than -1 +
O(S). The phase speed becomes less and less sensitive
to the x wavenumber, so that the waves may still be
considered approximately nondispersive. We have re-
quired that A and 3 be small, but figure 18.1 shows
that these quantities are small only for a rather narrow
range of L even in the oceanic case, and figure 18.2
shows that c varies perceptibly with L everywhere. For
the atmospheric parameters a totally nondispersive re-
gime ( << << 1) does not exist at all.

Burger motions (/ - 1, 3 << 1): When L increases to
the point where A - 1, the motions become strongly
concentrated near the equator. The y scale contracts
(relative to L) so that the lowest order balance includes
all the terms in (18.12) and the y wave domain crosses
the equator. The phase speed rapidly increases from
that of the midlatitude Rossby waves to that of the
equatorial waves.

Now we can see why the Burger equation (18.5),
which assumes equal x and y scales, has no linear free-
wave solutions: free waves with a very large x scale do
not have the same y scale. Instead the unforced mo-
tions acquire a meridional scale between L, and the
(somewhat larger) equatorial scale. Forced motions, of
course, may have comparable x and y scales and may
therefore have evolution equations in which the terms
of (18.5) contribute along with the forcing terms.

Equatorial waves: Here we can drop the 1 in the 1 +
/y term of equation (18.12) to change to the equatorial
,3-plane (the f, factors will all cancel out upon dimen-
sionalization). The solutions are well known (cf. Lind-
zen, 1967) and again become nondispersive for small S.
Rescaling the equation for small 3 shows that the y
wave domain is confined to a region around the equator
of meridional extent /-12St114, which corresponds to the

dimensional scale Le = (gH/,l2)14 = (LLR)112, the well-
known equatorial deformation scale. For our assumed
parameters, this scale is 420 km for the oceans and
1900 km for the atmosphere; however, this estimate is
not very accurate since the equivalent depth for baro-
clinic motions varies considerably. Moore and Philan-
der (1977) give 325 km as an estimate of this scale for
the first baroclinic mode. The phase speeds are order
/-S-112 = L/LR, corresponding to a dimensional speed
fLO = /gi. (The other solutions have c - +-u'23-3'4.
A further discussion appears in chapter 6.

Nonlinear Waves ( > 0) When the motion becomes
of sufficiently large amplitude, the propagation char-
acteristics of a single wave change. We shall investigate
the size of the Rossby number necessary for this to
occur. This size may be quite different from the Rossby
number required for significant nonlinear interactions
in a full spectrum of waves. However, the nonlinear
behavior of a single wave can be of interest when it
allows the possibility for solitary waves. On the scale
of the mid-latitude Rossby wave, this does not appear
to occur and the nonlinearity gives only a correction
to the phase speed and shape; the lowest-order balance
remains strongly dispersive. However, as the scale be-
comes equal to or greater than the intermediate scale,
the phase speed becomes less dependent on the x wave-
number. When the Rossby number becomes of the or-
der L4R/L4, the nonlinear advection term becomes com-
parable to the east-west dispersion term and the
solutions propagate as solitary waves. The structure of
these isolated high-pressure disturbances is found to be
the same as that of the sech2x solution to the Korteweg-
deVries equations. The implication of this section,
then, is that the dynamics of motions of the interme-
diate or large scales may be quite different from that
of the ordinary Rossby wave.

Let us now consider the conditions under which the
nonlinear terms can alter the propagation characteris-
tics of the free waves in our model. This can occur
whenever one of the E terms is comparable to one of
the linear terms that have been retained in the Ber-
noulli or potential vorticity equations (18.9)-(18.10)
(the underlined terms). This happens when E 1, e/EI -
1, EI/ 1, E/:3 - 1, or /S2 - 1. The velocities
required for each of these conditions are shown in fig-
ure 18.3, which emphasizes again the relative com-
plexity of the atmosphere: for 40-ms-1 winds at 1000-
km scales, all of the nonlinear terms enter simultane-
ously. For the ocean, only strong meandering motions
could cause each of E, eIS and EIS2 to be of order unity,
and in these circumstances A remains quite small. We
shall not attempt to deal with these more complicated
motions, but instead shall examine the nonlinear ef-
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Figure 8.3 Conditions under which nonlinear terms become
important. Labeled curves show relationship between U and
L such that a particular parameter ratio becomes equal to one.
This corresponds to one of the nonlinear terms in (18.9)-
(18.10) becoming equal in magnitude to one of the underlined
linear terms.

fects on each of the waves that has been considered
above.

Midlatitude Rossby waves: The first nonlinear con-
dition that occurs when S 1 is e = . However, since
A remains small and does not enter the governing equa-
tion (18.13), we expect that this will not significantly
alter the behavior of a single steadily propagating sin-
usoidal wave. When E or E/3 becomes order 1, nonlin-
earity begins to affect the structure significantly. For
example, consider the parameter range - 1, <<
- << 1. To lowest order in an expansion of both )

and c in S-' (c being of order -'1), the potential vorticity
equation gives

V20(0) = 1 (0).

At first order we find the corrections to the phase speed
and shape of the wave. The result is

C 3-1-k1 k +(kk)2)+ * (18.17)

as sketched in figure 18.4. The order nonlinear terms
cause a sharpening of the streamfunction crests and a
decrease in the propagation rate.

Intermediate scale waves: When << 1, nonlinear
terms first enter when E - or E - 2 (see figure 18.3).
We can find the forms of the solutions by letting E =
ES2 and A = BS and expanding for small 3 assuming E,
B to be of order unity or less. We get

c = - 1 + C"),

V2 (0) + c1') 0 ' + I E[ (0]2 _ 2By()0 = 0
(18.18)
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Figure 8.4 Effects of nonlinearity on a short Rossby wave.
The upper figure shows the changes in the shape of the wave.
The lower figure shows the changes in the dispersion relation.

for the equations governing the shape and the speed of
the wave.

The simple limit here is B = /3I << 1, corresponding
to the range LR << L << L, and E of order unity, cor-
responding to particle speeds given by the E/2 = 1 lines
in figure 18.3. The wave equation

V2)0)' + C'1)0 ' + i E[P0]2 = 0

has both one- and two-dimensional solutions on the
plane. These include the cnoidal and solitary wave
solutions to the Korteweg-deVries equation (Whitham,
1974) for uniformly propagating waves:

( = cn2 (K ) kxM /1 -m m- v m 1 + 2m
k--7r[k k m - 3m

c = -1 + 4K2(m )1 - m + m2/kr 2,

,E-2 = 4mK 2 (m)/7r2,

and

(18.19a)
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(') = sech2 kx,

c = -1 - 4Sk.k, (18.19b)

ES-2 = 4k-k.

Plots of the shapes of the cnoidal and solitary waves
and the dispersion relations are shown in figures 18.5A
and 18.5B. The cnoidal waves show a phase speed de-
creasing with amplitude (as in the example above)
while the solitary wave speed increases as the wave
gets stronger.3

A second type of solution (cf. Flierl, 1979b) is a ra-
dially symmetric solitary wave

0'' = G(k\. x),

= -1 - k2, (18.19c)

ES-2 = 1.59k2,

whose shape and dispersion relations are shown in fig-
ure 18.6.

It may be seen from equation (18.15) that the dynam-
ics of large-scale motions for which E - S2 and <<
E/$ are distinctly different from those of the quasigeo-

1.01

.5

/i

strophic eddies. We might expect, if the motions are
governed by the Korteweg-deVries equation as sug-
gested by (18.18), that solitons will be formed and dom-
inate the subsequent evolution of the field. In the at-
mosphere, solitary-wave behavior would be difficult to
find because of the rapid frictional decay time, the
east-west periodicity for scales not so much larger than
those under consideration, and the rather limited pa-
rameter range for the Korteweg-deVries regime. In the
ocean, the situation is quite different; the parameter
range for solitary-wave behavior is more distinct, the
waves are of small scale compared to the size of the
basin, and the decay rates are slow so that there is
sufficient space and time for the necessary balance
between nonlinearity and dispersion to develop.

For scales larger than the intermediate scale, B be-
comes large in (18.18). If y is rescaled by B-113 (dimen-
sionally by LI), this equation can be solved by expan-
sion in powers of B-2'3. To lowest order, one obtains a
linear equation for the y structure; to next order, the
x dispersion and nonlinear steepening (if E is order
unity) are included and the x structure is then given
by an equation of the Korteweg-deVries type.

5 -4 -3 -2 -I 0 I 2 3 4 5
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I .
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18.5(A)

Figure I8.5 Effects of nonlinearity on long waves. (A) Cnoidal
waves: the upper figure shows the change in shape occurring
when the nonlinearity is increased while the lower figure
shows the changes in the dispersion relation. (B) Solitary
waves: the upper figure shows the shape of the wave while

18.5(B)

the lower figure shows the relationship between the length
and amplitude (S and E) and also the propagation speed. For a
fixed deformation radius, S-112 is directly proportional to the
velocity scale U. The relationships are only valid for B < 1.
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the oceans and 1000 << L << 1500 km for the atmos-
phere) have solitary or cnoidal wave structures as well
as circular solitary highs. As the scales become larger,
weak solitary or cnoidal wave structures may persist
with normal-mode y shapes concentrated near the
equatorward side of the domain. Stronger motions will
not remain permanent but will steepen in amplitude,
as do the solutions of Burger's equation (18.5). When
the wave domain comes to include the equator, non-
linear equatorial wave motions satisfying a Korteweg-
deVries type of equation can exist.

107y
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Figure I8.6 Radially symmetric solitary solutions. The upper
figure shows the dependence of the pressure upon radius. The
lower figure gives the relationships between amplitude, size,
and propagation speed.

Burger range: Here also one can show that there are
motions whose y structure is determined by a linear
equation and whose x structure is determined by a
nonlinear equation of the Korteweg-deVries type. We
still require E S2. Clarke (1971) has discussed this
type of solution (and also those described above for
large B) in more detail.

Equatorial motions: Boyd (1977) has shown that the
long waves in this case also satisfy an equation of the
Korteweg-deVries type. If we rescale the equatorial
versions of (18.9) and (18.10), letting y = -m/214y (so
that Y has the scale Le), c = -'1S-"2C, and =
A'12SI"4N, we can show that there are only two param-
eters (in the absence of north-south boundaries) of in-
terest: 6 = -m2S"/4 = Le/L and i = E v12e-314 = UL/fIL.
The cnoidal or solitary wave (in x) solutions are ob-
tained when - 82 << 1. This gives an equatorial
velocity scale U = fL5,/L3, as shown in figure 18.3.

In summary, then, we have seen three different types
of natural large-scale, long-period motions in the at-
mosphere and ocean. For scales on the order of the
deformation radius or less (L 5 50 for the oceans and
< 1000 km for the atmosphere), dispersive Rossby
waves dominate with nonlinear effects entering only
for large Rossby number e. Intermediate scales (S << 1,
ES-2 - 1, << E -l implying 50 << L << 210 km for

Korteweg-deVries Dynamics Finally we shall demon-
strate that Korteweg-deVries dynamics does seem to
be appropriate for general motions (not necessarily uni-
formly propagating waves) on the intermediate scale
A > S, e S2, and S << 1). The previous derivations

have shown only that the permanent form is governed
by an equation that may be derived from the Korteweg-
deVries equation, but it is still necessary to show that
the time-dependent evolution equation is also of this
type. We return to our governing equations (18.2) and
set = ES2 and A = BS, where B and E are assumed to
be of order unity. This corresponds to L - L and
U foLiLo (210 km, 5 cms -1 for the ocean; 1500 km,
20 ms - for the atmosphere). We note that there will
be two time scales in the evolution: a fast time t cor-
responding to the nondispersive propagation and a slow
time T = St during which features evolve.

The lowest two orders of the expansion in S show
that the flow is geostrophic and that the advection of
planetary vorticity is balanced by vortex stretching,
leading to the usual nondispersive propagation of very
long Rossby waves. At the next order slow changes in
surface height force a divergence which creates relative
vorticity. The vorticity balance also is influenced by
north-south variations in vortex stretching due to var-
iations of f, while the nonlinear terms enter in the
mass balance. The resulting equation is a mix between
the Korteweg-deVries equation and the Rossby-wave
equation. However, when L is large compared to the
intermediate scale, the more detailed expansion to fol-
low shows that the x structure indeed evolves accord-
ing to a Korteweg-deVries equation.

At lowest order the flows are geostrophic

(0) (0)u'°' = -,'°

v 0 = (0)

u'0) + v'° ' = 0.

The first-order equations,

u m + Byu1O) = -,):,

v(1 + Byv (° ) = (1

B7;'°) + Ev'°')*V )' + El(°'V.v'(° + V*v' = 0,
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lead to Sverdrup (1947) or Burger (1958) type of balance
between advection of planetary vorticity and vortex
stretching,

u ) + vP) = -Br()

and to the nondispersive wave equation

Br1 °) - Brl') = 0,

which implies

a a

at ax or = (x + t, y, T).

At second order we obtain the vorticity equation

B(V()- U(° )) + Ev().V(V( -U( ))

+ Bv'l' + Vv'2') - ByVv(1) = 0

and the mass-conservation equation

Br', + Bl'o + Ev 'V71
(°) + Ev()V71,

+ V.v(2) + EnlWVWv°O) + E1(°)Vv m' = 0,

which jointly lead to the evolution equation [after us-
ing /at = a/ax for the fast time, and dropping the
superscript (0)]

Brl' = EBlrqs + B(V2ir)x

- 2B2yn., + E(rl, V2rl) (18.20)

[where J(A,B) is the Jacobian operator] or

B 3
BrlT = E(l - y, V2 + E 2 2Byq).

One can readily show that the requirement of steady
propagation leads to (18.18). Furthermore, when L is
large compared to the intermediate scale Li but E re-
mains order one, the x structure of the solutions do
satisfy a Korteweg-deVries equation. In this case B is
large and E is order 1. Because the y scale becomes
limited to L1, the x dependence and the nonlinearity do
not enter in the primary balance, which serves to de-
termine the y structure and a correction to the phase
speed. At the next order, the nonlinearity (from both
quadratic and Jacobian terms) enters along with the
third x derivative and the slow-time derivative terms
to give a Korteweg-deVries equation:

7 = F(x - ct, T)Ai(V),

c = -1 - rB - (2B)213
0,

= + 2B)1/3(Y +2),

00 = -2.3381 (zero of Airy function),

= F + E Ai Ai a F2.
+ (o Ai0 ax 

This section has demonstrated that some caution
must be exercised in applying the quasi-geostrophic
equations (which will be discussed throughout the rest
of the paper) to large-scale motions since they are valid
for the oceans only for scales up to the order of 200
km. The derivations suggest that the role of nonline-
arity may be very different for the intermediate and
large-scale motions-leading to coherent and phase-
locked structures rather than to turbulence. Clearly
these inferences must be backed up by more thorough
investigations which are beyond the scope of this ar-
ticle.

18.4.3 The Quasi-Geostrophic Equations
Because of the difficulties inherent in attacking the full
equations of motion either analytically or numerically,
various approximative equations have been developed.
For the study of the large-scale motions, the relevant
"filtering approximations" eliminate the acoustic and
inertiogravity motions.4 We have mentioned the quasi-
geostrophic, semigeostrophic and balance equations
and have touched on their limitations. In this section
we shall discuss briefly the derivation of the quasi-
geostrophic equations for a stratified fluid under
oceanic conditions; details can be found in the appen-
dix. These equations are, of course, familiar, but, since
we shall use them in the rest of this chapter, we must
establish our notation. We wish also to remark on
differences between the standard derivation for the at-
mosphere (cf. Charney, 1973) and that for oceanic con-
ditions. Finally, we include the -effect by explicitly
taking into account the two-scale nature of the prob-
lem: the planetary scale, that is, the earth's radius, and
the scale of the fluid motions themselves.

For inviscid, adiabatic flow, the equations of motion
and continuity expressed in modified spherical coor-
dinates are

Du uw uv tan 0
+ _ 2lv sin + 2w cos Dt a +z a +z

a ap
(a + z) cos a0 '

Dv wv u2tanO a apDt a + z a + 2uz a + z 'Dt a+z a+z a+z ae'
Dw U2 + V2 ap
Dt + 2+2u cose = -a- -g,Dt a +z a (18.22)

1 Da 1 au 1 a os )
a Dt (a + z)cos as + (a + z)coso ae 

(18.21) + ( a + (a )2 =0,

D 0 u a v a a=_a+ + +w-
Dt At (a + z)cosO 0a + z ae &'a

517
Oceanic Analogues of Atmospheric Motions

__ ._l



where ci is the longitude, 0 the latitude, 11 the angular
speed of the earth's rotation, g the acceleration of grav-
ity, p the pressure, a the specific volume, and u, v, w
the eastward, northward, upward velocity components,
respectively. The radial coordinate is denoted by a +
z, where a is the mean radius of the earth and z the
height above mean sea level. This neglects the elliptic-
ity of the geoid [see Veronis (1973b) for a discussion of
this approximation].

We assume that the specific volume is determined
by an equation of state as a function of absolute tem-
perature T, salinity P, and pressure:

a = a(T,$ ,p) (18.23)

with salinity conserved,

D Y = 0, (18.24)Dte= ,
and temperature changes determined from the adi-
abatic thermodynamics

DT T (Oa) Dp 0. 18.25)
Dt c p., Dt

For dynamical modeling it is convenient to regard tem-
perature as a function of specific volume, salinity, and
pressure and to determine the evolution of the specific
volume from

Da a2 Dp
Dt+ - 0,Dt c2, Dt

[In practice, given T(p), Y(p) we find i(p) and integrate
to get z(p).] We then subtract out this hydrostatic state
and define the (nondimensional) geostrophic stream-
function ti by

p = p + 21 sin 0 UL/ii. 118.28)

We also define a "local" potential specific volume a,
of a fluid particle with specific volume a at pressure p
and depth z as the specific volume it would acquire if
the particle moved adiabatically to the horizontally
averaged pressure p(z). Equation (18.26) gives

-2

ap = a - (p -p) (18.29)

(as long as a and p are not too different from their
averaged values). The buoyant force per unit mass after
this change becomes

bp (dimensional)= g I

a-=g- + g ( - p .

This leads to a redefinition of the specific volume in
terms of the nondimensional potential buoyancy:

21 sin 0 UL b gH 1a = 1 + bp

(18.26) With the above scalings, we have eight nondimen-
sional parameters (many of which vary spatially):

which can be derived by taking the substantial deriv-
ative of (18.23), using (18.24)-(18.25) and the definition
of the sound speed:

c2 _ -a 2[ ( Y) +(.ya) ]- 2=(p,Y). (18.27)

Equations (18.26)-(18.27) replace (18.23) and (18.25);
since the speed of sound is large compared to the meso-
scale wave speeds and also is rather insensitive to its
arguments (especially salinity), it plays a rather minor
role in the large-scale dynamics.

In the appendix, we write the nondimensional forms
of these equations based on a time scale T, a horizontal
velocity scale U, a vertical velocity scale W, and a
depth scale H. For the horizontal coordinates we intro-
duce two scales of motion: the global, 0 and - 1 (the
,3-effect is global); and the local, AO and Aid - La,
where L is a typical horizontal scale (cf. Phillips's 1973
WKB approach to Rossby waves). Thus we represent
all dependent variables Q in the form Q(O, , z, t, 0,
ci) with d = (a/L)dD and dO = (a/L)dO. We also
explicitly introduce a basic hydrostatically balanced
stratification of the ocean T(z), 3(z), i(z), (Z) satisfying

iiz)p(z) = -g.

1

2= 1 sin 0 T

U
= 2 sin 0L

(a time Rossby number),

(a velocity Rossby number),

A = (L/a) cot ,

X = HIL,

A = (21 sin L ) 2/(gH),

A. = gH/cI,

o = LWI(HU),

3 = H2R2(z)/(2fsin OL)2,

where N2 is the square of the buoyancy frequency:

N2 = (ga.a) - (g2/l2).

Two of these parameters, E and A, are identical to those
used previously with the definitions fo = 21 sin e and
,/ = 2fl cos l/a. We have also explicitly separated the
time scale from the Rossby wave period, whereas in
the previous section e was set equal to AS with 3 =
gH/f0. The quantity analogous to 3 for a continuously
stratified ocean is
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S = H2R 2(z)/(2f sin L)2
.

This nondimensional variable is of order unity for mo-
tions due to baroclinic instability (Eady, 1949). It is
useful to think of it as the squared ratio of two length
scales, LI/L2 or H2/H2, where LR - NH/fo is the analog
for a stratified ocean of the single-layer horizontal de-
formation radius VgHi/fo introduced by Rossby (1938),
and by analogy HR - foL/N may be called a vertical
deformation radius. If the vertical scale is set, the nat-
ural horizontal scale will be LR; if the horizontal scale
is set, the natural vertical scale will be HR.

We now simplify the equations of motion by making
assumptions about the magnitudes of the various pa-
rameters. The first seven of our nondimensional pa-
rameters are small (for the atmosphere, As, may be of
order 1). However, the stability parameter 3 is quite
variable. Taking H - 1000 m as a measure of the depth
of the main thermocline, we find that 3 is large in the
seasonal thermocline and near unity in the main ther-
mocline. Although this variability is occasionally wor-
risome in making scale arguments, we shall follow the
conventional choice of regarding 3 - 0(1).

We begin by restricting the length scale L so that
<< 1 and A << 1, implying that L is large compared

to the ocean depth but small compared to the external
deformation radius x/H/fo - 3000 km. In practice, we
expect the upper limit for L to be determined by the
condition that 3 >> O(A), so that L must be less than
the intermediate scale Lx defined in section 18.4.2. Us-
ing A << 1 and A << 1 and dropping small terms, we
obtain the Boussinesq hydrostatic forms of the primi-
tive equations (see the appendix).

Next we specify the time and velocity scale. For the
standard quasi-geostrophic motions, the time scale is
set by instabilities of the flow so that T = L/U ( - E)
and the vertical velocity is determined by balance be-
tween local and advective changes in the vertical com-
ponent of relative vorticity and stretching of the vortex
tubes of the earth's rotation (to = ). Finally, the ad-
vective changes of the relative and planetary vorticity
are assumed to be comparable, so that , - e also.
Expanding in s, we find, as expected, that the lowest-
order flows are geostrophic and hydrostatic:

u= ' b, = f , a (18.30)0yz

where we have redefined the rapidly varying coordi-
nates to look Cartesian by setting dx = L cos 0 dek and
dy = L dO and have returned to dimensional variables.
The full pressure is related to the streamfunction by

p = P(z) + foO/lc(z). (18.31)

The vorticity equation, which is derived by cross dif-
ferentiating the order-Rossby number momentum
equations (with special care taken with the 0 and I)

dependence), and use of the order-Rossby number con-
tinuity equation, becomes

at+ v.V) (V2+ + ay) = fowz,I V) (18.32)

and the buoyancy equation becomes

( +vVV) Jz, + fSw = 0. (18.33)

Here S = N 2(z)/f2, v = (-0p, ,), and V = (/Ox, O/ly).
These two may be combined to give the quasi-geo-
strophic equation

+ V)V (V2 + zS z + y)= 0,
1 a\/010\

(18.34)

which asserts that the quantity

q= V20i +- S- 0 + f3y

is conserved at the projection of a particle in a hori-
zontal plane, not, like potential vorticity, at the parti-
cle. For this reason it is called pseudopotential vortic-
ity to distinguish it from potential vorticity. Because
the distinction vanishes for a fluid consisting of several
homogeneous incompressible or barotropic layers,
there has been some confusion of terminology in the
literature.

The temperature and salinity fields can be derived
from the streamfunction 0p and the basic stratification
T(z), (z), using the salinity and temperature equations
together with the expression (18.33) for the vertical
velocity:

(at + -V) (y - Y) + wY = 0,

a + V (T - T) + w T T - 0.

To complete the system of equations we need the
boundary conditions. At the bottom boundary vertical
velocities are forced by flow over topography:

w = vVb at z = -H, (18.35a)

where H(O,() is the (local) mean depth, the true bottom
being at z = -H + b. For consistency, Ibl/H is required
to be order E. At the upper free surface z = , the
assumption that L is small compared to the external
radius of deformation implies that the boundary con-
ditions

Dr/Dt = w 
p=0 J at z = 

can be approximated simply by

w = 0 at z = 0, (18.35b)
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with the surface displacement computed from

0fo y,

Finally, on the side-wall boundaries it is necessary
to set both the order 1 and order £ normal velocities to
zero, giving

VaJs = 0,
(18.36)

~ vt.i = 0,

where , is the unit tangent vector and ii the unit nor-
mal vector to the boundary.

All of these conditions will be modified in the pres-
ence of friction: the top and bottom layers because of
Ekman pumping into or out of the frictional layer (see
section 18.6) and the side conditions by the necessity
for upwelling layers which can feed offshore Ekman
transports and can accept mass flux from the interior
of the ocean.

18.5 Linear Quasi-Geostrophic Dynamics of a
Stratified Ocean

The quasi-geostrophic equations (18.33)-(18.36) have
been applied to large-scale, long-period, free- and
forced-wave motions in the atmosphere, to the study
of barotropic and baroclinic instability, to wave-mean
flow and wave-wave interaction, and to geostrophic
turbulence. We have mentioned already the review ar-
ticles by N. Phillips (1963) and Kuo (1973) and the book
by Pedlosky (1979a) in which their applications are
treated. In addition, Dickinson (1978) has reviewed
their application to long-period oscillations of oceans
and atmospheres and Holton (1975) their application
to upper-atmosphere dynamics.

In application to the mesoscale eddy range of oceanic
motions (10 km < L < 210 km), equations (18.32)-
(18.36) exhibit a rich variety of behavior depending on
the sizes of the various parameters and the initial and
boundary conditions. We cannot discuss all of them
here; rather we shall confine ourselves to a few topics
which are also familiar in a meteorological context.
We shall, whenever possible, use a typical oceanic N2 (z)
profile (Millard and Bryden, 1973; also see figure 18.7)
rather than the constant- or delta-function profiles that
are most commonly considered. This allows us to de-
scribe the vertical dependence of theoretical predic-
tions in a way which is more directly comparable with
oceanic data.

We begin with phenomena that are essentially lin-
ear-involving no transfers of energy between scales-
deferring discussion of nonlinear motions to the next
section.

Z (m)

-1000-

-2000-

-3000-

-4000-

-5000-

S
5,000 o10,000 15000 2Q000 2000 30003 3000

l l l l l I i

Figure 8.7 Typical oceanic structure for S(z) = N2/f2(. The
data are from Millard and Bryden (1973) and represent an
average over ten stations centered on 28°N and 70°W.

18.5.1 Rossby Waves and Topographical Rossby s

Waves
Rhines (1970) has discussed the nature of free quasi-
geostrophic waves in a uniformly stratified fluid with
bottom topography in some detail. We shall describe
the behavior of these waves with the aid of a formalism
that permits us to extend Rhines's results to real N2(z)
profiles.

When the bottom slope is uniform (b, and by con-
stant), the equations are separable, so that we can write
the streamfunction in the form

i = AF(z) sin[k(x - ct) + ly],

where

c = -l(k 2 + 12 + 2)

and X, the separation
ence:

010- I-- = - 2 F.
Oz S z

To close the system,
conditions

(18.37)

(18.38)

constant, governs the z depend-

(18.39)

we make use of the boundary

a
a-d= , = 0, =0,

a
w = - fo(-H)J(i,b), z = -H,

which become

F = 0, z = 0,

F = fo( -H) (b -k b).

x (k2 + 2 + X2)F, z = -H.

(18.40a)

(18.40b)
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To solve (8.39) and (18.40) we proceed as follows: given
S(z) we integrate (18.39) with the boundary condition
(18.40a) and the normalization condition

(I/H)f dz F2(z; 2) = 1

(using a simple staggered-grid difference scheme with
50-m vertical resolution). We then define the nondi-
mensional function

-HF(-H; X2)
R(X2) HHF= HHF )( (18.41)

S(-H)F(-H; 2)

in terms of which the bottom boundary condition
(18.40b) becomes

R(X2) = (b,, - b,)(k2 + 12 + X2). (18.42)
f_ 

This can be used to determine X2 and the vertical struc-
ture F(z), given the wave scale (k2 + 12)-112 and the
propagation angle tan 0 = Ilk.

Thus, we can summarize all of the information in
one graph. Figure 18.8 shows R(X2), from which X2 can
be determined given the wave numbers and the topo-
graphic slopes by a graphical solution of (18.42). From
the resulting set of X2 values, the values of the phase
speeds of the various waves can then be determined
from (18.38). The vertical structures of the waves and

R
.I

-.002

-. 05

_.o

Figure 8.8 Normalized ratio of bottom shear to bottom am-
plitude as a function of the separation constant \

2. For given
topographic slopes and wavenumber vector, the values of X2

are the intersections of this curve with the line R =

the dependence of their phase speeds on the slopes and
wave numbers are qualitatively similar to those in
Rhines's (1970) constant-N model. We shall describe
these results and give useful approximate formulas
for c.

When there is no slope effect, the Xn values are sim-
ply the inverses of the deformation radii associated
with the various modes F,(z) which are eigensolutions
of (18.39) under the condition Fz = 0 for z = 0, -H,
normalized so that (1IH)fOHdzF2(z) = 1. The barotropic
(n = 0) and first baroclinic modes (n = 1, LR = 46 kmin)

correspond to the structures observed in oceanic data
(cf. Richman, 1976). The vertical dependence of these
structures are shown also in figure 18.8. The dispersion
relation (18.38) and the propagation characteristics of
the various modes are described in many places (see
chapter 10).

For the weak topographic slope effect, the phase
speeds are altered to

-[ 2(-H) (b (k2 2 + 2I ),

derived by solving (18.39) for 2 - XA2 small. We find
the familiar result that the bottom slope, by causing
vortex stretching or shrinking, acts as an effective fl.
The bottom-slope effect in the baroclinic modes is
weaker by a factor F2( -H) than the corresponding effect

II

2

Z

foHlf)[b, - (Ilk)b]J(X2 + k 2 + 12). Also shown is the vertical
structure F(z) of the streamfunction (normalized to rms value
unity) at various (X2,R) values.
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on the barotropic mode. This factor is smaller than 1
for the stratification used (about 0.4 for the first baro-
clinic mode).

When the slope effect foH[b, - (1/k)b,]/3 is negative,
there is also a bottom-trapped eastward-moving wave.
The vertical trapping scale is H, = - (fol)[b, - (lk)b]l,
and the speed

c = 3N2(-H)H,2/fo

can be regarded as that of a long wave in a fluid with
a deformation radius based on the vertical scale H, and
the local value of N.

For large slopes the modes all have large vertical
shear. Most of them are surface trapped, having essen-
tially zero bottom amplitude and a westward compo-
nent of phase speed. For a slope effect opposing the /3-
effect, there is also a rapidly eastward-moving wave
whose vertical trapping scale is HR = fo/N(-H)Vk + 12
and whose propagation speed is

I
c = -fo(b - bX)/HR(k2 + 12)

in the limit of L << LR.
The constant N or two-layer models make significant

qualitative errors in describing one or another of these
types of behavior. The flat-bottom baroclinic modes in
a constant-N model have bottom velocities comparable
to the surface velocities; when a weak slope is added,
this produces a large change in the vortex stretching
and in the phase speed. Thus, the effect of the slope on
the baroclinic modes is twice as great as on the baro-
tropic mode, not, as in the realistic ocean, half as great.
For large slopes the trapping scale for constant N is
much smaller than the correct scale because N(-H) is
small compared to the average value of N which would
be used in a constant N model. This results in an
overestimate of the phase speed. The two-layer model
generally misrepresents the eastward-traveling mode:
for weak slopes, it is altogether absent, while for strong
slopes the two-layer model predicts c - (k2 + 121-l
rather than the correct (k2 + 12)-112 dependence.

Although we have derived the solutions (18.37)-
(18.42) from the linearized equations, the individual
waves are also finite amplitude solutions to the equa-
tions of motion (18.32)-(18.36) because both

(V2+--- and and
are proportional to $ at each horizontal level. In fact,
the nonlinearities in the equation of motion (18.34)
will vanish for any set of waves having each of their
wave vectors parallel or having the same total scale
(k2 + 12 + A2)-"2. In the latter case, all the waves have
the same phase speed so that the composite stream-
function pattern propagates uniformly. The nonline-
arity in the bottom boundary condition likewise van-

ishes if all waves have the same value of R, that is, if
the wavenumber vectors are parallel or b, = 0. Thus
sets of waves with horizontal scales (k2 + 12)

- "2 such
that both k2 + 12 + 2 = constant and R(K) = constant
will be full nonlinear solutions for north-south bottom
slopes. Instabilities may, of course, prevent such pat-
tems from persisting.

18.5.2 Generation of Rossby Waves by Flow over
Topography
Flow over topography has been of practical interest to
meteorologists attempting to forecast conditions near
large mountain ranges for many years. There is an
extensive bibliography of such studies (Nicholls, 1973;
Hide and White, 1980). Many of these concentrate on
smaller-scale lee-wave properties, although there have
also been attempts to model the large-scale standing
atmospheric eddies as topographically forced Rossby
waves (cf. Charney and Eliassen, 1949; Bolin, 1950).

In the ocean, there are also many standing features,
some of which clearly can be identified with topogra-
phy (cf. Hogg, 1972, 1973; Vastano and Warren, 1976).
In this section we shall discuss a simple oceanic anal-
ogy to the common atmosphere model for standing
waves produced by flow over topography.

Steady solutions to (18.33)-(18.35) may be written

a010
V2 + T a 9 + AY = P(,z),OZ S 8Z

Fz = Ts(), z = 0, (18.43)

qz + foS(-H)b = Tb(tP), z = -H,

where P, T,, and Tb are arbitrary functionals. If we
allow ¢I to represent a mean zonal flow plus a topo-
graphically induced deviation,

' = -(z)y + (x,y,z),

we find

P(,Z)= - I Off oU ,

T,= Tb= 0

are suitable functionals to match the terms linear in y
in (18.43). We have restricted ourselves to flows such
that U 0 everywhere and u, = 0 at z = 0, -H. The
conditions that the upper and lower surfaces be iso-
thermal are not fundamental and could be relaxed eas-
ily; we make them simply to restrict the discussion to
a reasonable number of parameters. If, however, the
U $ 0 condition is violated, the analysis becomes much
more difficult since the critical-layer (where uf = 0)
problem must also be solved.

Given these restrictions, however, the fluctuation
field satisfies the simple equations
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+ 1 13-(alOz)(liS)(a/lz)
V24) + § 4) +=

= O, Z = 0,

,O = - foS(-H)b(x,y), z = -H,

(18.44)

where no small-amplitude assumption has been made
beyond the assumption that the nondimensional top-
ographic amplitude is of the order of the Rossby num-
ber. The linearity of these equations is due to the par-
ticularly simple form of the upstream flow-a
streamfunction field which is linear in y. Any horizon-
tal shear in the upstream flow would give rise to non-
linear terms in P, T., and Tb, and thereby to nonlinear-
ities in the equations (18.44). For simple sinusoidal
topography b = bsin(kx + ly), the topographically
forced wave looks like

4 = foboHF(z) sin(kx + ly),

where

a 1 [ +1 - (OIz)(l/S)(uf/az)F
Oz S Oz U

F = 0, z = 0, (18.45)

F, = -S(-H)IH, z = -H.

When the zonal flow is barotropic (u = constant) the
system (18.45) becomes essentially identical to (18.39)-
(18.40) except that the amplitude is determined by the
bottom boundary condition. We summarize the shapes
and amplitudes of the forced waves in figure 18.9. We
have used again the simplest form X2 = /3/ - (k2 + 12)
for the dependent variable.

The most striking feature in the response is, of
course, the resonant behavior when

i = p/(k2 + 12 + )
for X2, one of the inverse-square deformation radii. Near
such a resonance, the amplitude becomes very large:

Fz )F,( -H)
Flz) [k2 + 12 _- (3/U) + X2n]H2

When the mean flow is eastward at a few centimeters
per second, it may be near a resonance for one of the
baroclinic modes and may therefore generate substan-
tial currents even above the thermocline. Vertical
standing-wave modes associated with vertical propa-
gation and reflection at the upper boundary will be
found for X2 > 0 or

0 < < P1(k2 + 12).

For X2 < 0 the motions are trapped and decay away
from the bottom. The trapping scale becomes very
small when i is nearly zero but westward or when the
topographic wavelength is short. In the latter case, the

-.002
-.002

(km-2)

Figure 8.9 Energy and vertical structure of a topographically
forced wave as a function of X

2 = (//U) - k · k, where k is the
topographic wavenumber.

vertical scale of the fluctuations is HR - fLIN(-H),
where L = (k2 + 12)- /2. When is weak and westward
(0 < lUI < fN 2(-H)H2 /f - 4 cms), the vertical scale
will again be small compared to the fluid depth.

Although this type of problem is suggested by the
atmosphere analogue, a warning about its applicability
may be in order. Periodic problems are natural for the
atmosphere. In the ocean, however, it is less plausible
that a fluid particle periodically will revisit a topo-
graphic feature in a time less than the damping time
for the excited wave. (The Antarctic Circumpolar Cur-
rent could perhaps be an exception.) We can illustrate
the differences between periodic and local topography
by considering uniform eastward flow over a finite se-
ries of hills and valleys:

bosinkx, x nlr/k

O, x<O or x>nr/k.

We consider the barotropic component of flow which
satisfies the depth averaged form of (18.44):

V2¢ +. = fob(x,y).

Its solution is

= 0 forx < 0,

fobo

x (sinkx - k sin j x)
nf0for0 <x<-,
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f,b,
H(k2 - Pl/u)

x k [cos fX - C-l)cos \(x- n)1

nor
for x > k

Figure 18.10 shows the average energy in the far field
(normalized by i(fobolHk)2 as a function of uk2/13. We
note that the resonance peak becomes significant only
when the topography has a number of hills and valleys;
this suggests that the idea of resonance, in the ocean,
should be applied with caution.

When there is vertical shear in the mean flow, the
situation becomes somewhat different, although equa-
tion (18.45) can still readily be integrated. However,
one can gain a qualitative picture of the response for
arbitrary shear and small perturbations by using the
methods of Charney and Drazin (1961) as described in
the next section.

18.5.3 Propagation and Trapping of Neutral Rossby
Waves
In many circumstances, the ocean or atmosphere is
directly forced by external conditions-heating,
winds-which may have temporal and spatial varia-
tions. The forcing may generate wave disturbances in
one region that propagate into a neighboring region
(e.g., the propagation of tropospheric disturbances into
the stratosphere). In these circumstances the motion
is determined by the nature of the forcing and the

0
wzw
C

C
0

N

2
0

29
0

refractive properties of the intervening medium. Char-
ney (1949) first treated the vertical propagation of
Rossby waves in a stratified atmosphere and Charney
and Drazin (1961) first suggested the analogy between
vertical propagation of Rossby waves and electromag-
netic wave propagation in a medium with a variable
index of refraction (possibly complex, corresponding to
wave absorption). Holton (1975) has reviewed these
concepts for meteorologists; oceanographers have
tended to make less use of them [see, however, Wunsch
(1977), who applied them to vertically propagating
equatorial waves excited by monsoon winds].

The simplest derivation of an index of refraction is
for waves in a zonal flow with vertical and horizontal
shear. Consider waves of infinitesimal amplitude hav-
ing east-west wavenumber k and frequency wo. The
north-south and vertical dependencies of the ampli-
tude iJ = t(y,z)e i(kx- t') are determined by the standard
stability equation (cf. Charney and Stern, 1962):

1 w 1 o a2 ala k \
yk) + z S z 

If we follow the procedure that has been used for ver-
tically propagating waves, we transform this into a
Helmholtz equation with a variable coefficient of the
undifferentiated term. This is quite straightforward if
we are considering propagation only in the y direction
with uff = 0 and 'I = {(y)F(z), where F is one of the
flat bottom eigenfunctions. Then the y structure is
governed by

- + v2(y) = 0

where

v2(y) = [(f - i /,,){(i7 - w/k)] - k2 - .

RESONANCE MEAN FLOW U k/f

Figure I8.io Downstream energy averaged over a wavelength
of waves forced by flow over isolated bumps as a function of
the normalized mean flow speed. The wavenumber of the
topography in the region where it is varying is k. For an
infinite topography, resonance would occur at iYk2/1 = 1. Re-
sults are shown for varying numbers of elevations and depres-
sions in the topography.

(18.46)

A simple illustrative example is the radiation from
a meandering Gulf Stream into the neighboring Sar-
gasso Sea (cf. Flierl, Kamenkovich, and Robinson, 1975;
Pedlosky, 1977). The forcing specifies 4) at some lati-
tude. When we have no mean flow (ff = 0) and the
motions are barotropic, the index of refraction becomes

v2(y) = -k2 - (ikl/)

5 The north-south scale of the response Ivl-' is shown as
a function of o (>0) and k (0) in figure 18.11. Most
observations indicate eastward-traveling motions, /k >
0, implying that the mid-ocean response will be
trapped close to the Gulf Stream.

We may obtain a similar representation of the index
of refraction for the full two-dimensional y and z)
problem. This result, for reasons discussed below, is
probably of more interest to meteorologists than to
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Figure 8.iI Solid lines show north-south length scales
(wavelength/27r) and dashed lines shown trapping scales (e-
folding distance) for barotropic waves generated by a mean-
dering current with inverse frequency co- and inverse wave-
number k-'. Eastward going meanders (k > 0) produce
trapped waves; westward going meanders (k < 0) may produce
propagating disturbances. The symbols 0 correspond to typ-
ical observational estimates of o-' and k- 1.

oceanographers; however, we include it to illustrate
some of the effects of the z structure. If we substitute

(y,z) = S1
/4dI(y,5), where = fZH Sl"2(z')dz' is a modi-

fied vertical coordinate, we find

(a2+a- + v2(y,) = 0,

where the index of refraction v2(y, 5) is given by

v2(y,4) = S-114[S-(S4)z]z

+ - urn -(fz/S)z _ k2'i18- (U Y, k 2 (18.47)
u - co/k

When v2 > 0 there are sinusoidal solutions and energy
propagates freely, whereas when v2 < 0 there are only
exponential solutions (along the ray) and the waves die
out. There are also, of course, diffraction effects and
tunneling effects if the regions of negative v2 (or, at
least, significantly altered v2) are relatively small. This
form is useful when N is a simple function (e.g., Noez/d)
so that the first term in (18.47) is also simple
[-3/(4d2S)]. The stratification then contributes a rela-
tively large and negative term which increases toward
the bottom, inhibiting penetration into the deep water.
For our S(z) profile (figure 18.7), however, numerical
differentiation proved to be excessively noisy. More-
over, in the oceans, most of the motions of interest
have vertical scales that are significantly influenced by
the boundaries and are larger than the scales of varia-
tion of v2, so that a local (WKB) interpretation of v2

variations is not possible.

We can, however, associate modifications in v2 oc-
curring on large scales with modifications in the struc-
ture of P. Thus in the topographic problem, if the shear
in the vertical is such that

0 1 Au Au
a-- > 0 and - > 0,
az S z az

there will be a decrease in the value of 2, implying
that the wave will become either more barotropic (v2 >
0) or more bottom trapped (v2 < 0). In the example of
Rossby wave radiation from a meandering Gulf Stream,
(18.46) implies that the baroclinic modes (2n > 0) be-
come trapped even more closely than the barotropic
modes.

As a final example, we note that the motions forced
in the ocean by atmospheric disturbances tend to have
large positive co/k and large scales. In the absence of
mean currents, the vertical structure equation, with
T = eilF(z), becomes

(18.48)a a F [ k2 - 12 F = -2Faz a W 

implying that the forced currents are nearly barotropic.
However, the recent work of Frankignoul and Miiller
(1979) suggests a possible mechanism by which signif-
icant baroclinic currents may be produced. Because the
ocean is weakly damped and has resonant modes (v2 =
;2), even very small forcing near these resonances can
cause the energy to build up in these modes. This is
another example of the strong influence of the bound-
aries on the oceanic system.

18.6 Friction in Quasi-Geostrophic Systems

18.6.1 Ekman Layers
Ekman (1902, 1905), acting on a suggestion of Nansen,
was the first to explore the influence of the Coriolis
force on the dynamics of frictional behavior in the
upper wind-stirred layers of the oceans. He considered
both steady and impulsively applied, but horizontally
uniform, winds. In an effort to understand how surface
frictional stresses X influence the upper motion of the
atmosphere and, in particular, how a cyclone "spins
down," Charney and Eliassen (1949) were led to con-
sider horizontally varying winds. They showed that
Ekman dynamics generates a horizontal convergence
of mass in the atmospheric boundary layer proportional
to the vertical component of the vorticity of the geos-
trophic wind in this layer. Thus a cyclone produces a
vertical flow out of the boundary layer which com-
presses the earth's vertical vortex tubes and generates
anticyclonic vorticity. The time constant for frictional
decay in a barotropic fluid was found to be (foE/"2)-',
where E is the Ekman number velfH2, with v, the eddy
coefficient of viscosity and H the depth of the fluid.
Greenspan and Howard (1963) investigated the time-
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dependent motion of a convergent Ekman layer: if the
wind is turned on impulsively, the Ekman layer is set
up in a time of order f;'; the internal flow decays in a
time of order (f0oE"2)-1 ; and the vertical oscillations that
are produced by the impulsive startup decay in a time
of order (f0 E)-. Since f;' is but a few hours, one may
consider that for the large-scale wind and current sys-
tems of the atmosphere and oceans the Ekman pump-
ing is produced instantly and that there is a balance in
the Ekman layer among the frictional pressure and
Coriolis forces. We divide the flow into a quasigeos-
trophic interior component (ug,vg,wJ) with associated
pressure gradients fv, = ap, etc. and a deviation com-
ponent associated with the friction (ue,ve,we) which
vanishes below some small depth h. For a homogene-
ous fluid Pe = 0 because the hydrostatic assumption
ensures that there can be no nontrivial pressure field
which vanishes below z = -h. For a stratified flow a
scaling argument can be made to show that buoyancy
fluctuations in the upper layer will not be important
enough to cause significant pe's (unless N2 > roLph3 )
so that pfve = -(Olz)ri, etc. If we divide by f, and
compute We, from the divergence of the Ekman hori-
zontal velocities, we find

We = -curl(/Ipf)

using il-h) = 0, wel-h) = 0. From the surface condi-
tion we(O) + wg(0) = 0, the Ekman pumping is therefore

w1 (O) WE = .-curl(T(O)lpf), (18.49)

where T(O) is the wind stress at the sea surface. The
same procedure can be used in the lower boundary
layer:

a ( v) -a ( v e,) z =-H.

But now it is necessary to specify ( -H) in terms of the
geostrophic velocities ug,vg; for this a knowledge of ve
is required. If we assume v, to be constant, the pumping
out of the bottom boundary layer is given by

w,(-H) WE

2 [ g u. v+ + 1 (13/f )(u - v.)] -H

where DE = (2 Ve/f)112 and jg = vg, - ug, is the vorticity
of the geostrophic wind. When L << a, the divergence
terms (which are equal to -vg/f) and the last term are
negligible, so that

w( -H) =o nd-H). l18.50)

In the lower boundary layer of the lower boundary layer of the deep ocean, the
water is nearly homogeneous. In this case one may
estimate the bulk viscosity v, by supposing that for
this value the established boundary layer is marginally

stable (cf. Charney, 1969). From the measurements of
Tatro and Mollo-Christensen (1967), the condition for
marginal stability is found to be that the Reynolds
number based on the depth DE, of the Ekman layer
UDE/ve = /U/Vf\v, shall be of order 100. Thus, for ex-
ample, Ve - U2/5000f = 200 cm2 s- , and DE U/50f
20 m for a current of 10 cm s- ' in middle latitudes.

In a stratified atmosphere or ocean, the depth of
influence of the Ekman pumping is not necessarily the
depth of the fluid. If a circulation is forced from above
by Ekman pumping with horizontal scale L, one ex-
pects the depth of influence to be the vertical defor-
mation radius HR foL/N. This depth will be compa-
rable to the ocean depth for L - LR = 50 km. Most
surface forcing will thus excite a barotropic response.
The spin-down of baroclinic mesoscale ocean eddies
will be considered in Section 18.6.3.

18.6.2 Spin-Up of the Ocean

The problem of the spin-up of the entire ocean requires
definition. The wind and thermally driven circulations
are so coupled nonlinearly that it is not possible to
treat the establishment of the wind-driven circulation
independently. The important question, however, is
not how the ocean circulation would be established
from rest if the forcing were impulsively applied, but
rather how the circulation would change if the forcing
changed. The latter question has clear implications for
understanding the role of the oceans in climatic
change. Thus, one is led to consider first the small-
amplitude adjustment of a given steady-state circula-
tion to a change in the wind stress, with the expecta-
tion that nonadiabatic changes will require consider-
ably long times. Even for this linearized problem,
results for the spin-up of the ocean in mid-latitudes
have been obtained (Anderson and Gill, 1975; Ander-
son and Killworth, 1977; Cane and Sarachik, 1976,
1977) only for the simplest cases of a one- or two-layer
model with no preexisting circulation. The solutions
for a suddenly applied wind stress are complicated, but
their qualitative import can be simply stated. When a
steady, east-west wind stress is suddenly applied to a
two-layer ocean, initially at rest, the motion at any
longitude increases uniformly with time until a non-
dispersive Rossby wave starting at the eastern bound-
ary and moving with the maximum westward baro-
clinic group velocity -L22 reaches that longitude.
When this occurs, a steady Sverdrup flow induced by
the wind-stress curl will have been established in the
upper layer everywhere to the east of that longitude.
By the time the Rossby wave reaches the western
boundary, a steady state will have been established
over the entire ocean-except in the vicinity of the
boundary itself, where slow-moving reflected Rossby
waves influence the flow and are presumed to be dis-
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sipated by friction. Thus the spin-up time is essentially
the time required for a signal traveling at the speed
-fILR to cross the ocean from east to west. For width
of 6000 km, we obtain 1.5 x 108 or about 5 years.

We note that fLR increases toward the equator. How-
ever, as one approaches the equator the dynamics of
wave propagation change. Near the equator, Rossby-
gravity and Kelvin waves are generated. These have
maximum group velocities of order V\ (g' is the
reduced gravity and H the depth of the thermocline)

1 m s-1 , giving spin-up times of the order of months
rather than years. Cane (1979a) and Philander and Pa-
canowski (1980a) have shown that an impulsively gen-
erated uniform westward wind produces both equato-
rially trapped Kelvin and Rossby-gravity waves. The
equatorial undercurrent is established at a given lon-
gitude when a Kelvin wave traveling eastward from the
western boundary reaches that longitude. The dynam-
ics of equatorially trapped planetary wave modes have
been investigated by Rosenthal (1965) and Matsuno
(1966) for the atmosphere and by Blandford (1966),
Lighthill (1969), and Cane and Sarachik (1979) for the
oceans. The dynamics of the equatorial undercurrent
has been reviewed by Philander (1973, 1980).

A similar linear analysis for a continuously stratified
ocean initially at rest leads to quite different results.
In this case, a wind stress can produce a steady Sver-
drup transport only in the upper frictional boundary
layer. This is the result of the conservation of density,
which requires wS = 0 or w = 0, and it follows from
the interior geostrophic dynamics that fiv = fw = 0.
The initial application of the wind stress will produce
an infinity of transient internal baroclinic modes
whose sum will approach zero in time everywhere ex-
cept at z = 0. If we consider only the barotropic and
first baroclinic modes, the temporal evolution will be
similar to that of the two-layer ocean, but the effect of
the other modes will be such as to cause all interior
velocities to vanish asymptotically in time.

However, if a perturbation in wind stress is applied
to preexisting flow, Ekman pumping can penetrate into
the interior along isopycnals and wz need not be zero.
Although this calculation has not been made in detail,
it seems plausible that the final perturbation structure
would be similar to the mean flow structure and, there-
fore, that it would be spun up in the time associated
with the cross-ocean propagation of the lowest baro-
clinic modes.

It is also important to note that the definition of the
spin-up time depends to some degree on the property
one is considering. For example, the Sverdrup balance
(see Leetmaa, Niiler and Stommel, 1977, for an empir-
ical discussion) is established on relatively short time
scales. If the ocean is forced by the Ekman pumping,

WE = WO exp[ikx - iot],

it may be seen from the vorticity equation (18.32) that
Sverdrup balance will be attained when Iwokl <<,3. Thus
fluctuations in forcing on the size of the basin with
periods even as short as a few days-the time for the
barotropic wave to cross the basin-will preserve the
Sverdrup balance.

Clearly there are many unanswered questions con-
cerning even the adiabatic response of the ocean to
changes in the forcing. We know still less about the
response time of the entire wind-driven thermohaline
circulation, although we expect the time scales to be
much longer. The heat and salt transfer processes may
take as long as 50 years for transfer down to the main
thermocline and 1000 years for formation of the abyssal
water beneath the main thermocline.

For the atmosphere, too, the nonadiabatic spin-up or
spin-down processes are slower-radiative heat-trans-
fer processes have time constants of the order of
months-than the spin-down time of a few days asso-
ciated with Ekman pumping. Moreover, the calcula-
tions in section 18.6.3 indicate that Ekman spin-down
will tend only to reduce the barotropic component of
the kinetic energy, that is, they reduce the winds by
their surface values. Other processes must be involved
in the decay of the winds aloft.

18.6.3 Spin-Down of Mesoscale Eddies
As a final example of frictional quasigeostrophic dy-
namics, we shall consider the effects of bottom friction
on mesoscale ocean eddies. In the atmosphere, friction
at the ground is an important part of the dynamics of
synoptic scale motions. In the ocean, however, friction
is considered to be less important because the bottom
currents are relatively weak. Nevertheless, it is of in-
terest to know how much of the water column is af-
fected by bottom friction. We do know that the surface
manifestations of mesoscale motions (in particular
Gulf Stream rings) can persist for longer than 2 years
(Cheney and Richardson, 1976). We shall show that
this time scale is consistent with predictions of the
simple baroclinic spin-down time.

Holton (1965) obtained a solution to the spin-down
problem for a uniformly stratified fluid in a cylindrical
container, showing that the effects of Ekman pumping
are confined to a height HR - foL/IN. Walin (1969) com-
pleted and extended Holton's analysis by analyzing in
detail the effects of the side-wall boundaries and gave
a simpler illustration of the spin-down process not in-
volving side boundaries. We shall solve the analogue of
Walin's problem for the variable stratification and ra-
dial symmetry characteristic of Gulf Stream rings.

We wish to solve (18.32)-(18.34) for the streamfunc-
tion (r,z,t), first for / = 0, assuming WE(O) = 0,
WE(-H) = (DE/2)V2q(r, -H,t), and the initial condition
qJ(r,z,O) = tpo(r,z). The nonlinearities vanish because of
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the radial symmetry. Taking a Fourier-Bessel trans-
form of the streamfunction

I(k,z,t) =f rdrJ(rk)ip(r,z,t),

we find

( - k 2) i(kz,t)= =k 2) i(k,z),
T1 S Oz 8" ''' \Oz S Oz 

z,,k, 0,t) = 0,

,,t(k, -H,t) = k2DfoS(l-H)(k, -H,t).

Solving for we obtain

I(k,z,t = ,o(k,z) - io(k, -H)F(z;k)(1 - e-*'k't),

where F(z;k) satisfies

Oia
a- 1 F = k 2F,

Oz S Oz

Fz(O;k) = 0,

F,(-H;k)= 1,

and the inverse spin-down time is given by

.(k) = -k 2DEfOS(-H)12 Fz( -H;k)

= [-k 2 S(-H)HIF,(-H;k)o]aBT

where rBT = fDE/2H is the inverse barotropic spin-
down time. Thus the inverse baroclinic spin-down
time is simply related to sBT by the factor H divided
by the penetration depth.

For large scales, the motion spins down uniformly
throughout the whole column with or - crBT. For small
scales, the spin-down occurs only over a depth HR and
is much more rapid. We expect, therefore, that the
smaller scales will disappear from the deep ocean, per-
haps leaving a thermocline signal behind, while the
larger scales will decay more slowly but also more
completely. In figure 18.12, we show the structures
F(z;k) and inverse spin-down times lr(k) for various
scales 1/k. Absolute decay rates depend upon DE-for
DE = 20 m, the time scale r- = 89 days, so that
everything happens in a few months.

For application to rings we assume ito(r,-H)
-le (- 1 /2)(r2

ll
-

) x 10 cms - 1, which gives maximum cur-
rents of 10 cm s - at a radius 1. We solve for the net
change in azimuthal velocity qr(r,z,t -+ 0o) - l0or, z) and
contour this change in figure 18.13. It is seen that the
changes in the thermocline and shallow water are neg-
ligible so that the persistence of oceanic thermocline
eddies is quite consistent with theoretical expecta-
tions.

When the beta effect is included, important differ-
ences occur in the spin-down of linear eddies. The
simplest case to analyze is for weak friction. Then

F (z)

Or%T

10 100 00

I/k (km)

Figure 8.I 2 Decay in currents F as a function of depth for
different radial scales k-. Actual change is given by -F(z) x
bottom currents. Lower figure shows ratio of decay rate to
spin-down rate for a homogeneous fluid as a function of the
radial scale.

r (km)
100

100

200

(km)
200

Figure 8.I3 Decrease in azimuthal velocity due to bottom
friction when initial bottom currents are 10cms- 'r/) x
exp[-(r2/112) + ].
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there are two time scales-the period and the spin-
down time. The Fourier-Bessel component with wave-
number k and (initially) vertical normal mode Fn(z)
behaves like

(,.k,t) = ,,(k,O)FA(Z)[o (k/(x + Pt + Y2)

x exp[-crBTF(-H)k 2t/(k2 + X2)].

This follows from the fact that when the solution of
(18.33) is expanded in powers of period/spin-down time,
the lowest order component is just a steadily propa-
gating Bessel-function eddy. The next-order component
has an inhomogeneous boundary condition due to fric-
tion and an inhomogeneous forcing of the equations of
motion due to the slow time dependence. Multiplying
this first-order equation of motion by F,(z) and depth
averaging shows that the slow time dependence satis-
fies a simple exponential decay law (see also Flierl,
1978).

One important feature of this solution is the fact
that baroclinic modes decay more slowly than baro-
tropic modes both because of the increase in X and
because of the appearance of the factor F2( -H). Thus
a first-mode deformation-scale eddy with F,(-H) =
-0.6 and k = X has a decay rate of 0.2 RBT. But the
important feature is that the p-plane eddy, unlike the
f-plane eddy, decays completely. The p-effect permits
transmission of energy downward, where it can be dis-
sipated by friction. It appears that nonlinearity can
impede this process because it slows down the disper-
sion of a ring (McWilliams and Flierl, 1979).

18.7 Nonlinear Motions

In this section, we shall consider mesoscale flows for
which the advection of relative vorticity or density
anomaly is important. This can occur either in the
form of wave-wave interactions or wave-mean flow
interactions. In both cases we are considering motions
in which there are significant nonlinear interactions
among various scales. This situation is to be contrasted
with that in section 18.5.3, in which the mean flow
provided a variable environment for the waves but was
passive in the sense that there was no exchange of
energy between the waves and the mean flow.

18.7.1 Baroclinic and Barotropic Instabilities
The problem of the instability of large-scale atmos-
pheric motions has a long history, going back as always
to Helmholtz (1888). The discoveries of the polar front
and the polar-front wave by J. Bjerknes (1919) and J.
Bjerknes and H. Solberg (1921, 1922) initiated several
investigations of the instability of a polar-front model,
notably by H. Solberg (1928) and by N. Kotschin (1932).

These studies were incomplete: Solberg's avoided con-
sidering the effects of the frontal intersection with
ground; Kotschin's considered various possible pertur-
bation modes but not that of the all important baro-
clinic instability. E. Eliasen (1960) conducted a numer-
ical study of a problem similar to Kotschin's, but with
a vertical wall. However, the detailed exploration of
Kotschin's model, a front between two fluids of differ-
ent uniform densities and zonal velocities intersecting
upper and lower horizontal boundaries, was left to Or-
lanski (1968), who considered all the four different in-
stability modes-Helmholtz instability of vertical
shear coupled with gravitational stability, Rayleigh
instability of horizontal shear, baroclinic instability,
and mixed baroclinic-barotropic-Helmholtz instabil-
ity. Attempts to explain the long atmospheric waves
observed in the troposphere were initiated by the work
of J. Bjerknes (1937) to which we have already referred.
Mathematical theories for the instability of a baroclinic
zonal current with uniform horizontal temperature
gradients were presented by Chamey (1947), Eady
(1949), Fj0rtoft (1950), Kuo (1951), Green (1960), Burger
(1962), Stone (1966, 1970) and many others-the prob-
lem is still being investigated. The stability of a hori-
zontally shearing zonal current in two-dimensional
spherical flow was studied by Kuo (1949). The stability
of flows with both vertical and horizontal shear was
investigated by Stone (1969), McIntyre (1970), Sim-
mons (1974), Gent (1974, 1975) and Killworth (1980).
The last named is the most comprehensive. Integral
conditions for instability in more or less arbitrary zonal
flows were developed by analogy with Rayleigh's con-
dition for two-dimensional parallel flows by Kuo
(1951), Charney and Stem (1962), Pedlosky (1964a,
1964b), Bretherton (1966a, 1966b), and others.

On the oceanic side, the onset of meandering of the
western boundary currents has been dealt with by Or-
lanski (1969) and Orlanski and Cox (1973). They con-
clude that the meandering of the Gulf Stream between
Miami and Cape Hatteras can be attributed to baro-
clinic instability, a result which seems to be in agree-
ment with observations of Webster (1961a). The baro-
clinic instability of the free Gulf Stream extension
implies a northward heat transport by the meanders
and cutoff vortices. Evidence for such transports is not
conclusive. The discovery of the mid-ocean mesoscale
eddies initiated attempts by Gill, Green, and Simmons
(1974) and Robinson and McWilliams (1974) to ascer-
tain whether these eddies could be ascribed to baro-
clinic instabilities of the mid-ocean mean flows. The
results have not been encouraging. Studies of the be-
havior of numerical ocean models also do not support
this idea (Harrison and Robinson, 1978). If one merely
converts available potential energy to kinetic energy
while preserving the total energy density per unit area,
the perturbation kinetic energies cannot exceed those

529
Oceanic Analogues of Atmospheric Motions

. . . A,



of the mean flow, and are therefore too small by an
order of magnitude. Only ad hoc energy-convergence
mechanisms give the right magnitudes.

Most of the studies referred to above have dealt with
the instability of a zonal current with horizontal and/or
vertical shear. Realistically, we must also be concerned
with the instability of nonzonal and time-dependent
flows, including oceanic gyres, forced and free Rossby
waves and waves over topography. Thus we need to
consider more general basic states.

We begin with the quasi-geostrophic potential vor-
ticity equations (18.33)-(18.35). We attempt to find a
basic solution i'(x,y,z,t) and investigate the growth of
small perturbations i'(x,y,z,t) around this basic state.
The most straightforward basic state is a steadily trans-
lating (possibly at zero speed) unforced, nondissipative
flow field

(v2 +212)
dt V2 + d 1 d = 0,

+ (v -i)V(V2 z S -i, ' = 

aiTz l

at + (V - i)V ( - ) ,' = o,

(18.53a)

(18.53b)

z = 0, -H.

If we examine the normal modes '(x,y,z,t) =
t'(x',y,z)e0t, we have the eigenvalue equation for the
growth rate

(V + d I
az S 

+ = (x',y,z), x' = x - t,

which satisfies the equations

V2 + + = P(JI + jy, z)az S az

= -(V - i).V( V z S dz P- 

with boundary conditions
(18.51)

and the boundary conditions

kzL(x',y,0) = T( + y),

qi(x',y, -H) + foS(-H)b(x' + t,y)

= T(I + Cy). (18.52)

Clearly such a solution is possible only if cb, = 0, that
is, if the basic flow is independent of time or if the
zonal variation in topography vanishes-waves cannot
translate over varying topography without changing
amplitude or shape. The basic flow is stationary in the
x', y, z system and in this system the pseudopotential
vorticity is constant along streamlines.

The derivation of (18.51) and (18.52) may indicate
that the restrictions upon the mean flow are quite
severe-no forcing or dissipation. However, our sub-
sequent derivations will require only (18.51) and (18.52)
and these can hold in much more general conditions.
For example, the standard meteorological problem con-
siders the instability of zonal flows forced by heating
and perhaps Reynolds stresses and dissipated by radia-
tion and surface Ekman pumping. Since both the mean
flow and the potential vorticity are functions only of
y, we can still define potential vorticity and surface
functionals from (18.51)-(18.52). As long as the forcing
and dissipative processes are not significant in the per-
turbation dynamics, the formalism below will apply.
(We warn, however, that when there is topography or
lateral boundaries, the stability problem for forced and
dissipated flow may be quite different.)

The perturbation streamfunction qp' = '(x',y,z,t) sat-
isfies

(18.54b)

z = -H.

These equations for the perturbation streamfunction
qi' and the growth rate o- will form the basis for dis-
cussion of zonal flow instability and wave instabilities
below.

Integral Theorems The classic example of an integral
theorem is, of course, the Rayleigh theorem (1880).
However, there is a slightly more general theorem, due
originally to Arnol'd (1965) and applied to quasi-geo-
strophic flow by Blumen (1968), which we shall extend
here to the problem of traveling disturbances and/or
stationary motion over topography. This theorem
states that the flow is stable if the potential vorticity
and buoyancy along the bottom surface increase, and
the buoyancy along the top surface decreases, with in-
creasing streamfunction, that is, P' _ 0, T - 0, T -

0 everywhere. To prove this, let us assume that P' > 0,
T. < 0, and T > 0 everywhere. (The cases for P' = 0
or T = 0 or T = 0 everywhere are readily proved.)
First, we form an energy equation by multiplying
(18.54a) by -'*, volume integrating, adding the con-
jugate equation, integrating by parts, and applying the
boundary conditions. We obtain

(o- + C-*) fff Vq.)2 + lq/Iz2

= fff q'J(J + y, '*) + c.c. + ff q;( + y, 0,'*)
+ c.c. 1I.
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Next, we form a normalized enstrophy equation by
multiplying (18.54a) by q'*/P' (recalling that P' # 0)
and volume integrating to get

(( + *) fff qp,

= - [ fff q '*J( + ey, qJ') + c.c.]. 18.56)

Applying a similar procedure to the upper and lower
boundary conditions, adding the result to (18.55) and
(18.56), gives

(f + ot*) fff I Vq/'I2+ 2+ q'2

V2q, + 3y = P(i + jy).

The substitutions

= toe-vYei(kx-ot)

and

c = o/k

show that P(Z) = BfZ/c. Therefore, when the forcing
propagates eastward, the trapped wave is stable. Unlike
ordinary propagating Rossby waves, for which < 0,
and which Lorenz (1972) has shown to be unstable,
forced waves may be stable. We shall consider topo-
graphically forced waves in detail in section 18.7.3.

H 1 2
+ 

8T'S(O)IO + HT;S(-H)l;'(- I = 0. (18.57)

For the choice P' > 0, T < 0, and T > 0 the integrand
is positive definite, implying that Re(o-) = 0, that is,
that the flow is stable. When P', T, or T are every-
where zero, the enstrophy or surface-temperature var-
iance equations simply show that q'l or liz4l at 0 or
-H = 0, so that the term contributing to (18.55) can
be ignored and therefore will also not enter in (18.57).

This completes the proof of the theorem. From the
relation between the potential vorticity and the
streamfunction (in the moving coordinate system) and
the relation between the surface buoyancies and the
streamfunctions at the top and bottom surfaces, we
can tell whether the flow is stable or potentially un-
stable. In some problems (cf. Howard, 1964b; Rosen-
bluth and Simon, 1964) the necessary criterion for sta-
bility has been shown to be sufficient. We should also
mention that the normal-mode assumption is not es-
sential, so that the theorem applies to an arbitrary
initial disturbance (Blumen, 1968).

In illustration, we note that the theorem implies that
the Fofonoff (1954) inertial gyre solution,

P() = a, Ts(t) = Tb*() = O, C = 0,

where a is a positive constant, is stable, as first pointed
out by McWilliams (1977). We could find many other
stable gyres by numerical means, including topograph-
ical effects, by solving (18.51), (18.52) with arbitrary
functionals P and Tb constrained only to satisfy the
proper derivative conditions. The simplest would be to
take

P(,z) = a(z)+ + b(z),

with a(z) > 0 and similar linear functionals for the
boundary conditions.

A second example is the flow forced by Gulf Stream
meandering described in section 18.5.3. In this case,
the potential vorticity equation for the forced wave
(the basic state) is

Zonal Flows We now specialize to zonal flows =
-fuf(y',z)dy', b = 0. For these, we can readily find P'
and Ts,b by taking y derivatives of (18.51) and (18.52):

P' = U( -u a - ),

TS = -ufz/lc - u)lz=,S

Tb = (foSby - uz)/l( - )lz=-H,

where c now is completely arbitrary (i.e., the pertur-
bation wave speed will be simply doppler shifted by c).
In particular, we can choose so that - has a
definite sign. Therefore we see that the flow will be
stable if all the three quantities

0 a 1 u

v -~ Oaz S z '

uJ(O),

foS(-H)b, - z,(-H)

have the same sign. Thus we recover the generalized
Rayleigh theorem for quasigeostrophic flows: the flow
is stable if

Q- = , - _ + U8(z)Q~ , uz S Oz

+ (f.b- z) 8(z + H) (18.58)

is uniform in sign ( is the Dirac delta function). More
conventional proofs of this theorem also can be found
in Charney and Stern (1962), Pedlosky (1964a), and
Bretherton (1966b).

A second standard theorem in shear flow instability
theory due to Fj0rtoft (1950) can also be generalized to
the quasi-geostrophic flow problem. If we suppose that
Q, vanishes along some curve in the (y, z) plane and
furthermore that u = uc = constant on this curve, the
flow will be stable if Q,( - ru) is negative everywhere.
This can be demonstrated by choosing c = uf,. Clearly
the requirement that u = uc at all points where
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- - az S az U = 0at s O a q' + J(I,q') + J(I',4) = 0,
at

is highly restrictive (though it does occur for uf, = 0 or
u, = 0 or u,,, + (010z)(llS)(lOOz)a = Ku).

As a practical application, we remark that the Ray-
leigh theorem (18.58) implies that the Eady (1949) prob-
lem (S = constant, uz = constant, = 0, uf, = 0) can
be stabilized by a sloping topography such that b, >
UfffoSl_H. This slope is steeper than the isopycnal slope,
so that the density gradient at the bottom becomes
opposite in sign to the gradient at the surface.

A second application is to demonstrate the stabiliz-
ing effort of (f, especially for eastward flows. We con-
sider zonal currents with a barotropic plus a sheared
flow with the structure of the flat-bottom first-baro-
clinic mode

U(y,z) = UiBT + UBCF1(Z)

with UBT and UBC constants. (Many currents in the
ocean do seem to have dominantly first-mode shears.)
The Rayleigh criterion becomes

Q = B + F,(z) > 0
LR

for all z. This can occur only if

R_= ( Au A r
IFI(O) < UBC F,10) + F(-H)I< F1 -H)I

where Au is the change in velocity from bottom to top.
Using our N2 profile this implies

-4 cms - < Au < 22 cms - .

We see that eastward currents are considerably more
stable than westward flows. Gill, Green and Simmons
(1974) report on calculations which show weak growth
rates for Afu - -5 cm s-. Observations of actual AU's
are not readily available because the midocean density-
field measurements are generally contaminated with
eddies. However, it is not unlikely that mid-ocean
mean currents away from the "recirculation region" of
Worthington (1976) (see also chapters 1 and 3) are
smaller than this magnitude, so that mid-ocean flows
may very possibly be stable (see also McWilliams,
1975).

This result must be viewed with caution, because it
is possible for forced meridional currents to be locally
unstable for any value of the shear. We can see this by
considering the stability of a mean flow

q, = V(z)x - U(z)y,

where we ignore the dynamics of the mechanism that
supports the V component of flow on the grounds that
its space and time scales are much larger than those of
the perturbations we wish to consider. The perturba-
tions satisfy

where

U(dZ S av-)X( -a S )y

is now not expressible as P(,z). However, we may
consider perturbations of the form

q' = F(z) exp[ik(x - ct) + ily]

to find

[(U -c) + 1 (k -k212)F

[ az S 0 ( , )]

Applying the usual Rayleigh theorem shows that the
flow will be stable unless - (/1z)(l/S)(OlOz)[ +
(l/k)v] changes sign. If V 0, however, a proper choice
of I and k (the direction of the perturbation wave) may
always be made to ensure satisfying the necessary cri-
terion for instability. Thus arguments about the zonal
flow stability may not directly apply to the Sverdrup
circulation.

The discussion of baroclinic instability has been ex-
tended to finite amplitudes by Lorenz (1962, 1963a)
using truncated spectral expansions and by Pedlosky
(1970, 1971, 1972, 1976, 1979b), Drazin (1970, 1972),
and others using expansion techniques in the vicinity
of critical values of the stability parameters. Thus far,
the systems dealt with have been more applicable to
laboratory models than the actual atmosphere or ocean.
A general review has been given by Hart (1979a), who
himself has contributed by experiment and analysis to
the subject.

18.7.2 Wave-Mean Flow Interactions
The subject of wave-mean flow interaction in the at-
mosphere has been treated extensively in connection
with the manner in which large-scale waves generated
in the troposphere propagate vertically into the strat-
osphere and there interact with the mean flow. One
example is the so-called sudden-warming phenome-
non, the rapid breakdown of the stratospheric winter
circumpolar cyclone accompanied by large-scale warm-
ing. Another example is the so-called quasi-biennial
oscillation, which has been explained as a wave-mean
flow interaction between vertically propagating
Rossby-gravity and Kelvin waves and the zonal flow in
the equatorial stratosphere (Lindzen and Holton, 1968;
Holton and Lindzen, 1972). A vivid experimental and
theoretical demonstration of this type of interaction
has been given by Plumb and McEwan (1978).
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Charney and Drazin (1961) have shown that small-
amplitude steady waves in quasi-geostrophic, adi-
abatic, inviscid flow cannot interact to second order
with the zonal flow. If there are no critical surfaces at
which the zonal flow vanishes and there is no dissi-
pation, forcing, or transience, no interaction will take
place. All are present in the quasi-biennial oscillation
and in Plumb and McEwan's model. The result of Char-
ney and Drazin was originally derived by straightfor-
ward calculation. It may also be inferred from an in-
dependent study of energy transfer in stationary waves
by Eliassen and Palm (1960), who derive linear relations
between the horizontal Reynolds stress, the horizontal
eddy heat flux, and the components of the wave energy
flux. These works have been greatly extended by An-
drews and McIntyre (1976), Boyd (1976), and Andrews
and McIntyre (1978a,b). McIntyre (1980) reviews the
subject.

There have been several suggestions of oceanic anal-
ogies: Pedlosky (1965b) and N. Phillips (1966b) have
argued that westward-propagating Rossby waves can
cause acceleration of the western boundary currents.
Lighthill (1969) attempted to explain the onset of the
Somali Current as due to the interaction of Rossby-
gravity waves generated by the monsoon winds in the
mid-Indian Ocean with the flow in the vicinity of the
East African continent. More recently, experiments of
Whitehead (1975) have shown quite clearly that mean
flows may be generated by radiated Rossby waves. His
work led Rhines (1977) to a theoretical reconsideration
of the wave-mean flow generation problem not only
when the geostrophic contours (the f/H lines which
represent the streamlines for free inertial motions) are
closed or periodic but also when the contours are open.
Rhines's work is important for understanding large-
scale forced motions in oceanic basins.

As an illustration of wave-mean flow interaction in
an oceanographic context we shall ask again whether
the waves produced by Gulf Stream meandering may
be responsible for generating and maintaining the so-
called recirculation flow found by Worthington (1976)
and others. This flow occurs in a region extending some
1000 km south of the stream and contains (according
to Worthington) a sizable westward transport (108
m3 s-'). This problem has been addressed by Rhines
(1977), who, however, did not consider generation due
to eastward-moving waves.

We consider the barotropic flow south of the Gulf
Stream forced by the streamfunction qi(x, 0,t) = A cos
(kx - cot), as in section 18.5.3, but we now include the
effects of bottom Ekman friction and the second-order
interaction with the mean zonal flow. The stream-
function satisfies

p(x,O,t) = A cos(kx - cot),

-- O, y -c.

The linear solution (assuming Ak3/f3 small) will be

q = Re{A exp[i(kx - cot) + vy]},

V = V'k 2 + f3co1(/o2 + o2BT)- iikoBT/(co 2 + r2T),

if the root with positive real part is chosen to satisfy
the radiation condition. The nonlinearly forced stream-
function field satisfies

w(t + (aBT) + i a(ia = -2A2v2rvike2Vrf

where v, and vi are the real and imaginary parts of v,
respectively. Its solution is

(1) = - A22v k e2V
2(TBT

or

A2 Vrk 2v,y
= A2vreik

O'BT

This is, of course, just the solution to

(TBTU = Y- (IV 7
)

with u' and v' taken from the lowest-order solution.
The mean flow is determined by a balance between

friction and Reynolds-stress forcing. The importance of
dissipation becomes clear: without friction, v is either
purely real or purely imaginary and iu = 0. With fric-
tion, we find that the waves transfer momentum into
the mean flow. Moreover, we can show that the mag-
nitude of the flow is not sensitive to the spin-down
time /(rBT, as this time becomes very large.

As OrBT becomes small we find

k2 +i - ioBTk/2o2 k2+ k > o0

o/k < - [3/k2

-i -k2 + BTk/2k2 k

- P/k2 < /k < 0.

The forced mean flow is therefore

= A 2 k2

2c 2

( k-t + GBT) V2P + o(+p = -I(O'V21p)

exp 2 k2+fk , >0,
W k

o/k < /k2

exp (JfOBTkY/oJ2 - k - ,

- /k2 < o/k < ,
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with amplitude independent of (BT. We can estimate
the westward current speeds by relating the amplitude
A to the excursions of the stream in the y direction:

k
d = -A cos(kx - wot) do cos(kx - ot).

The maximum westward currents are -3d2. Rhines
(1977) has derived from more general considerations
the result that mean-flow generation is proportional to
/, times the square of the displacement. For typical
excursions of 100-200 km, mean flows of 10-40 cm s-'
can be generated. [We should note that, for this prob-
lem, the eastward Stokes drift is given by

A2k (k2 + ) exp(2 k2 + py) ,
0- i c+ o

which is larger than the westward Eulerian flow so that
the particle drift is eastward.]

Observations of Gulf Stream meanders usually in-
dicate eastward-moving disturbances; therefore much
of the mean flow will be trapped in a distance one-half
that shown in figure 18.12. The disturbances that gen-
erate propagating waves (-,l3k 2 < o/k < 0) can produce
mean flows over large north-south distances, but there
does not seem to be enough amplitude in such disturb-
ances. (See, however, the remarks in section 18.8)

This very simple calculation indicates that eddy ra-
diation from the meandering Gulf Stream can generate
a return flow with speeds comparable to those sug-
gested by observations (cf. Worthington, 1976;
Wunsch, 1978a; Schmitz, 1977; see also chapter 4). The
predicted north-south scale of the region is quite small,
however, unless there is considerably more energy in
westward-going meanders than has been suggested by
Hansen (1970) or by Robinson, Luyten, and Fuglister
(1974).

There is another form of wave-mean flow interac-
tion involving overreflection of waves traveling
through a variable mean-flow field. Lindzen and Tung
(1978) recently have demonstrated that barotropic and
baroclinic instabilities may be explained as overreflec-
tion phenomena in which Rossby waves impinging
upon a critical surface are reflected with a coefficient
of reflection greater than unity. The combination of an
overreflecting region in the mean flow with a reflecting
boundary can lead to a growing disturbance in which
the wave picks up energy at each passage into the
overreflecting region.

This concept may be directly applicable to the prob-
lem of reflection of Rossby waves from the western
boundary currents.6 Numerous examples of Gulf
Stream rings interacting with the Gulf Stream without
being absorbed can be found in the data presented by
Lai and Richardson (1977), and at times they appear to
increase in energy as a result of the interaction (Rich-
ardson, Cheney, and Mantini, 1977). We suggest the

possibility that overreflection may be involved in the
dynamics of mesoscale eddies near the western bound-
ary current. Whether or not this is so remains to be
seen.

18.7.3 Wave Instability and Form-Drag Instability
The fact that Rossby waves may be unstable was first
shown by Lorenz (1972) for a barotropic atmosphere. In
a more detailed exploration of the problem Gill (1974)
observed that there are two distinct mechanisms for
the instability: a resonant triad interaction or a shear
instability of the Rayleigh type. Duffy's (1978) and
Kim's (1978) baroclinic studies showed that baroclin-
icity may also cause instability in large-scale waves.
As in the instability of zonal flow, the growing baro-
clinic modes have the scale of the radius of deforma-
tion. Jones (1978) and Fu and Flierl (1980) have explored
these ideas further as they apply to the ocean.

Wave and Form-Drag Instabilities Just as a freely prop-
agating wave provides variations of potential vorticity
which may lead to instability, topography may produce
a forced flow whose variations of potential vorticity
may also cause instability. Topography may be a de-
stabilizing influence, either because the forced flow is
unstable, just as a free wave, to Rayleigh or resonant
instabilities, or else because the topography itself may
help-via the form drag produced by the perturbation-
to extract energy from the mean flow. The latter type
of instability was first encountered by Charney and
DeVore (1979) in their study of blocking (the persist-
ence of anomalously high pressure in certain regions
of the atmosphere) in a barotropic atmosphere. In their
model, blocking occurs as an alternative flow equilib-
rium corresponding to a given forcing of the zonal flow
in the presence of sinusoidal topography. It was found
that the transition from the normal flow state to the
anomalous blocking state takes place via a form-drag
instability of an intermediate equilibrium state in
which the zonal flow is superresonant. In this super-
resonant state, a small decrease of the zonal flow am-
plifies the forced orographic wave and increases the
form drag (mountain torque), which in turn decelerates
the zonal flow still further. Charney and Straus (1980)
extended this study to a two-layer baroclinic atmos-
phere. Here again there is a form-drag instabilit. But
when there is no lower layer flow, the instability is
catalyzed by the form drag: the perturbation derives
its energy from the available potential energy of the
Hadley circulation generated by thermal forcing; the
form drag merely establishes the necessary phase re-
lationships.

The connections between this form-drag instability
and the more familiar resonant or Rayleigh instabilities
have not been previously explored. For this purpose,
consider the simplest wavelike flow of a homogeneous
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ocean and derive the instability conditions for both a
free zonally propagating wave and a topographically
forced Rossby wave in order to elucidate the similari-
ties and differences among the respective instability
mechanisms. We begin by stating the forms of the
potential vorticity functionals P( + y) and the re-
sulting perturbation equations. For the Rossby wave,
c = -/k 2 , the potential vorticity functional in equa-
tion (18.51) is

P(Z,z) = (lc/)Z = - k2Z

with streamfunction

= A sinkx.

The perturbation equation (18.53a) is particularly sim-
ple because P' is now a constant:

(rV2q' + (- y + A sinkx, (V2+ k2)0') = 0, (18.59)

where A is completely arbitrary.
For barotropic flow over topography of the form

b = b0 sinkx on the -plane, the basic state potential
vorticity equation

V2j +y + fy bo sinkx = P(i)

has the solution

= -7y + A sinkx, A = ffk2 -B

with the linear potential vorticity functional

P(Z) = - Z - k2Z

Here ku is the wavenumber of the stationary wave (kU
may be less than zero). The perturbation equation

yV2"t' + J [- y + A sinkx,s V + ku)J']

=0 (18.60)

is very similar in form to (18.59) except that k and ku
are now independent; however, the amplitude A for
the topographical problem is determined by

fobo/H
k 2 - k

Obviously we need only to solve (18.60) and find
cr(13,A,k,ku); we can then identify both the free (ku = k)
and forced (ku I k) regimes. In actuality the task is
even simpler since dimensional considerations show
that there are only two parameters, M = Ak3/1, and
Ix = k,uk, that must be varied while computing the
nondimensional growth rate o(lAk2.

First, however, we demonstrate that only the k2 >
0 case need be considered, since the flow is stable for
k2 < 0. This follows readily from (18.57):

(r + cr*) ff IVIi' 2 -+ IV2qtl2 = 0,

which implies that Rossby waves k2 = k2
> 0 and

waves forced by eastward flow may be unstable, while
waves forced by westward flow k 2 < 0 are definitely
stable. Again, as in section 18.7.1 we see that stable
waves are generated when the relative motion of the
forced wave with respect to the ambient flow is east-
ward. In addition, for eastward flow over topography or
westward-propagating free Rossby waves, a necessary
condition for instability is that the perturbation have
components with scales larger than k-I and compo-
nents with scales smaller than k- 1. This follows from
Fourier analyzing ¢' and substituting in (18.57) to get

ffds Is121i'(s)l
2 1 - _2 0,

which implies that 1t'(s)l must be nonzero both for
some values of Isl2 larger than k and some values
smaller than k.7 This is the perturbation form of Fj0r-
toft's (1953) result on energy cascades.

We could readily solve the stability problem (18.60)
using the mathematical techniques of Lorenz (1972),
Gill (1974), Coaker (1977), or Mied (1978) to investigate
growth rates. Alternatively we could discuss the lim-
iting behavior-the Rayleigh limit for M = Ak3/f3 >>
1, the resonant interaction limit for M << 1, and the
form-drag instability-by separate approximations. We
shall do this for the last-named problem because it
represents a relatively unfamiliar phenomenon. How-
ever, to ascertain most clearly the connections between
the various types of behavior, it is most simple to
employ the Fourier expansion

qY = eilo [A0eikox + A-_ei(ko-k)r + Alei(ko+k)
x + . .. ]

and truncate to the three indicated terms (cf. Gill,
1974). The resulting dispersion relation becomes just

(coK2 + B_)(wK + Bo)(coK2 + B 1)

2A2k 2

- 4 (kU - Ko)[(ku - K2 l)(oK1 + B,)4 \Ilu

+ (k2 - K2)(cK2_l + B 1)] (18.61)

using the notation o = io, K 2 = (k0 + nk) 2 + 12, B, =

,(ko + nk)(k2 - K2,)/k2. For Rossby waves we simply
replace ku by k.

We have sketched the dependence of -r = a/Ak 2 upon
ko and 1o for various M and tx values in figure 18.14.
When M >> 1, there is a broad area of (ko,lo) space in
which the growth rates are real. The maximum occurs
for ko = 0 (this is really a form of Squire's theorem) and
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NORMALIZED GROWTH RATE V/2 + &4)1/2,

au= 0.6

7- '/

p = I.

I,,/

M = O M= I

Figure I8.I4 Growth rate divided by Ak 2 as a function of k0,
Io for various ratios of the stationary wavenumber to the top-
ographic wavenumber t and wave steepnesses M. The solid
lines are the zero contour. The dashed contours, separated by
the interval 0.1, correspond to positive growth rates.

the instability equation is similar to the barotropic
instability equation. As M decreases the instability (&
real) becomes restricted more and more to a band
around the frequency resonance line (see below). When
tu decreases from 1 to a quantity smaller than 1 ( >
l3/k2), the point of maximum growth rate for M = 

moves to smaller wavenumbers lo. For finite M, the
same thing occurs-the largest growth rate moves to-
wards k = 0 = 0 as It decreases. On the other hand,
when Ix increases from 1 the forced wave becomes
stable for small k0 and 1, even for small M, and the
wavenumber for maximum growth migrates to smaller
scales.

We are thus led to consider the three limits for
(18.61):

Strong waves (A or M large): When A is large, the
frequency co is order A and we can neglect all of the
B's to find

AVkl -(k2 - K)[Kl(ku - K2_,) + K2 (k2 - K1)]
2 2V KK2 22

Clearly the flow will be unstable for K2 < k < K, K2_1;
this will always be possible by proper choice of 10 and
ko. This is just the Rayleigh instability of the shear
flow corresponding to the wave field. The maximum
growth rate occurs at k0 = 0:

[(-1 +
1 = j

0,

(18.62)<_ 1)1/2

/ < J 2 ) 
However, in the topographic case, A can be large not
only for very strong topography (fobok/H >> ), but also
because the zonal flow is nearly critical. In the latter
case u = 1, so that the free and forced wave instabilities
are indistinguishable. If the flow is not critical, but
rather is forced by strong topography, the formula
shows the maximum growth rate occurs at k0 - 0,
10 -- 0.

Weak waves (A very small or M small): Here the
critical condition is that two of the roots of the left-
hand side of (18.61)-for example, -Bo/IK and -B,IK2--
coalesce. This resonance condition

Bo/K2 = B,IK2

or

ko(k2 - Ko) (ko + k)(ku - K)
k2 K2k 2 K 2kuKo kuK1

permits the order A part of the frequency to be complex
since

K2K2(o + B1o/K)2 Ak 2 (k2 - K)(k2 - K2)4 

has a complex root for K2 < k 2 < K2. The growth rate
is

All 0okl 1(k2 - K2)(K2 - k2)

2 V KoK,

However, the resonance condition must also hold. We
can relate this to the more familiar wave-resonance
conditions by defining the intrinsic frequencies of the
two components of the perturbation and also that of
the mean flow by

o = - f3kIKo,

= -fi(k + k)/K,

= -k/k = -k/k = -k.

The resonance conditions

(k + k, lo) = (ko,lo) + (k,0),

= &jo + 0

both hold. We show the resonance curves and growth
rates for various values of k,lk in figure 18.15.

For large Ix (small mean flow speed), the resonant
interaction (except for large lI) is really a triplet inter-
action between the two perturbation waves and the
topography itself (rather than the forced wave). This is,
of course, a stable situation. As Ix becomes less than
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Figure i8.rS Curves above x axis show relation between k0
and lo required by resonance condition. Curves below axis are
plots of -&, showing the dependence of the growth rate upon
k 0.

about 0.9, however, the maximum growth rate again
occurs as ko - 0 and lo -- 0 [o - ( 2ko/I - IL2)112].

Form-drag instability: Thus in either case we are led
to consider what will be shown to be a form-drag in-
stability-the nonzero growth rates occurring at small
k 0 and lo-when IL < 0.79. There is some difficulty here
since the origin is a singularity for M finite; this prob-
lem would be eliminated in a bounded geometry. For
convenience, we will take the limits ko -. 0 first and
then 10 -- 0 since this case has a simple physical inter-
pretation. Applying these limits to (18.61) gives the
frequency:

(a2 = [ k - k ] + A2k (k2 - k
2). (18.63)

The flow is unstable when the right-hand side is neg-
ative, which cannot occur for Rossby waves k = k,
but may occur for topographic waves when ku < k or
U is greater than the critical speed /3/k2. In fact, the
range is

3/k2 <U <pk ( [� (f boH ) 2] 3)

(The resonant triad instability for /A < 1 does not appear
here; rather, the limit k - 0- and lo - (-ko)1 2 > 0+

must be used.) So far we have looked at the mathe-
matics; let us now discuss the physics of this instabil-
ity and also show that the truncation to three terms is
valid.

The form-drag instability involves one component
Ao which has very large x and y scales and two com-
ponents with the same scale as the topography. Ex-
amination of the individual amplitudes shows that

A o - 1/10o, so that Aoeo contributes a term in the
perturbation streamfunction which is proportional to
y-a modification of the zonal mean flow. This sug-
gests an alternative approach, which is to consider the
zonal x-averaged momentum equation and the equa-
tion for the deviations. We begin with the quasi-geos-
trophic equations for a homogeneous fluid,

for = pU ,

fou = -Pr

Ut + (uu)b + (uv)1 - 3yv - fov') =- '

vt + (uv), + ( + yu + fou'l = -P

1
ui + v~" -- [(ub)2 + (vb)] = 0,H

and consider the zonally averaged equations

(v) = 0,

(u), + (uv). = fo(V())

(V =H (vb),.

If the topography vanishes at some y far from the region
of interest [following the arguments suggested by Hart
(1979b), who showed that the Charney-DeVore trun-
cated spectral problem was identical to that of forced
flow over topography varying slowly with y], we can
integrate the last equation to find

fo
(U>)t + (V),, = (vb).

The vorticity equation can be used to find the x-de-
pendent part of the flow. In particular, if we assume
the y scale is very large, we can drop all y derivatives
to get two coupled equations:

(U = Hf (vb),

fv., + (,,)V + B =-- (u)b-.

For the topography b = bsinkx, we have a steady
solution

(u = ,

v = Ak coskx.

The deviations from this state satisfy

(u)t =2 Hb (v , sinkx),

+ V' +,8v' = k Ak - f (u)' coskx

= k fb 3_ (u)' coskx,
H ffk2 -
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which may be solved explicitly to give the dispersion
relation (18.63). Here too one sees that it is the coupling
between the change in the zonal flow induced by the
wave drag and the change in the waves due to changes
in zonal flow which leads to the instability. If we de-
crease the mean flow for a supercritical case (i.e., if we
take (u)' to be negative), we produce low vorticity on
the upwind slopes of the topography and high vorticity
on the lee slopes. Associated with this vorticity change
is high pressure on the upslope side of the mountains
and low pressure on the downslope. This pressure
pushes eastward on the topography so that the topog-
raphy pushes westward on the fluid and decelerates the
mean flow still further.

Flow in the Presence of Topography The previous sec-
tion has described the influence of wavy topography
upon the stability of the flows that go over it. However,
there also exists topography that does not alter the
mean-flow structure, either because the mean current
is parallel to the topographic contours or because the
currents occur only at levels above the peaks of the
topography. In this section, we shall show that the
stability of a parallel mean flow in the presence of
topography can be quite different from that of the iden-
tical mean flow in a flat-bottomed ocean. We have been
guided by the result of Charney and Straus (1980), who
show that the form-drag instability can catalyze the
release of available potential energy in a baroclinic
shearing flow that would be stable in the absence of
topography. In their study of multiple equilibria and
stability in forced baroclinic flow over topography, they
found that form-drag instability may occur for weaker
thermal driving than conventional baroclinic instabil-
ity, and that this type of instability leads to transition
from one finite-amplitude, quasi-stationary equilib-
rium state to another. Baroclinic and barotropic insta-
bilities of the stationary topographically perturbed
flows give rise to westward-propagating, vacillating
wave motions with periods of the order of 5 to 15 days.
They suggest that the form-drag instability leads to
transition from one stationary regime to another and
that the observed westward- and eastward-propagating
long planetary waves (zonal wavenumbers 1-4) are the
propagating instabilities associated with these station-
ary regimes.

The simplest and most obvious example of the des-
tabilizing effect of topography is the case of zonal bar-
otropic flow with meridionally varying topography.
The topography alters the effective value of ji and
thereby the growth rates and stability criteria: even
though the energy source remains the horizontal shear,
the topography can alter the possibility of extracting
this energy. In particular, the Chamey-Stem necessary
criterion for instability [that /3 - U,, + (fo/H) b, must

change sign in the domain] suggests that instability
may occur for lower values of shear when b, 0. The
necessary condition may, of course, not be sufficient;
in particular, when uf, = 0, the flow will be stable even
if 3 + (fo/H)b, changes sign. However, in the case of
sinusoidal i(y) and b(y), the necessary condition seems
also to be sufficient (using a simple truncated expan-
sion in y), and the topography does destabilize the flow.

DeSzoeke (1975) discussed baroclinic flow over mer-
idionally varying topography and found that the topog-
raphy destabilizes the flow at some wavenumbers by
a resonant instability involving two baroclinic waves
which happen to travel at the same speed. Similar ef-
fects can be identified in the work of Durney (1977).
We would like to focus our discussion, however, on
the specific problem of destabilization by form-drag
instability of a baroclinic flow which is neutrally stable
in the absence of topography.

We shall consider the conventional two-layer model
whose governing equations (cf. Pedlosky, 1979b) are

( at

x [V/1 - 1 +--- (, - 2) + Y] = 0,

(a 
at + v2*V)

x [V2qJ2 - 1 +-- (q2 - PI) + Ofy +f (1 + )b] = 0,

where v, and i1, are the velocity and streamfunction in
the upper layer and v2 and iq2 the corresponding quan-
tities in the lower layer, 8 is the ratio of the upper to
the lower layer mean depths, and X-1 is the layered
version of the first baroclinic mode deformation radius
Xl = fo (1 + 8)21g(Ap/p)HS. We write the x-averaged
equations

at [l UY + I + (f - 2)]

a2 a2 X
+ + l 2) = o,

- 2 + - 2 - ']

C02 02 8X2at [ U2 + + -1 2 l )]
a+5y2 hxZ(\-y2 2 + = (1 + 8)- H OY2 +2;b,

and the equations for the deviations

(-t lxa-) [V - x( 1p# -/
+ [/ +-- 8

(X2 - )] 
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+ J [+1 V2*1 - A (X2-

[I+ ]

-"( l~"v + ) = o,

'af + 1 + 8 V q,21- -

+ f (1 + 8)b] 8+,2 -A ] ,42

q,21, V X2 fo(l+a)b

- jy 02. [2v + 1 + 8 + + H

If we now consider y scales that are order 1/A c
scales or the deformation scale and expand
jO°) + A2Uf" + ":, I(x,y) = 1(°0)(x) + A2 i(1)(

.· (where the topography is assumed to vary 
x) we find

u)' = U2t,

so that the induced changes in mean flow ar,
tropic. This occurs because the form-drag forcinl
mean is at much larger scales than the defor:
scale. Eliminating the u11) terms at second ord(
the two mean flow equations, noting that the Re
stresses drop out because qi'(0 is independent o
find that the barotropic component of the zon
is accelerated or decelerated by the form drag,

a =2 fo
at H 

of weak topography to infinitesimal perturbations even
when the flow would be baroclinically stable in the
absence of topography. We can do this by considering
the stability in the special case Au = 3(1 + 8)/8A2 . This
is the maximum shear for which the Rayleigh neces-
sary criterion for stability in the absence of topography,

(I-128 A)( + AU)-O

is satisfied. Equations (18.14)-(18.16) simplify to the
set

0u, f0
at H

f the x [+ ( + -a - __-- + )

x,y) + +p ) (1 w = ,
nly in 

*2xx - f 1 f (1 )ffbb '

e baro- We split the streamfunction into sine and cosine parts
Lg of the as in section 18.7.3 and solve this system of equations

mation to find the growth rate equation
er from / \2

eynolds 4 + k2(k2 + 2)2

f y, we
al flow + 42 4 4 88.64 (H 1 +8(k2
,18.64} +~ H / I + 8 kk 1 k +

while the deviation fields are given by

+ ((t)+ u) axt) +] 1 +8 ]

+ (0 + 1+- ) 1 , = 0, (18.65)[at+ Ux] [q4- -i + -8 (- 1]
+(+ 8X2A) fo (1 + 8)u2b,. (18.66)

Here we have dropped the superscript (0) and intro-
duced the notation Au for the time-independent shear
across the interface.

From the equations (18.64)-(18.66) one could derive
a single nonlinear governing equation for uff2, and deter-
mine the linear instability and finite-amplitude evo-
lution of the flow. For our purposes, however, it will
be sufficient to demonstrate that the initial state
u2, = 0, '1 = 0, 02 = 0 can be unstable in the presence

+ 2 (-- kk2 - 8 2 k4- 82 H2 \ 1+ 8) ( 1+8
=0. (18.67)

The real solutions to (18.67) for several values of
foboX1H are shown in figure 18.16. Notice the insta-
bility occurring for topographic scales on the order of
70 to 110 km, with growth rates proportional to the
topographic height (for small heights, at least). We have
thus demonstrated that the available potential energy
in the flow can be tapped by the orographic instability
even in situations where normal baroclinic instability
is unable to extract mean-flow energy. Thus it is pos-
sible that mesoscale topography plays a role in cata-
lyzing the conversion of mean flow potential to eddy
energy in the oceans.

18.7.4 Multiple Equilibria
We have already mentioned the work of Charney and
DeVore (1979) and Charney and Straus (1980), who
have begun to explore the possibility that the atmos-
phere may possess a multiplicity of steady equilibrium
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a f-plane along a variable coastline (see figure 18.18).
Let the latitude of the coastline be h(x) and let -j be the
north-south distance from the coastline. The potential
vorticity equation becomes

h8-o 8 + q2, + 6I{~ + h)= F(q,).

If we split the streamfunction into an upstream part
(x - -, h -- 0) 0(,) and a topographically induced
part X(x,)) we find

[x - h ,-- + 2 = F(* + 4) -
[ ( (x 07,q 49,q2J

50 100
(18.68)- ph - ~h2,

150
k

-
' (km)

Figure 8.I6 Normalized growth rates for a topographically
destabilized vertical shear flow. The curves are labeled by
foboXIlH values.

states for given external forcing in the presence of top-
ographic inhomogeneities. In the case of sinusoidal to-
pography in a periodic channel, they have found states
resembling both the "normal" configuration in which
there is a strong zonal flow and a relatively weak wave
perturbation, and the "blocking" configuration in
which there is a weak zonal flow and a relatively strong
wave perturbation. They suggest that the blocking phe-
nomenon is an equilibrium state which occurs by a
transition via a form-drag instability from the normal
to the anomalous blocking configuration. Hart (1979b)
has applied similar ideas to laboratory flows and has
succeeded in producing stationary multiple equilibria
experimentally.

Oceanically, one phenomenon that stands out as a
possible example of multiple quasi-stable equilibrium
states is the large meander of the Kuroshio which
sometimes occurs. Figure 18.17 shows the two quasi-
stable configurations that are observed. The transitions
between these configurations occur relatively rapidly.
White and McCreary (1976) have considered a model
for the meandering process involving flow around
bumps in the Japanese coastline. Because their discus-
sion was in terms of linear dynamics, Solomon (1978)
has rightly pointed out that the model must have a
smooth transition between the two states as the in-
dependent variable (the maximum inlet flow speed)
varies. If, however, the phenomenon is nonlinear, cat-
astrophic changes in the state of the Kuroshio may
occur: an infinitely small change in parameters may
produce a finite change in response, and several stable
responses may be possible for the same set of param-
eters.

We propose a simple model of this process consisting
of the steady, nonlinear flow of barotropic current on

where

F(lT(7)) = /37 + 2

-- 0 fort7 = 0, 17 -<.
(18.69)

When u = - k/I0ri is not constant, equation (18.69)
implies that F is a nonlinear functional, so that (18.68)
becomes essentially a forced nonlinear oscillator equa-
tion; it is well known that such equations may have
multiple stable solutions. We note also a similarity
between the equations here and the equations for flow
of a barotropic fluid over topography. In the derivation
below we assume that the coastline variations are
small and occur on scales large compared to the cross-
stream scale. We shall show that the nonlinearity plays
an important role in determining the amplitude of the
nonzonal flow component when the upstream flow is
near the critical speed U,. This speed is defined by the
condition that long waves (x wavelength large com-
pared to the width of the current) are stationary. Near
critical speeds, the amplitude becomes large. The low-
est-order dynamic equation only determines the cross-
stream wave structure. The first-order equation shows
a balance between advection by the mean flow, effects
of the coastline variations, dispersion, and nonlinear-
ity.

We shall work with the nondimensional forms of
(18.68)-(18.69). Our scaling is guided by the versions+ -2) = -pjh + F' (~) ,

= -ph i - U "
u

(18.70)

obtained by linearizing in b and h. We obtain F'(Oi) by
differentiating (18.69). If h = h coskx, resonance oc-
curs when

540
Jule G. Chamey and Glenn R. Flierl

f ob 
X

,BH
f H
fobo,

0.

\0.1

·� - - - -- -I-� �_� � _ _ � ___

I



Figure 8.I7 Sketch of two equilibrium positions of the Ku-
roshio. See Taft (1972) and White and McCreary (1976) for
detailed tracks.

2+ = k2 ,

= O, 71 = 0, -.
(18.71)

For forcing on a scale long comnared to the width of

x

the current (l/Oxl << l«/711) we expect that one of the
underlined terms in (18.70) will balance the forcing
from the side-wall variations -h giving - Uho or
4 - h,12, where U is the scale of ui and 1 is the cross-
stream scale. When the flow profile is nearly critical

Figure I8.i8 Model for coastline induced mea
deviation of the coastline from a latitude circ;
h(x); the coordinate q1 is equal to y - h(x). The u
is fu(y).

Iur long waves--meanmg mat mie ler-nanu slu o
ndering. The (18.71) vanishes for some nonzero function 4 which
le is denoted also satisfies the boundary conditions, the long-wave
.pstream flow solutions of (18.70) have the two underlined terms

nearly canceling, so that the forcing must be balanced
by the ,, term. This gives a scale of 8h - h0L2, where
L is the downstream scale of variation of the topogra-
phy.

Therefore, we scale x by L, h by ho, by hoL2, q by
1, and u by U in (18.68)-(18.69) to find

02 a ( )2]
0712 (ax o)

-h + [F( + ) F)]-yM8 4 h

F (( 71)) = 7 + M,,,

with M = U/(I12, y = hoL4/15, and 8 = 12/L2. If we assume
that the width of the current is small compared to the
downstream scale ( 1) and that the variations in
coastline are weak enough so that y s 1, we can sim-
plify to
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(2 a02\ ah + )-
+81 aP -2 F (=) h

+ F'(I 2+ 0(82) (18.72)

f = A cosx + (A0 + A2 cos 2x) + 2 A cosnx,
n=3

which implies a cubic equation for A:

(1 + )A - 2A3[ + (4 + 1 = 1. (18.76)
4-0, -- = 0, -

with

F' (I) -Muv),
(18.73)

F" (q3) = [1(1 - Mi.)l,

which are known functions of -q given the specification
of the upstream (x - -) flow u ().

We assume that the flow is nearly critical so that
U = U,(1 + A) where U, is the critical speed (defined
exactly below) and therefore M = M,(1 + A). We expand
(18.72)-(18.73) assuming A - 8 and MC - 1, y ' 1, and
find to lowest order

02 un - Me1
0

42 u

(18.74)
= 0, =0,-

which defines the eigenvalue MC and thus the critical
speed Uc given the shape of the upstream flow. The rq
structure of must be an eigenfunction G of (18.74),
4 = f(x)G(-q). At next order in A and 8, the solvability
condition for (18.72) gives

[f d-GC2(l)] f "(x

-h(x) [f d G(,)] + [If G2,,(,) 1] f(x)

+ - f dq G () - - - (1 -Mc,)] f2(X).
This ordinary differential equation for the x structure
of the wave f(x) is to be solved for a particular form as
A/8 and y vary. For convenience we shall normalize G
and redefine parameters slightly to write

f,,- Af + f 2 = -h(x). (18.75)

The simplest problem to illustrate the characteristics
of (18.75) is the linear case with h(x) = cosx. (This
topography extends to x = -, which is not really
consistent with our original model: however, it does
point out some of the properties of these nonlinear
flows.) The solution to (18.75) with / = 0 is

cosx
f +' 

showing a resonance at a = -1 (see figure 18.19).
For weak nonlinearity (4 small), we can express f as

a Fourier series

(One can show that the higher-order terms will not
contribute, even near resonance.) Figure 18.19 also
shows the solution of (18.76) for 5 = 0.2. Here we
clearly see that there are three equilibrium states for
a < - 1.3. The state with intermediate amplitude is un-
stable; thus we see that we can have either a large
positive amplitude wave (in phase with topography) or
a small negative amplitude wave (out of phase).

This simple model suggests that the Kuroshio mean-
der may be a case of multiple states depending on the
flow rate at the inlet. Slight decreases in speed may
cause a sudden transition to a meander state, with
hysteresis effects likely, so that large increases are nec-
essary before the Kuroshio would return to its path
closer to the coast.

The above results merely suggest the possibility of
multiple equilibria because, to begin with, we have
required the coastline to have an infinite number of
ridges and troughs in order to create the possibility of
linear resonance. As shown in figure 18.10, an infinite
number of periods may not be necessary, but there
must be at least two ridges and a trough or vice versa.
A single coastal ridge (as in the half-wave case) would
not be enough to give a maximum response. One must

A
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- I
LINEAR

RESONANCE

ILINEAR
,SOLUTION

10

.5

0

-5

-10

Figure 8.I9 The wave amplitude as a function of A (propor-
tional to the magnitude of the upstream current). Sketches
show the relationship between the streamlines and the coast-
line. Multiple equilibria occur for A < -1.3.
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ask: Can a single ridge or, in the case of blocking in
the atmosphere, a single mountain range, in an ex-
tended domain give rise to multiple equilibria? And is
resonance needed?

In problems of nonrotating shallow-water flow over
an obstacle, multiple states can exist when the Froude
number ui/ViH is greater than unity. For certain values
of the Froude number and the ratio of the obstacle
height to H, two states are found, one corresponding
to smooth flow with no upstream disturbance and one
corresponding to a permanent elevation of the free sur-
face upstream of the obstacle-created during the ap-
proach to equilibrium by a bore traveling upstream
(Baines and Davies, 1980). Similar examples of multiple
equilibria are also found in transonic compressible flow
past obstacles. Thus we suspect that the upstream flow
in our problem cannot be specified arbitrarily but may
very well be affected by the upstream propagation of
energy. It may be that, as in the periodic models of
Chamey-DeVore and Chamey-Straus, the flow must
be dealt with as a global or basin-wide unit.

18.7.5 Quasi-Geostrophic Turbulence
We have considered only wave-wave or wave-mean
flow interactions involving a small number of com-
ponents. In particular, we have not considered energy-
cascade processes involving large numbers of compo-
nents and leading ultimately to turbulent dissipation.
It was pointed out by Onsager (1949), Lee (1951), Batch-
elor (1953a), and especially by Fjortoft (1953) that vor-
ticity conservation in two-dimensional flow imposes
a strong constraint on scale interactions. Later Charney
(1966, 1971a) showed that the conservation of pseu-
dopotential vorticity in three-dimensional quasi-geo-
strophic flow imposes similar constraints. Such con-
straints suggested to Kraichnan (1967) that there may
be an inertial subrange in two-dimensional, homoge-
neous, isotropic turbulence in which the energy spec-
trum is controlled by uniform transfer of enstrophy
(mean-squared vorticity) from large to small scales at
scales less than the excitation scale, and by uniform
transfer of energy from small to large scales at scales
greater than the excitation scale. He predicted a k-3
spectral energy density for scalar wavenumber k in the
former range, and a Kolmogorov k-5'3 law in the latter
range. In extending these ideas to three-dimensional,
quasigeostrophic turbulence, Chamey (1971a) also ob-
tained a k-3 law at the tail of the spectrum and conjec-
tured that in this region there would also be equipar-
tition between the two components of the kinetic
energy and the available potential energy. This conjec-
ture has been confirmed by Herring (1980) in a homo-
geneous quasi-geostrophic turbulence closure model.

The topic of quasi-geostrophic turbulence has been
investigated by a number of oceanographers, notably
Rhines (1975) by numerical simulation, and Holloway

and Hendershott (1977) and Salmon (1978) by means of
closure [see also Herring (1980) and Leith (1971)]. It
may be that their work is more applicable to the at-
mosphere than to ocean basins, where meridional
boundaries play important roles and where statistical
inhomogeneity of excitation cannot be ignored.

The existence of quadratic invariants, energy and
enstrophy-mean-squared vorticity in two-dimen-
sional or mean-squared pseudopotential vorticity in
three-dimensional quasi-geostrophic flows-permits
application of the principles of statistical mechanics.
These have been applied by Onsager (1949) and Kraich-
nan (1975) to two-dimensional flow, and by Salmon,
Holloway, and Hendershott (1976) to a two-layer quasi-
geostrophic flow. In the two-dimensional case, the en-
ergy in each horizontal mode is L2/(b + aL2), where a
and b are constants depending on the total energy and
enstrophy. With typical choices of these constants, the
largest scale waves have the most energy. In the two-
layer case, the equilibrium spectrum is dominated by
the largest scales, and these motions are barotropic.
The available potential-energy spectrum, correspond-
ing to the thermocline displacement spectrum, is
peaked near the deformation radius. These spectra rep-
resent the effects of the nonlinear terms alone; one
expects [as Errico (1979) found in studying the partition
of energy between gravity-wave and geostrophic mo-
tions] that the spectra which are actually realized in a
forced and dissipative system will be determined
largely by the wavenumber dependence of the forcing
and dissipation.

The cornerstone for the theory of quasi-geostrophic
turbulence is the conservation (in the inviscid limit) of
the energy Ifff IV12 + (l/S)lO,/az12 and the enstrophy
ffff[V2

q + (/z)(ll/S)(O/aOz)] 2. We emphasize the frag-
ility of the last principle: enstrophy can increase or
decrease if there are (1) temperature gradients along
horizontal boundaries, (2) side walls on the domain, or
(3) topography.

If we first consider the case when none of these
restrictions obtain-flow in a periodic, flat-bottomed
domain-we can readily argue that the energy will be
transferred to large horizontal scales and to more bar-
otropic motions by the nonlinear terms. If we expand
the streamfunction in the flat-bottomed normal modes
and perform a Fourier transform horizontally,

Y = E F,,(z) ff dki, (k,t)eikx,

we can use the conservation principles

t ff dk (k2 + 2) i.1', = 0,

at ff dk(k + X2)
2 lnl2 = 0
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(X,, is the reciprocal radius of deformation for the nth
baroclinic mode; see section 18.5.1) in exactly the same
manner as Fjortoft (1953) or Charney (1971a) to show
that the amount of energy with k2 + X2 > K 2 is a small
fraction of the initial energy, if KO is large compared to
the initial mean wavenumber

- ,, ff dk (k2 + X2)1V'
2 [(k2 + x2)lg1,2]K =

K,, ff dk[(k2 + X2)ll2]

In essence the nonlinearity does not transfer energy to
small scales. Another way to show the reverse cascade,
is to use Rhines's (1975) argument that the turbulence
spreads energy out in wavenumber space

a
at , ff dk [(k2 + x2)2 - r] 2[(k2 + x2)1n 12] > 0.

Combining this with the definition of R and using the
conservation laws shows that the mean total wave-
number must decrease

aK <0.
at

Thus energy cascades to larger horizontal and vertical
scales, implying an increase in energy for small }X, that
is, a tendency for the motion to become more baro-
tropic.

This tendency for the flow to become barotropic in
the absence of topography or side walls has been well
demonstrated through numerical simulation by Rhines
(1977). He has also shown that rough topography can
halt this cascade for flows that are not too energetic.
The /3-effect slows the cascade when the scale has in-
creased so much that the wave steepness M becomes
order one. This could occur while the motions are still
baroclinic if the initial energy were small compared to
32LR.

Rhines (1975) has also argued that side walls can stop
the reverse cascade. This has been demonstrated in
laboratory experiments by Colin de Verdiere (1977). Es-
sentially the western boundary serves as a source of
enstrophy and the eastern boundary a sink. This can
be understood-as Pedlosky (1967), in a slightly differ-
ent context, has revealed-by considering reflection of
Rossby waves from the western boundary. For linear
waves with c = -/(k 2 + 12 + X2), the x component
of the group velocity is negative for k2 < (12 + X2n).
Therefore the reflected wave's zonal wavenumber kr =
(12 + AX)/k is larger than k. One can readily show that
the energy fluxes of the incident and reflected waves
(cg times the energy density) are equal and opposite,
but that the enstrophy flux of the outgoing wave is
larger by a factor kr/k than the flux of the incident
wave.

Rhines (1977) has discussed many of the topics
above, and in particular has demonstrated clearly that

the strong nonlinear interactions involved in geo-
strophic turbulence cannot occur unless nonlinearity
is much stronger than wave dispersion, that is, unless
the wave steepness Uk2/fl >> 1. At these scales there is
some, but not conclusive, evidence in support of a k- 3

spectrum for the atmosphere (Julian and Clive, 1974).
The enstrophy cascade mechanism has not yet been
checked adequately either by direct measurement or
by numerical simulation. It remains possible that the
observed atmospheric spectra can be explained in terms
of ordered (periodic) frontal structures, rather than ran-
dom cascades of enstrophy, as suggested by Andrews
and Hoskins (1978). They obtain a k-8 '3 dependency
which is as much in accord with observations as the
k- 3 spectrum-or perhaps better. However, the pre-
dicted spectra are highly anisotropic, and this does not
seem to be in as good agreement with observations or
results from numerical modeling as the predictions of
the theory of geostrophic turbulence.

So far the data do not exist for a corresponding
oceanic check.

18.8 Summary Remarks

Our primary focus has been on oceanic analogues of
transient atmospheric motions of large scale. As prom-
ised in the introduction, it has been possible to find
formal oceanic analogues for most categories of large-
scale atmospheric motions: indeed, it has been almost
trivial to do so. Far more difficult, however, has been
to demonstrate the physical reality and importance of
these analogues. It is only recently, through studies of
the meanders of the western boundary currents and
through such concentrated, large-scale observational
programs as MODE, Polygon, POLYMODE, and the
oceanographic component of the GARP Atlantic Trop-
ical Experiment (GATE), that some understanding of
the nature of the transient motions has begun to
emerge. Although many of the oceanic analogues we
have dealt with are hypothetical to a greater or lesser
degree, we have chosen them on physical grounds as
at least of potential importance. We feel that contrast-
ing them with their atmospheric counterparts, with
respect to both their individual properties and their
roles in the generation and maintenance of the large-
scale circulation patterns, has been a useful exercise.

In section 18.4, it is shown that the quasi-geos-
trophic, 8-plane formalism derived for the atmosphere
applies to oceanic motions whose horizontal scales are
on the order of the deformation radius of the first bar-
oclinic mode L, that is, the scales corresponding to
baroclinic instability. It is characteristic of these mo-
tions that they are dispersive at both small and large
amplitudes. At larger scales the dynamics change: lin-
ear free modes may no longer have the same east-west
and north-south scales and vertical density advection
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becomes an important cause of nonlinearity. For mo-
tions with length scales near the "intermediate scale"
(La)3 with velocities of order foLla (where a is the
radius of the earth), the vertical component of vorticity
changes not only because of p-effects and horizontal
advection but also because of vertical density advection
and variation of the undifferentiated Coriolis parame-
ter. Thus both Rossby and Burger terms appear. For
east-west scales on the order of the intermediate scale
(210 km for the ocean and 1500 km for the atmosphere)
or larger, dispersion and nonlinearity can balance to
give solitary or cnoidal waves. For larger scales, we
show that the evolution is determined by a Korteweg-
deVries equation, so that solitons will be the natural
end product of the evolution of an initially isolated
disturbance. Because of the slower dissipation and the
larger scale separation between the intermediate and
basin scales, such waves are more likely to be found in
the ocean than in the atmosphere. These results sug-
gest that the larger-scale dynamics of the ocean tran-
sients may be dominated by more orderly, phase-coh-
erent structures than are predicted by the theory of
geostrophic turbulence. If this is so, then at scales
larger than the excitation scale the low-wavenumber
components would be more highly correlated than if
they were due to a random reverse cascade.

The theory of free and forced small-amplitude
Rossby waves in the oceans may be transposed almost
entirely from the corresponding atmospheric theory.
The MODE and Polygon experiments have provided
evidence of the importance of Rossby-wave propaga-
tion, particularly on time scales greater than a month
(McWilliams, 1976). In section 18.5, we present some
of this theory in an oceanographic context, paying par-
ticular attention to the influence of bottom topography
in altering the propagation of free waves and in gen-
erating waves from a mean flow. Rhines's results for
a uniformly stratified fluid are extended to arbitrarily
stratified flows. The major result, the prediction of
bottom-trapped modes, has been verified from obser-
vations at site D (Thompson, 1977) although no obser-
vations of the eastward-traveling modes which should
exist when the topography opposes the p-effect have
been reported.

The idea of Rossby-wave propagation in a medium
with a variable (real or imaginary) index of refraction
was first advanced to account for the vertical trapping
of shorter waves by upper easterlies and strong wester-
lies. We apply these ideas in an oceanographic context
not only to vertical propagation from the surface or
bottom but also to horizontal propagation of waves
generated by the meandering of the Gulf Stream. East-
ward-propagating meanders produce trapped disturb-
ances close to the Gulf Stream, while westward-prop-
agating meanders may give a real index of refraction
and southward propagation.

In section 18.6, we describe briefly the influence of
friction both on the generation of ocean currents by
wind and on the decay of individual oceanic eddies.
Existing theory is not adequate to account for the spin-
up of the real ocean or for the decay of the real atmos-
pheric circulation. Interest in the baroclinic spin-down
problem was originally motivated by a desire to un-
derstand the long persistence of Gulf Stream rings;
however, the axisymmetric models that had previously
been employed do not account for the complete decay
of a baroclinic eddy. We show that the p-effect permits
vertical propagation of energy and therefore allows for
complete spin-down.

In the last section, we consider oceanic disturbances
in which advective effects are important-either
through wave-mean flow interaction as in the break-
down of an unstable mean flow, through the interac-
tion of waves generated elsewhere with the local mean
flow, or through wave-wave interactions. The last type
of interaction can occur when the unstable flow is
itself a wave or when waves generated in any manner
interact with one another as in turbulence.

The concept of baroclinic instability was developed
to explain the principal traveling waves and vortices
embedded in the atmospheric westerlies; it has been
applied to the oceans in an effort to account for the
meandering of the western boundary currents and the
existence of mid-ocean mesoscale eddies. The mean-
dering does seem to be an effect of baroclinic instabil-
ity, modified by barotropic effects, but it is highly ques-
tionable on theoretical and numerical-modeling
grounds whether the mid-ocean eddies are due to local
baroclinic instabilities. It seems more likely that these
eddies are vortices cast off from, or forced in some
more general fashion by, the meandering western
boundary currents and their extensions.

In our exposition of the baroclinic and barotropic
instability problem, we use the methods of Arnol'd and
Blumen to extend the integral theorems of Kuo, Char-
ney-Stern, and others to a class of basic flows that need
not be zonal, that may translate with constant speed,
and that may be influenced by topography.

The work on wave-mean flow interactions originated
by Eliassen and Palm and Charney and Drazin in an
atmospheric context is applied to the problem of the
rectification of Rossby waves radiated from the western
boundary currents and their extensions. Of particular
interest is the so-called recirculation flow found by
Worthington and others south of the Gulf Stream ex-
tension. Rhines has attempted to account for this re-
circulation as driven by the westward-propagating
Rossby waves produced by the meandering. We present
a slight generalization of his work by considering also
the effects of eastward-traveling meanders. The results
do suggest that a relatively strong westward flow, con-
fined fairly close to the Gulf Stream, can be produced
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by eastward-propagating wave-mean flow interactions
in the presence of dissipation.

In recent times, the stability analyses for the atmos-
phere have been extended to wavy motions in an at-
tempt to account for nonlinear cascades of energy in
large-scale motions. The stability of forced wavy mo-
tions has also been studied to account for the transition
from one stationary state to another of a forced flow
over topography. It has been found from a study of
simple truncated spectral models that the stationary
flow equilibria produced by the forcing of a zonal flow
over topography in a rotating system may be indeter-
minate in the sense that for a given forcing, there exists
a multiplicity of equilibrium states. This result has
been utilized in an attempt to explain the so-called
blocking phenomenon in the atmosphere-the persist-
ence of large-amplitude anticyclonic flow anomalies in
the planetary circulation. The existence of multiple
equilibria for a given forcing appears to be common; it
also occurs for supercritical-Froude-number flow in
hydraulics and transonic flow in gas dynamics. A nat-
ural oceanic analogue of multiple, quasi-stationary
equilibrium in the atmosphere is the known existence
of two states of flow for the Kuroshio in the vicinity
of the Japanese coast. We investigate a simple model
of such a flow and find indeed that two different steady
states may be produced by a given upstream flow as it
passes a wavy boundary. Our model leaves much to be
desired, but it does point a direction for future research.

We find that the transition between one state and
another in topographically forced flows occurs via a
form-drag instability in which the perturbed form drag
(mountain torque) modifies the mean flow in such a
way that the perturbation increases in amplitude. The
instability of a forced topographic wave is thus differ-
ent from that of a free wave. The latter instability was
shown by Gill to be basically a Rayleigh-like shear
instability or a resonant-triad wave interaction. We
have presented the wave-stability analysis for both free
and forced waves in a unified fashion to bring out the
similarities and differences between the shear, reso-
nant, and form-drag instabilities.

The form-drag instabilities producing transition
grow in place; however, the wavy equilibrium states
themselves may also exhibit traveling Rayleigh-like
instabilities. It has been suggested that instabilities of
this kind account for the observed eastward- and west-
ward-propagating very long (zonal wavenumbers 1-4)
planetary waves in the atmosphere. One may speculate
that a careful analysis of the topographically induced
meanders of the western boundary currents in the
ocean will also reveal such secondary wave instabili-
ties. If these are westward propagating, then they could
contribute to a broader recirculation region.

The final topic is quasi-geostrophic turbulence. Fj0r-
toft's prediction that there will be a transfer of energy

from the excitation scale to larger scales in 2-dimen-
sional energy-and-enstrophy-conserving flow may be
extended to 3-dimensional quasi-geostrophic flows if
the bottom and top boundaries are flat and isentropic.
The theory predicts that the scale will increase verti-
cally as well as horizontally, that is, that the flow will
become increasingly barotropic at large horizontal
scales. Rhines has verified this result in a series of
numerical experiments, and the oceanic observations
of Schmitz (1978) show that the mesoscale eddies tend
to be more barotropic the more energetic they are. This
observation, while not verifying the inertial theory of
geostrophic turbulence, is at least consistent with it.
As Rhines has shown, the inertial theory applies only
when the effects of nonlinearity dominate those of
linear dispersion, that is, when the wave steepness
Uk2/,3 is much greater than unity. Thus one expects
the prediction to be valid only in the energetic parts of
the ocean. The similarity prediction of a k-3 spectrum
at scales smaller than the excitation scale is not incon-
sistent with observations in the atmosphere, but there
are as yet no data to test this theory in the ocean. The
effects of topography, side boundaries, and surface gra-
dients of entropy also have not been thoroughly ex-
plored.

We have not produced a systematic or comprehen-
sive treatment of atmosphere-ocean analogues. Our
excuse, as we have stated, is that virtually all large-
scale atmospheric motions have oceanic counterparts
and there are simply too many of these to discuss. We
have preferred to deal with analogues for which there
is observational evidence or at least some physical ba-
sis for believing they should exist. We have been forced
to speculate, and, as the reader will surely have per-
ceived, our own speculations have been guided pri-
marily by our own experience and interests.

Appendix: The Quasi-Geostrophic Equations

Here we shall give details of the derivations of the
quasi-geostrophic equations. We begin by nondimen-
sionalizing the equations of motion (18.22)-(18.27), us-
ing the definitions of the geostrophic streamfunction
and the potential buoyancy bp in (18.28) and (18.29).
Using the characteristic scales described in the text,
we obtain

Du uw tan 0 uv tan2
8e + &OEXPA -e3 r6 - wcotOw - v_5T r r

r cosO e ('g ctanOe

Dv vw tan A u2 tan2 O
e Dt + x /r r

sin e + tan- sin ,

(18.A1)

(18.A2)
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Dw U2 + V2 _ 
oA2E -- EX tan u cot Dt r -Xict

= - t + AS q + b,-EA(b - Aq)(2 - /,cos + tan u+ + + tan v

_v tan20 +o 0
+ r2 Wr r2 zz

Dw
oX2E DW - EXf tan e - Xu cot 0

Dt + bp,

= - + b,
(18.A3)

1 D 0 e a
1 D sinObp + - Sw - o- w As

sinO Dt e s Oz

+- AE w -- A,(bp - Asq)w = 0.s E) 

(18.A4)
cA 1 D

- sin D sin (b, - AsqJ) + o{As + AS)wa sinODt

1 D sinOb +-OW (1 -2)W
a sin Dt n + A 1 w

+ edaz S eI +a

+ As)[bp - As(1 + ) ] 

+ - A sinO Dt sin = 0,

where

D = ddarcos + tanO 
Dt +-o 09

+- a + 3tanO a + w za r 0 00 nd

and

r = 1 + X tanOz,

a = 1 + EA(bp - As),

e2 = Cs/C = 1 + O(EA)

are used as abbreviations.
The quasi-Boussinesq approximation entails choos-

ing the scale of motion to be small compared to the
external radius of deformation A << 1. We therefore

drop terms from (18.A1)-(18.A5) which are small in
this sense. The definition of "small" requires some
care because the various Rossby numbers are also
small. Thus in equations (18.A1), (18.A2), (18.A4) we
shall keep both order 1 and order , E, /3, co terms so
that we may drop only terms of order EA, A, wA. Equa-
tions (18.A1) and (18.A2) are changed only slightly: a
is replaced by 1. The other equations become

For the ocean, we can further refine these equations by
noting that As is also very small, so that the continuity
equation (18.A6}) becomes that of an incompressible
fluid, and the potential buoyancy equation becomes
simply

I D sin bp +-w = 0.
sin O Dt e

(18.A9)

The hydrostatic approximation applies to a thin layer
of fluid: X << 1. This allows us to drop the centrifugal
terms involving w, the vertical accelerations, and to
replace r by 1, giving us

DuDu- E/uv tan2 0 - v

= -- e a + tan q- ,

Dv
+ E u2 tan2 + U

= - sm ( + / tan 0 ) sin tp,

(18.A10)

(18.All)

cosO + + a + tanO )v
-flyan2 (CI w-51- 1 0, 

aw- v tan2 0 + c = 0,
0z

¢z = bp,

1 a + /tan u + + 
cos kO f+an o 4 3 hukoo

Ow
- ,v tanO + o- z = 0,

where

D 0 + u 
Dt at e oso (\04 Tt04

(18.A12)

(18.A13)

tan O )v

(18.A14)

rcos0 (d1+ 3 tan 0 )u+ + tan -r cos r

[v tan20 Co 
+ - - r2 w = Ascow,

r r 2 O

+- v +Ptan0 +tanO w 

(18.A6) Equations (18.A9)-(18.A14) are the Boussinesq hydro-
static equations.

Finally, the quasi-geostrophic -plane approximation
assumes that - , - e << 1 and (by necessity) that o
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must also be of this order. We set co = e and expand in
powers of E to find the lowest-order balances

u(O _ &b(O)

O0 '

1 a'q,(O

cose a (9

P - 0O(9z

and the continuity equation

1 au ®'' av ( )

cos 0 a a 

which is consistent with the geostrophic equations. At
first order we have the momentum equations

u0 1 a (1) tan (o)
Dt cosO a cosO M

1DV
®
0 1 0sD + su (1= - -- sinoDt sin 0 a(

a sin 0 q(0)o
cos 0 O

= E (0) -- +-v E 

Dt At s cos e a E 00'

from which we form the vorticity equation

St (COSV -U() + e( s + V(1)Dt os0 ' 0¢ i os + V0
°

1 a ap(O'' sin e a a(O)0-- sin + sGvcos2 a, ao COS2 e a ao

=-v) - sin avos + tan2v(O) - sin2e aOu(
cos a Cos2 c

Combining this with the first-order continuity equa-
tion

S sin 9v~ 0

o u' + V(D + sin u + , tan 0O-cos 0 o

- v0"(0tan20 + W =0

(note that for the atmosphere, we would have an ad-
ditional term -Asw'° in this equation) leads to the
vorticity equation

bD10 1 1 0O<0>+
Dcos9 8 4 cosO (o + (o) + (9(9Dt Lc~sO do cose ax 2+-z 3 az $,o

+ 0cos
e cos 

For the atmosphere, the additional term in the conti-
nuity equation appears as an extra contribution

s z

in the potential vorticity. Alternatively, the thickness
term can be written as

0( 1 aa i 
az a (z) Az ~

for atmospheric quasi-geostrophic motions.

Notes

1. Unfortunately, meteorologists use "mesoscale" very dif-
ferently from oceanographers. We shall use mesoscale in the
oceanic sense to refer to motions that are dynamically anal-
ogous to the "synoptic" scale motions of the atmosphere.

2. Note that the U here is characteristic of the disturbances,
not of the mean flow.

3. Some care needs to be used in the cnoidal wave case since
the mean depth of the fluid becomes H + (1/21rL)fl,~Ldx 7 and
the last term does not vanish. For the figures we have cor-
rected for this effect to show c nondimensionalized by f3L,
where LR is based on the actual average depth. Thus we have
plotted Cactual = (1 - E(7)l/actua)C as a function of actua = 

+ E(n), and also subtracted out the mean from the plots of
4'>

. The same process was used for the nonlinear Rossby wave
but had no effect on the dispersion relation.

4. The "anelastic equations" (Batchelor, 1953b; Ogura and
Charney, 1962; Ogura and Phillips, 1962) filter only acoustic
waves.

5. It is customary to call any quasi-geostrophic wave a Rossby
wave.

6. Geisler and Dickinson (1975) studied critical layer absorb-
tion in the western boundary current but did not explicitly
include a reflected wave. It is also possible that the effects of
the mechanisms maintaining the western boundary current
are important in the interaction process.

7. It can be shown trivially that there is no nonlinear inter-
action in a spectrum of Rossby waves with all components
having the same scale (k2 + 2)- 172 (including baroclinic ef-
fects).

1 (0) (0) + ( ' = (0)
Dt cos0 ) + E

The lowest-order potential-buoyancy equation

DtDt /o, + .w(0) = 0
can now be combined with the vorticity equation to
give the quasigeostrophic conservation equation:
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