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Figure 18.11 Solid lines show north-south length scales
(wavelength/2n7) and dashed lines shown trapping scales (e-
folding distance) for barotropic waves generated by a mean-
dering current with inverse frequency w™! and inverse wave-
number k-!. Eastward going meanders (k > 0} produce
trapped waves; westward going meanders (k < 0) may produce
propagating disturbances. The symbols ® correspond to typ-
ical observational estimates of w™! and k.

oceanographers; however, we include it to illustrate
some of the effects of the z structure. If we substitute
Y(y,z) = SY4d(y,{), where { = [?, $'?(z’')dz’ is a modi-
fied vertical coordinate, we find

0? 0? 5 _
(a—y—z +a2) b+ v (y,g)d) = 0,

where the index of refraction v¥y,{) is given by
vy, &) = SIS TS ™M), ),

B - l_lyy — (ﬁz/S)z

—_ 2
- wk k2.

+ (18.47)
When »? > 0 there are sinusoidal solutions and energy
propagates freely, whereas when »? < 0 there are only
exponential solutions (along the ray) and the waves die
out. There are also, of course, diffraction effects and
tunneling effects if the regions of negative »? (or, at
least, significantly altered »?) are relatively small. This
form is useful when N is a simple function (e.g., Nye*¢)
so that the first term in (18.47) is also simple
[—3/(4d2S]]. The stratification then contributes a rela-
tively large and negative term which increases toward
the bottom, inhibiting penetration into the deep water.
For our S{z) profile (figure 18.7), however, numerical
differentiation proved to be excessively noisy. More-
over, in the oceans, most of the motions of interest
have vertical scales that are significantly influenced by
the boundaries and are larger than the scales of varia-
tion of »?, so that a local (WKB) interpretation of »?
variations is not possible.

We can, however, associate modifications in »* oc-
curring on large scales with modifications in the struc-
ture of ¥. Thus in the topographic problem, if the shear
in the vertical is such that

0 1oda o1

E§5—2‘>0 and E>O’

there will be a decrease in the value of »?, implying
that the wave will become either more barotropic (v2 >
0) or more bottom trapped (¢#* < 0). In the example of
Rossby wave radiation from a meandering Gulf Stream,
(18.46) implies that the baroclinic modes {A2 > 0] be-
come trapped even more closely than the barotropic
modes.

As a final example, we note that the motions forced
in the ocean by atmospheric disturbances tend to have
large positive w/k and large scales. In the absence of
mean currents, the vertical structure equation, with
¥ = ¢F(z), becomes

01 aF—[B—kaz—]Z]Fz—sz,

9z S oz (18.48]
implying that the forced currents are nearly barotropic.
However, the recent work of Frankignoul and Miiller
(1979) suggests a possible mechanism by which signif-
icant baroclinic currents may be produced. Because the
ocean is weakly damped and has resonant modes (1? =
AZ), even very small forcing near these resonances can
cause the energy to build up in these modes. This is
another example of the strong influence of the bound-
aries on the oceanic system.

18.6 Friction in Quasi-Geostrophic Systems

18.6.1 Ekman Layers

Ekman (1902, 1905), acting on a suggestion of Nansen,
was the first to explore the influence of the Coriolis
force on the dynamics of frictional behavior in the
upper wind-stirred layers of the oceans. He considered
both steady and impulsively applied, but horizontally
uniform, winds. In an effort to understand how surface
frictional stresses 7 influence the upper motion of the
atmosphere and, in particular, how a cyclone “‘spins
down,”” Charney and Eliassen {1949) were led to con-
sider horizontally varying winds. They showed that
Ekman dynamics generates a horizontal convergence
of mass in the atmospheric boundary layer proportional
to the vertical component of the vorticity of the geos-
trophic wind in this layer. Thus a cyclone produces a
vertical flow out of the boundary layer which com-
presses the earth’s vertical vortex tubes and generates
anticyclonic vorticity. The time constant for frictional
decay in a barotropic fluid was found to be (f,E'?)7,
where E is the Ekman number v,./f,H?, with v, the eddy
coefficient of viscosity and H the depth of the fluid.
Greenspan and Howard (1963) investigated the time-
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dependent motion of a convergent Ekman layer: if the
wind is turned on impulsively, the Ekman layer is set
up in a time of order f5'; the internal flow decays in a
time of order (f,E2J~1; and the vertical oscillations that
are produced by the impulsive startup decay in a time
of order (f,E)~!. Since f3! is but a few hours, one may
consider that for the large-scale wind and current sys-
tems of the atmosphere and oceans the Ekman pump-
ing is produced instantly and that there is a balance in
the Ekman layer among the frictional pressure and
Coriolis forces. We divide the flow into a quasigeos-
trophic interior component (u,,v,, w,) with associated
pressure gradients fv, = ap,, etc. and a deviation com-
ponent associated with the friction (u,v.,w.) which
vanishes below some small depth h. For a homogene-
ous fluid p. = 0 because the hydrostatic assumption
ensures that there can be no nontrivial pressure field
which vanishes below z = —h. For a stratified flow a
scaling argument can be made to show that buoyancy
fluctuations in the upper layer will not be important
enough to cause significant p,’s (unless N2 > 7,L/ph3)
so that pfv. = —(8/0z)r%, etc. If we divide by f, and
compute w,, from the divergence of the Ekman hori-
zontal velocities, we find

we = —&ecurl({z/pf)

using 7{—h} = 0, w,(—h) = 0. From the surface condi-
tion w(0) + w,(0) = 0, the Ekman pumping is therefore

wg(0) = wg = Zecurl{z(0)/pf}, (18.49)

where 7{0) is the wind stress at the sea surface. The
same procedure can be used in the lower boundary
layer:

But now it is necessary to specify 7(—H) in terms of the
geostrophic velocities u,,v,; for this a knowledge of v,
is required. If we assume v, to be constant, the pumping
out of the bottom boundary layer is given by

wel—H) = wg

’

z=—

=% [;s + ug, + Vg, +§1, (B/f](ux - VS)]

where D = (2v./f)' and {; = v,, — u,, is the vorticity
of the geostrophic wind. When L << q, the divergence
terms (which are equal to —Bv,/f) and the last term are
negligible, so that
Dg
wel—H) ==~ L[~H). (18.50)
In the lower boundary layer of the deep ocean, the
water is nearly homogeneous. In this case one may

estimate the bulk viscosity v, by supposing that for
this value the established boundary layer is marginally

stable (cf. Chamney, 1969). From the measurements of
Tatro and Mollo-Christensen (1967), the condition for
marginal stability is found to be that the Reynolds
number based on the depth Dg, of the Ekman layer
UDg/ve = V2U/Vfv,, shall be of order 100. Thus, for ex-
ample, v, ~ U?/5000f = 200 cm?®s~?, and Dy, ~ U/50f ~
20 m for a current of 10 cms™! in middle latitudes.

In a stratified atmosphere or ocean, the depth of
influence of the Ekman pumping is not necessarily the
depth of the fluid. If a circulation is forced from above
by Ekman pumping with horizontal scale L, one ex-
pects the depth of influence to be the vertical defor-
mation radius Hy ~ f,L/N. This depth will be compa-
rable to the ocean depth for L ~ Ly = 50 km. Most
surface forcing will thus excite a barotropic response.
The spin-down of baroclinic mesoscale ocean eddies
will be considered in Section 18.6.3.

18.6.2 Spin-Up of the Ocean

The problem of the spin-up of the entire ocean requires
definition. The wind and thermally driven circulations
are so coupled nonlinearly that it is not possible to
treat the establishment of the wind-driven circulation
independently. The important question, however, is
not how the ocean circulation would be established
from rest if the forcing were impulsively applied, but
rather how the circulation would change if the forcing
changed. The latter question has clear implications for
understanding the role of the oceans in climatic
change. Thus, one is led to consider first the small-
amplitude adjustment of a given steady-state circula-
tion to a change in the wind stress, with the expecta-
tion that nonadiabatic changes will require consider-
ably long times. Even for this linearized problem,
results for the spin-up of the ocean in mid-latitudes
have been obtained (Anderson and Gill, 1975; Ander-
son and Killworth, 1977; Cane and Sarachik, 1976,
1977) only for the simplest cases of a one- or two-layer
model with no preexisting circulation. The solutions
for a suddenly applied wind stress are complicated, but
their qualitative import can be simply stated. When a
steady, east-west wind stress is suddenly applied to a
two-layer ocean, initially at rest, the motion at any
longitude increases uniformly with time until a non-
dispersive Rossby wave starting at the eastern bound-
ary and moving with the maximum westward baro-
clinic group velocity —BL% reaches that longitude.
When this occurs, a steady Sverdrup flow induced by
the wind-stress curl will have been established in the
upper layer everywhere to the east of that longitude.
By the time the Rossby wave reaches the western
boundary, a steady state will have been established
over the entire ocean—except in the vicinity of the
boundary itself, wheré slow-moving reflected Rossby
waves influence the flow and are presumed to be dis-
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sipated by friction. Thus the spin-up time is essentially
the time required for a signal traveling at the speed
—BL% to cross the ocean from east to west. For width
of 6000 km, we obtain 1.5 X 10 or about 5 years.

We note that BL} increases toward the equator. How-
ever, as one approaches the equator the dynamics of
wave propagation change. Near the equator, Rossby-
gravity and Kelvin waves are generated. These have
maximum group velocities of order Vg'H (g’ is the
reduced gravity and H the depth of the thermocline)
~ 1 ms™!, giving spin-up times of the order of months
rather than years. Cane (1979a) and Philander and Pa-
canowski (1980a) have shown that an impulsively gen-
erated uniform westward wind produces both equato-
rially trapped Kelvin and Rossby-gravity waves. The
equatorial undercurrent is established at a given lon-
gitude when a Kelvin wave traveling eastward from the
western boundary reaches that longitude. The dynam-
ics of equatorially trapped planetary wave modes have
been investigated by Rosenthal (1965) and Matsuno
(1966) for the atmosphere and by Blandford (1966),
Lighthill (1969), and Cane and Sarachik {1979) for the
oceans. The dynamics of the equatorial undercurrent
has been reviewed by Philander (1973, 1980).

A similar linear analysis for a continuously stratified
ocean initially at rest leads to quite different results.
In this case, a wind stress can produce a steady Sver-
drup transport only in the upper frictional boundary
layer. This is the result of the conservation of density,
which requires wS = 0 or w = 0, and it follows from
the interior geostrophic dynamics that gv = fw, = 0.
The initial application of the wind stress will produce
an infinity of transient internal baroclinic modes
whose sum will approach zero in time everywhere ex-
cept at z = 0. If we consider only the barotropic and
first baroclinic modes, the temporal evolution will be
similar to that of the two-layer ocean, but the effect of
the other modes will be such as to cause all interior
velocities to vanish asymptotically in time.

However, if a perturbation in wind stress is applied
to preexisting flow, Ekman pumping can penetrate into
the interior along isopycnals and w, need not be zero.
Although this calculation has not been made in detail,
it seems plausible that the final perturbation structure
would be similar to the mean-flow structure and, there-
fore, that it would be spun up in the time associated
with the cross-ocean propagation of the lowest baro-
clinic modes.

It is also important to note that the definition of the
spin-up time depends to some degree on the property
one is considering. For example, the Sverdrup balance
(see Leetmaa, Niiler and Stommel, 1977, for an empir-
ical discussion) is established on relatively short time
scales. If the ocean is forced by the Ekman pumping,

wg = woexplikx — imt],

it may be seen from the vorticity equation (18.32) that
Sverdrup balance will be attained when |wk| << 8. Thus
fluctuations in forcing on the size of the basin with
periods even as short as a few days—the time for the
barotropic wave to cross the basin—will preserve the
Sverdrup balance.

Clearly there are many unanswered questions con-
cerning even the adiabatic response of the ocean to
changes in the forcing. We know still less about the
response time of the entire wind-driven thermohaline
circulation, although we expect the time scales to be
much longer. The heat and salt transfer processes may
take as long as 50 years for transfer down to the main
thermocline and 1000 years for formation of the abyssal
water beneath the main thermocline.

For the atmosphere, too, the nonadiabatic spin-up or
spin-down processes are slower—radiative heat-trans-
fer processes have time constants of the order of
months—than the spin-down time of a few days asso-
ciated with Ekman pumping. Moreover, the calcula-
tions in section 18.6.3 indicate that Ekman spin-down
will tend only to reduce the barotropic component of
the kinetic energy, that is, they reduce the winds by
their surface values. Other processes must be involved
in the decay of the winds aloft.

18.6.3 Spin-Down of Mesoscale Eddies

As a final example of frictional quasigeostrophic dy-
namics, we shall consider the effects of bottom friction
on mesoscale ocean eddies. In the atmosphere, friction
at the ground is an important part of the dynamics of
synoptic scale motions. In the ocean, however, friction
is considered to be less important because the bottom
currents are relatively weak. Nevertheless, it is of in-
terest to know how much of the water column is af-
fected by bottom friction. We do know that the surface
manifestations of mesoscale motions (in particular
Gulf Stream rings) can persist for longer than 2 years
(Cheney and Richardson, 1976). We shall show that
this time scale is consistent with predictions of the
simple baroclinic spin-down time.

Holton {1965) obtained a solution to the spin-down
problem for a uniformly stratified fluid in a cylindrical
container, showing that the effects of Ekman pumping
are confined to a height Hg ~ f,L/N. Walin (1969) com-
pleted and extended Holton’s analysis by analyzing in
detail the effects of the side-wall boundaries and gave
a simpler illustration of the spin-down process not in-
volving side boundaries. We shall solve the analogue of
Walin’s problem for the variable stratification and ra-
dial symmetry characteristic of Gulf Stream rings.

We wish to solve (18.32)-(18.34) for the streamfunc-
tion yr,z,t), first for 8 = 0, assuming wg(0) = O,
wgl—H) = (Dg/2)V2y(r, —H,t), and the initial condition
¥(r,z,0) = yr,z). The nonlinearities vanish because of
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the radial symmetry. Taking a Fourier-Bessel trans-
form of the streamfunction

dlk,zt) = J.: rdr[o(rk)g(r,z,t),

we find
3139 (2190 1)y
(52-3_3; - I(2> d‘(k,z;t) = (Oz S oz kz) !pﬂ(krz)l

ulk,0t) = 0,

Galk, —H,t) = $k2DefoS(—H)lk, —H,t).

Solving for § we obtain

Ylk,z,t) = Polk,z) — Bolk, ~HIFiz; k)1 — =),

where Fz; k) satisfies

8149 . .,
3z S azF_kF'
F.(0;k) = 0,
Fz(-Hik,= 11

and the inverse spin-down time is given by
olk) = —k*DgfoS(—H)/2F,(—H;Kk)
[—k*S(—H|H/F (—~H;Kk)losr

where oy = f,Dg/2H is the inverse barotropic spin-
down time. Thus the inverse baroclinic spin-down
time is simply related to ogr by the factor H divided
by the penetration depth.

For large scales, the motion spins down uniformly
throughout the whole column with o = ;. For small
scales, the spin-down occurs only over a depth Hy and
is much more rapid. We expect, therefore, that the
smaller scales will disappear from the deep ocean, per-
haps leaving a thermocline signal behind, while the
larger scales will decay more slowly but also more
completely. In figure 18.12, we show the structures
F(z;k) and inverse spin-down times o{k) for various
scales 1/k. Absolute decay rates depend upon Dy—for
Dg = 20 m, the time scale o3t = 89 days, so that
everything happens in a few months.

For application to rings we assume ,fr,—H) =
=gt~ 12D % 10 cms™!, which gives maximum cur-
rents of 10 cms™! at a radius 1. We solve for the net
change in azimuthal velocity §,(r,z,t — ) — ¢,,{r,z) and
contour this change in figure 18.13. It is seen that the
changes in the thermocline and shallow water are neg-
ligible so that the persistence of oceanic thermocline
eddies is quite consistent with theoretical expecta-
tions.

When the beta effect is included, important differ-
ences occur in the spin-down of linear eddies. The
simplest case to analyze is for weak friction. Then

1
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Figure 18.12 Decay in currents F as a function of depth for
different radial scales k~!. Actual change is given by —F(z) x
bottom currents. Lower figure shows ratio of decay rate to
spin-down rate for a homogeneous fluid as a function of the
radial scale.
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Figure 18.13 Decrease in azimuthal velocity due to bottom
friction when initial bottom currents are 10cms™!(r/l) x
exp[—#{r*/I%) + 41.
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there are two time scales—the period and the spin-
down time. The Fourier-Bessel component with wave-
number k and (initially) vertical normal mode F,[z)
behaves like

dullt) = ik O (] (x + s )+ )

x expl[—ogFi(—Hk2%t/(k® + A2]].

This follows from the fact that when the solution of
(18.33) is expanded in powers of period/spin-down time,
the lowest order component is just a steadily propa-
gating Bessel-function eddy. The next-order component
has an inhomogeneous boundary condition due to fric-
tion and an inhomogeneous forcing of the equations of
motion due to the slow time dependence. Multiplying
this first-order equation of motion by F,(z) and depth
averaging shows that the slow time dependence satis-
fies a simple exponential decay law (see also Flier],
1978).

One important feature of this solution is the fact
that baroclinic modes decay more slowly than baro-
tropic modes both because of the increase in A% and
because of the appearance of the factor Fi(—H|). Thus
a first-mode deformation-scale eddy with F,(—H) =
—0.6 and k = X has a decay rate of 0.20y. But the
important feature is that the g-plane eddy, unlike the
f-plane eddy, decays completely. The B-effect permits
transmission of energy downward, where it can be dis-
sipated by friction. It appears that nonlinearity can
impede this process because it slows down the disper-
sion of a ring (McWilliams and Flierl, 1979).

18.7 Nonlinear Motions

In this section, we shall consider mesoscale flows for
which the advection of relative vorticity or density
anomaly is important. This can occur either in the
form of wave-wave interactions or wave-mean flow
interactions. In both cases we are considering motions
in which there are significant nonlinear interactions
among various scales. This situation is to be contrasted
with that in section 18.5.3, in which the mean flow
provided a variable environment for the waves but was
passive in the sense that there was no exchange of
energy between the waves and the mean flow.

18.7.1 Baroclinic and Barotropic Instabilities

The problem of the instability of large-scale atmos-
pheric motions has a long history, going back as always
to Helmholtz (1888). The discoveries of the polar front
and the polar-front wave by J. Bjerknes {1919) and J.
Bjerknes and H. Solberg {1921, 1922) initiated several
investigations of the instability of a polar-front model,
notably by H. Solberg (1928) and by N. Kotschin (1932).

These studies were incomplete: Solberg’s avoided con-
sidering the effects of the frontal intersection with
ground; Kotschin’s considered various possible pertur-
bation modes but not that of the all important baro-
clinic instability. E. Eliasen {1960) conducted a numer-
ical study of a problem similar to Kotschin’s, but with
a vertical wall. However, the detailed exploration of
Kotschin’s model, a front between two fluids of differ-
ent uniform densities and zonal velocities intersecting
upper and lower horizontal boundaries, was left to Or-
lanski {1968), who considered all the four different in-
stability modes—Helmholtz instability of wvertical
shear coupled with gravitational stability, Rayleigh
instability of horizontal shear, baroclinic instability,
and mixed baroclinic-barotropic-Helmholtz instabil-
ity. Attempts to explain the long atmospheric waves
observed in the troposphere were initiated by the work
of J. Bjerknes {1937) to which we have already referred.
Mathematical theories for the instability of a baroclinic
zonal current with uniform horizontal temperature
gradients were presented by Charney (1947), Eady
{1949), Fiprtoft (1950), Kuo {1951}, Green (1960}, Burger
{1962), Stone {1966, 1970} and many others—the prob-
lem is still being investigated. The stability of a hori-
zontally shearing zonal current in two-dimensional
spherical flow was studied by Kuo {1949). The stability
of flows with both vertical and horizontal shear was
investigated by Stone (1969), McIntyre (1970}, Sim-
mons {1974), Gent (1974, 1975) and Killworth (1980).
The last named is the most comprehensive. Integral
conditions for instability in more or less arbitrary zonal
flows were developed by analogy with Rayleigh’s con-
dition for two-dimensional parallel flows by Kuo
(1951), Chamey and Stern (1962), Pedlosky (1964a,
1964b), Bretherton (1966a, 1966b), and others.

On the oceanic side, the onset of meandering of the
western boundary currents has been dealt with by Or-
lanski (1969) and Orlanski and Cox (1973). They con-
clude that the meandering of the Gulf Stream between
Miami and Cape Hatteras can be attributed to baro-
clinic instability, a result which seems to be in agree-
ment with observations of Webster (1961a). The baro-
clinic instability of the free Gulf Stream extension
implies a northward heat transport by the meanders
and cutoff vortices. Evidence for such transports is not
conclusive. The discovery of the mid-ocean mesoscale
eddies initiated attempts by Gill, Green, and Simmons
(1974) and Robinson and McWilliams (1974} to ascer-
tain whether these eddies could be ascribed to baro-
clinic instabilities of the mid-ocean mean flows. The
results have not been encouraging. Studies of the be-
havior of numerical ocean models also do not support
this idea (Harrison and Robinson, 1978). If one merely
converts available potential energy to kinetic energy
while preserving the total energy density per unit area,
the perturbation kinetic energies cannot exceed those
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of the mean flow, and are therefore too small by an
order of magnitude. Only ad hoc energy-convergence
mechanisms give the right magnitudes.

Most of the studies referred to above have dealt with
the instability of a zonal current with horizontal and/or
vertical shear. Realistically, we must also be concerned
with the instability of nonzonal and time-dependent
flows, including oceanic gyres, forced and free Rossby
waves and waves over topography. Thus we need to
consider more general basic states.

We begin with the quasi-geostrophic potential vor-
ticity equations (18.33)-(18.35). We attempt to find a
basic solution ¥'(x,y,z,t) and investigate the growth of
small perturbations '(x,y,z,t} around this basic state.
The most straightforward basic state is a steadily trans-
lating (possibly at zero speed) unforced, nondissipative
flow field

¥ =9l y.z),

which satisfies the equations

x' =x — Ct,

v +5‘9——;3ﬁ¢+ﬁy Pl + ¢y, z) (18.51)
and the boundary conditions

b.x",y,0) = Ty(§ + Ty,

B(x"y,—H) + foS|—H)b(x' + Cty)

= T,\¥ + Cy). (18.52)
Clearly such a solution is possible only if ¢b, = 0, that

is, if the basic flow is independent of time or if the
zonal variation in topography vanishes—waves cannot
translate over varying topography without changing
amplitude or shape. The basic flow is stationary in the
x',y,z system and in this system the pseudopotential
vorticity is constant along streamlines.

The derivation of (18.51) and (18.52) may indicate
that the restrictions upon the mean flow are quite
severe—no forcing or dissipation. However, our sub-
sequent derivations will require only {18.51) and (18.52)
and these can hold in much more general conditions.
For example, the standard meteorological problem con-
siders the instability of zonal flows forced by heating
and perhaps Reynolds stresses and dissipated by radia-
tion and surface Ekman pumping. Since both the mean
flow and the potential vorticity are functions only of
y, we can still define potential vorticity and surface
functionals from (18.51)-{18.52). As long as the forcing
and dissipative processes are not significant in the per-
turbation dynamics, the formalism below will apply.
(We warn, however, that when there is topography or
lateral boundaries, the stability problem for forced and
dissipated flow may be quite different.)

The perturbation streamfunction ¥’ = '(x',y,z,t} sat-
isfies

(g2, 019
ot (V 0z Sa)dj

9106 N\,
+(V—CX)'V( —6_23’5_13)‘1' =0, (18.53a}
P'\¥,z) = P(‘I’zl,
o ’+(‘—“]-V(£—T’) =0 (18.53b)
ath v [2.¢ oz l’l - Y .

z =0, -H.

If we examine the normal modes ¥'(x,y,zt] =
Y'(x’,y,z)e’!, we have the eigenvalue equation for the
growth rate

0z S 0z
0109
- _ _ o 2 - Y ' '
(v — cx) V(V + % S 5 P>(,b, {18.54a)
with boundary conditions
oy, = —(V — TR}V (— - T') W, z=0,
(18.54b)

fe g —zv (L ) e -
oY, = —(V cx)V(az T,,)d;, z=-H.

These equations for the perturbation streamfunction
¥’ and the growth rate o will form the basis for dis-
cussion of zonal flow instability and wave instabilities
below.

Integral Theorems The classic example of an integral
theorem 1is, of course, the Rayleigh theorem (1880).
However, there is a slightly more general theorem, due
originally to Arnol’d {1965} and applied to quasi-geo-
strophic flow by Blumen (1968}, which we shall extend
here to the problem of traveling disturbances and/or
stationary motion over topography. This theorem
states that the flow is stable if the potential vorticity
and buoyancy along the bottom surface increase, and
the buoyancy along the top surface decreases, with in-
creasing streamfunction, thatis, P’ = 0, T, = 0, T} =
0 everywhere. To prove this, let us assume that P’ > 0,
T; < 0, and T} > O everywhere. (The cases for P’ = 0
or T, = 0 or T; = O everywhere are readily proved.)
First, we form an energy equation by multiplying
(18.54a} by —y’*, volume integrating, adding the con-
jugate equation, integrating by parts, and applying the
boundary conditions. We obtain

(o + o) 155 [V +5 o

')+ ce + [f ] + Ty, ¢
(18.55)

=l g + ey,

+ c.c. [°.
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Next, we form a normalized enstrophy equation by
multiplying (18.54a) by q'*/P’ (recalling that P’ # 0)
and volume integrating to get

(o + o) 7 12E

=~ [fIS @] + ey.¥') + c.c.l.

Applying a similar procedure to the upper and lower
boundary conditions, adding the result to (18.55) and
(18.56), gives

18.56)

o+ ") 155 [ |90 + 51w+ la P

1 1

~ 75707 WO + s W] = 0. 18.57)

For the choice P’ > 0, T; < 0, and T} > 0 the integrand
is positive definite, implying that Re{o) = 0, that is,
that the flow is stable. When P’, T}, or T} are every-
where zero, the enstrophy or surface-temperature var-
iance equations simply show that |g’| or |3 at O or
—H =0, so that the term contributing to {18.55) can
be ignored and therefore will also not enter in (18.57).

This completes the proof of the theorem. From the
relation between the potential vorticity and the
streamfunction {in the moving coordinate system) and
the relation between the surface buoyancies and the
streamfunctions at the top and bottom surfaces, we
can tell whether the flow is stable or potentially un-
stable. In some problems (cf. Howard, 1964b; Rosen-
bluth and Simon, 1964) the necessary criterion for sta-
bility has been shown to be sufficient. We should also
mention that the normal-mode assumption is not es-
sential, so that the theorem applies to an arbitrary
initial disturbance {Blumen, 1968).

In illustration, we note that the theorem implies that
the Fofonoff (1954) inertial gyre solution,

P(E’) = OJ’, Ts"t_b) = wal) = OI

where a is a positive constant, is stable, as first pointed
out by McWilliams (1977). We could find many other
stable gyres by numerical means, including topograph-
ical effects, by solving (18.51), (18.52) with arbitrary
functionals P and T, constrained only to satisfy the
proper derivative conditions. The simplest would be to
take

P(y,z) = alzlp + blz),

g =0

with a(z}) > 0 and similar linear functionals for the
boundary conditions.

A second example is the flow forced by Gulf Stream
meandering described in section 18.5.3. In this case,
the potential vorticity equation for the forced wave
(the basic state) is

V2 + By = P + Ty).
The substitutions

w = Y, e~ Vgitkz—ot)

and

¢ = ok

show that P(Z) = BZ/c. Therefore, when the forcing
propagates eastward, the trapped wave is stable. Unlike
ordinary propagating Rossby waves, for which ¢ < 0,
and which Lorenz (1972) has shown to be unstable,
forced waves may be stable. We shall consider topo-
graphically forced waves in detail in section 18.7.3.

Zonal Flows We now specialize to zonal flows § =
—fvaly’,z)dy’, b, = 0. For these, we can readily find P’
and T}, by taking y derivatives of {(18.51) and (18.52):

L 818, _
P = (B Uyy 9z S 8z ll)/lC u)l
T; = _ﬁz/(a - ﬁ)!z=0r

Ta = lfOSby - az)/‘é - l_i)lz:—Hr

where ¢ now is completely arbitrary (i.e., the pertur-
bation wave speed will be simply doppler shifted by c).
In particular, we can choose € so that C — T has a
definite sign. Therefore we see that the flow will be
stable if all the three quantities

— 8 1adu
B —uy, " %3S’
i,(0),
foS(-H)b, — @.(—H)

have the same sign. Thus we recover the generalized
Rayleigh theorem for quasigeostrophic flows: the flow
is stable if

— 01
Qyzﬁ_uw_ag

&

+ 52 8lz)

Q

iz

+ (foby —ls) 8z + H) (18.58)
is uniform in sign (8 is the Dirac delta function). More
conventional proofs of this theorem also can be found
in Chamey and Stern (1962), Pedlosky {1964a), and
Bretherton (1966Db).

A second standard theorem in shear flow instability
theory due to Fjgrtoft (1950) can also be generalized to
the quasi-geostrophic flow problem. If we suppose that
Q, vanishes along some curve in the (y, z) plane and
furthermore that i = @i, = constant on this curve, the
flow will be stable if Q,(7 — T.) is negative everywhere.
This can be demonstrated by choosing ¢ = @,. Clearly
the requirement that @ = @, at all points where
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a—_
—a;u—O

A -

_ 0
B—uy, oz

is highly restrictive (though it does occur for @, = 0 or
i, = 0 or &1, + (8/8z)(1/S)(8/8z)a = Ku).

As a practical application, we remark that the Ray-
leigh theorem (18.58) implies that the Eady (1949) prob-
lem (S = constant, &, = constant, 8 = 0, @, = 0) can
be stabilized by a sloping topography such that b, >
@,/foS|-x. This slope is steeper than the isopycnal slope,
so that the density gradient at the bottom becomes
opposite in sign to the gradient at the surface.

A second application is to demonstrate the stabiliz-
ing effort of B, especially for eastward flows. We con-
sider zonal currents with a barotropic plus a sheared
flow with the structure of the flat-bottom first-baro-
clinic mode

aly,z) = tgr + UacFi(z)

with figr and @c constants. (Many currents in the
ocean do seem to have dominantly first-mode shears.)
The Rayleigh criterion becomes

—_ u
Q,=2 +—L‘3§9F1(z)>0

for all z. This can occur only if

_BA _- _ A BLA
[F0] = "¢ TR O] + [Fi—H)| ~ JF(—H]’

where Au is the change in velocity from bottom to top.
Using our N? profile this implies

—4 cms! < Au < 22 cms™.

We see that eastward currents are considerably more
stable than westward flows. Gill, Green and Simmons
(1974) report on calculations which show weak growth
rates for Al ~ —5 cms™. Observations of actual Az’s
are not readily available because the midocean density-
field measurements are generally contaminated with
eddies. However, it is not unlikely that mid-ocean
mean currents away from the “recirculation region” of
Worthington (1976) (see also chapters 1 and 3) are
smaller than this magnitude, so that mid-ocean flows
may very possibly be stable {see also McWilliams,
1975).

This result must be viewed with caution, because it
is possible for forced meridional currents to be locally
unstable for any value of the shear. We can see this by
considering the stability of a mean flow

¥ = Vzlx — dlzly,

where we ignore the dynamics of the mechanism that
supports the ¥ component of flow on the grounds that
its space and time scales are much larger than those of
the perturbations we wish to consider. The perturba-
tions satisfy

a ’ T ! - -
B_tq +[N’;Q)+]W’14)—0;

where

7= (2120) x4 (-2 1 2a)

= \azs5a) Xt B %535°)7

is now not expressible as P{{,z). However, we may
consider perturbations of the form

Y’ = F(z} explik(x — ct] + ily]
to find

Applying the usual Rayleigh theorem shows that the
flow will be stable unless B8 — (8/8z)(1/S)(8/oz)[T +
{1/k}7] changes sign. If ¥ #+ 0, however, a proper choice
of I and k (the direction of the perturbation wave) may
always be made to ensure satisfying the necessary cri-
terion for instability. Thus arguments about the zonal
flow stability may not directly apply to the Sverdrup
circulation.

The discussion of baroclinic instability has been ex-
tended to finite amplitudes by Lorenz (1962, 1963a)
using truncated spectral expansions and by Pedlosky
(1970, 1971, 1972, 1976, 1979b), Drazin (1970, 1972),
and others using expansion techniques in the vicinity
of critical values of the stability parameters. Thus far,
the systems dealt with have been more applicable to
laboratory models than the actual atmosphere or ocean.
A general review has been given by Hart (1979a), who
himself has contributed by experiment and analysis to
the subject.

18.7.2 Wave-Mean Flow Interactions

The subject of wave-mean flow interaction in the at-
mosphere has been treated extensively in connection
with the manner in which large-scale waves generated
in the troposphere propagate vertically into the strat-
osphere and there interact with the mean flow. One
example is the so-called sudden-warming phenome-
non, the rapid breakdown of the stratospheric winter
circumpolar cyclone accompanied by large-scale warm-
ing. Another example is the so-called quasi-biennial
oscillation, which has been explained as a wave-mean
flow interaction between vertically propagating
Rossby-gravity and Kelvin waves and the zonal flow in
the equatorial stratosphere (Lindzen and Holton, 1968;
Holton and Lindzen, 1972). A vivid experimental and
theoretical demonstration of this type of interaction
has been given by Plumb and McEwan (1978).
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Charney and Drazin (1961} have shown that small-
amplitude steady waves in quasi-geostrophic, adi-
abatic, inviscid flow cannot interact to second order
with the zonal flow. If there are no critical surfaces at
which the zonal flow vanishes and there is no dissi-
pation, forcing, or transience, no interaction will take
place. All are present in the quasi-biennial oscillation
and in Plumb and McEwan’s model. The result of Char-
ney and Drazin was originally derived by straightfor-
ward calculation. It may also be inferred from an in-
dependent study of energy transfer in stationary waves
by Eliassen and Palm {1960), who derive linear relations
between the horizontal Reynolds stress, the horizontal
eddy heat flux, and the components of the wave energy
flux. These works have been greatly extended by An-
drews and Mclntyre (1976), Boyd (1976), and Andrews
and MclIntyre (1978a,b). McIntyre (1980) reviews the
subject.

There have been several suggestions of oceanic anal-
ogies: Pedlosky (1965b) and N. Phillips {1966b) have
argued that westward-propagating Rossby waves can
cause acceleration of the western boundary currents.
Lighthill (1969} attempted to explain the onset of the
Somali Current as due to the interaction of Rossby-
gravity waves generated by the monsoon winds in the
mid-Indian Ocean with the flow in the vicinity of the
East African continent. More recently, experiments of
Whitehead (1975) have shown quite clearly that mean
flows may be generated by radiated Rossby waves. His
work led Rhines (1977) to a theoretical reconsideration
of the wave-mean flow generation problem not only
when the geostrophic contours (the f/H lines which
represent the streamlines for free inertial motions) are
closed or periodic but also when the contours are open.
Rhines’s work is important for understanding large-
scale forced motions in oceanic basins.

As an illustration of wave-mean flow interaction in
an oceanographic context we shall ask again whether
the waves produced by Gulf Stream meandering may
be responsible for generating and maintaining the so-
called recirculation flow found by Worthington (1976)
and others. This flow occurs in a region extending some
1000 km south of the stream and contains {according
to Worthington} a sizable westward transport (10°
m3s~!). This problem has been addressed by Rhines
(1977), who, however, did not consider generation due
to eastward-moving waves.

We consider the barotropic flow south of the Gulf
Stream forced by the streamfunction ¥(x,0,t) = A cos
(kx — wt), as in section 18.5.3, but we now include the
effects of bottom Ekman friction and the second-order
interaction with the mean zonal flow. The stream-
function satisfies

(:t + O'BT) vzdl + B, = *I(lll,vzill),

Yix,0,t) = A coslkx — wt),
Y — 0, y — —®,
The linear solution {assuming Ak?/8 small} will be

¥ = Re{A explilkx — ot) + vy]},

v = VK + Bof(w® + okr) — iBkogr/(w? + o),

if the root with positive real part is chosen to satisfy
the radiation condition. The nonlinearly forced stream-
function field satisfies

(% + O‘BT) VH© + By = —2A%%, ke

where v, and v, are the real and imaginary parts of v,
respectively. Its solution is

2
YO = _AMKk o
2087
or
2
g oAk
OBt

This is, of course, just the solution to
ogrll = — (u'v’},

with u’ and v’ taken from the lowest-order solution.

The mean flow is determined by a balance between
friction and Reynolds-stress forcing. The importance of
dissipation becomes clear: without friction, v is either
purely real or purely imaginary and @ = 0. With fric-
tion, we find that the waves transfer momentum into
the mean flow. Moreover, we can show that the mag-
nitude of the flow is not sensitive to the spin-down
time 1/ogy, as this time becomes very large.

As ogy becomes small we find

\/ k? +B—k — iBogrk/2e? \/k2 +B—k ,
) ®

ok < — Blk?

“iy ke B pokinet i -

- BIk? < w]k < 0.

L
The forced mean flow is therefore

exp (94/1(2 +B—:)( y) s %’> 0,

_ BA%® olk < plk?

20? )

€Xp (130'131‘1(5//(02 — Kk _B_k) ’

(0]

— Blk? < wk <0,
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with amplitude independent of ogr. We can estimate
the westward current speeds by relating the amplitude
A to the excursions of the stream in the y direction:

= —A% coslkx — wt) = dycoslkx — wt).

The maximum westward currents are —38d3. Rhines
(1977) has derived from more general considerations
the result that mean-flow generation is proportional to
B times the square of the displacement. For typical
excursions of 100-200 km, mean flows of 10-40 cms™
can be generated. [We should note that, for this prob-
lem, the eastward Stokes drift is given by

W (1 B4 g (oo By,

which is larger than the westward Eulerian flow so that
the particle drift is eastward.]

Observations of Gulf Stream meanders usually in-
dicate eastward-moving disturbances; therefore much
of the mean flow will be trapped in a distance one-half
that shown in figure 18.12. The disturbances that gen-
erate propagating waves (—B/k* < w/k < 0) can produce
mean flows over large north-south distances, but there
does not seem to be enough amplitude in such disturb-
ances. (See, however, the remarks in section 18.8)

This very simple calculation indicates that eddy ra-
diation from the meandering Gulf Stream can generate
a return flow with speeds comparable to those sug-
gested by observations (cf. Worthington, 1976;
Wunsch, 1978a; Schmitz, 1977; see also chapter 4). The
predicted north-south scale of the region is quite small,
however, unless there is considerably more energy in
westward-going meanders than has been suggested by
Hansen (1970} or by Robinson, Luyten, and Fuglister
(1974).

There is another form of wave-mean flow interac-
tion involving overreflection of waves traveling
through a variable mean-flow field. Lindzen and Tung
(1978) recently have demonstrated that barotropic and
baroclinic instabilities may be explained as overreflec-
tion phenomena in which Rossby waves impinging
upon a critical surface are reflected with a coefficient
of reflection greater than unity. The combination of an
overreflecting region in the mean flow with a reflecting
boundary can lead to a growing disturbance in which
the wave picks up energy at each passage into the
overreflecting region.

This concept may be directly applicable to the prob-
lem of reflection of Rossby waves from the western
boundary currents.® Numerous examples of Gulf
Stream rings interacting with the Gulf Stream without
being absorbed can be found in the data presented by
Lai and Richardson (1977), and at times they appear to
increase in energy as a result of the interaction (Rich-
ardson, Cheney, and Mantini, 1977). We suggest the

possibility that overreflection may be involved in the
dynamics of mesoscale eddies near the western bound-
ary current. Whether or not this is so remains to be
seen.

18.7.3 Wave Instability and Form-Drag Instability
The fact that Rossby waves may be unstable was first
shown by Lorenz {1972) for a barotropic atmosphere. In
a more detailed exploration of the problem Gill {1974)
observed that there are two distinct mechanisms for
the instability: a resonant triad interaction or a shear
instability of the Rayleigh type. Duffy’s (1978) and
Kim'’s {1978) baroclinic studies showed that baroclin-
icity may also cause instability in large-scale waves.
As in the instability of zonal flow, the growing baro-
clinic modes have the scale of the radius of deforma-
tion. Jones (1978) and Fu and Flierl (1980) have explored
these ideas further as they apply to the ocean.

Wave and Form-Drag Instabilities Just as a freely prop-
agating wave provides variations of potential vorticity
which may lead to instability, topography may produce
a forced flow whose variations of potential vorticity
may also cause instability. Topography may be a de-
stabilizing influence, either because the forced flow is
unstable, just as a free wave, to Rayleigh or resonant
instabilities, or else because the topography itself may
help—via the form drag produced by the perturbation—
to extract energy from the mean flow. The latter type
of instability was first encountered by Charney and
DeVore (1979) in their study of blocking {the persist-
ence of anomalously high pressure in certain regions
of the atmosphere) in a barotropic atmosphere. In their
model, blocking occurs as an alternative flow equilib-
rium corresponding to a given forcing of the zonal flow
in the presence of sinusoidal topography. It was found
that the transition from the normal flow state to the
anomalous blocking state takes place via a form-drag
instability of an intermediate equilibrium state in
which the zonal flow is superresonant. In this super-
resonant state, a small decrease of the zonal flow am-
plifies the forced orographic wave and increases the
form drag (mountain torque), which in turn decelerates
the zonal flow still further. Charney and Straus (1980)
extended this study to a two-layer baroclinic atmos-
phere. Here again there is a form-drag instability. But
when there is no lower layer flow, the instability is
catalyzed by the form drag: the perturbation derives
its energy from the available potential energy of the
Hadley circulation generated by thermal forcing; the
form drag merely establishes the necessary phase re-
lationships.

The connections between this form-drag instability
and the more familiar resonant or Rayleigh instabilities
have not been previously explored. For this purpose,
consider the simplest wavelike flow of a homogeneous
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ocean and derive the instability conditions for both a
free zonally propagating wave and a topographically
forced Rossby wave in order to elucidate the similari-
ties and differences among the respective instability
mechanisms. We begin by stating the forms of the
potential vorticity functionals P($ + Cy) and the re-
sulting perturbation equations. For the Rossby wave,
¢ = —p/k?, the potential vorticity functional in equa-
tion {18.51) is

P(Z,z) = (BC)Z = — k*Z

with streamfunction

¥ = Asinkx.

The perturbation equation (18.53a) is particularly sim-
ple because P’ is now a constant:

VR + ] —kﬁzy + Asinkx, (V2 +k2jy') = 0, (18.59)

where A is completely arbitrary.

For barotropic flow over topography of the form
b = b,sinkx on the B-plane, the basic state potential
vorticity equation

VI + By +fLI_I;~° sinkx = P({)

has the solution

afybo/H

Y = —Oy + Asinkx, A zﬁkz—ﬁ

with the linear potential vorticity functional

pz)=-Lz=-1z
Here k, is the wavenumber of the stationary wave (k%

may be less than zero). The perturbation equation
oV + ] [ - % y + Asinkx, (V2 + km']

=0 (18.60)

is very similar in form to (18.59) except that k and k,
are now independent; however, the amplitude A for
the topographical problem is determined by

_ JobolH

A=tta

Obviously we need only to solve (18.60) and find
a{B,A,k k,); we can then identify both the free (k, = k|
and forced (k, # k) regimes. In actuality the task is
even simpler since dimensional considerations show
that there are only two parameters, M = Ak®/8 and
p = k,/k, that must be varied while computing the
nondimensional growth rate o/Ak>.

First, however, we demonstrate that only the k2 >
0 case need be considered, since the flow is stable for
k% < 0. This follows readily from (18.57):

1
o+ o) (1190~ 55 199F) =0,

which implies that Rossby waves k2 = k? > 0 and
waves forced by eastward flow may be unstable, while
waves forced by westward flow k2 < 0 are definitely
stable. Again, as in section 18.7.1 we see that stable
waves are generated when the relative motion of the
forced wave with respect to the ambient flow is east-
ward. In addition, for eastward flow over topography or
westward-propagating free Rossby waves, a necessary
condition for instability is that the perturbation have
components with scales larger than k;! and compo-
nents with scales smaller than k3. This follows from
Fourier analyzing ¢ and substituting in {18.57) to get

stds s is)e | 1 —'ki'] -0,

which implies that |§'(s]| must be nonzero both for
some values of |s|* larger than k% and some values
smaller than k2.7 This is the perturbation form of Fjer-
toft’s (1953) result on energy cascades.

We could readily solve the stability problem (18.60)
using the mathematical techniques of Lorenz (1972),
Gill (1974), Coaker (1977}, or Mied {1978) to investigate
growth rates. Alternatively we could discuss the lim-
iting behavior—the Rayleigh limit for M = Ak®/8 >
1, the resonant interaction limit for M << 1, and the
form-drag instability—by separate approximations. We
shall do this for the last-named problem because it
represents a relatively unfamiliar phenomenon. How-
ever, to ascertain most clearly the connections between
the various types of behavior, it is most simple to
employ the Fourier expansion

lpl — eilou [Aoeiko.r +A_lei(ko—k)1‘ + Alei(kn+k).1' + . ]

and truncate to the three indicated terms (cf. Gill,
1974). The resulting dispersion relation becomes just

(wKZ, + B_,)(@K2 + Bo){wK3 + B}

_l3A%K?

2 _
4 ‘ku

#IlikZ — K2,)(wK? + Bl‘

+ (k% — K3)(wKZ, + B_,)] {18.61})

using the notation o = io, K% = (ko + nk)* + I}, B, =
Blk, + nk)kz — K2)/k%. For Rossby waves we simply
replace k, by k.

We have sketched the dependence of 6 = o/Ak? upon
ko and I, for various M and p values in figure 18.14.
When M >> 1, there is a broad area of (ko.l,) space in
which the growth rates are real. The maximum occurs
for k, = O (this is really a form of Squire’s theorem) and
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NORMALIZED GROWTH RATE

Figure 18.14 Growth rate divided by Ak? as a function of k,,
I, for various ratios of the stationary wavenumber to the top-
ographic wavenumber u and wave steepnesses M. The solid
lines are the zero contour. The dashed contours, separated by
the interval 0.1, correspond to positive growth rates.

the instability equation is similar to the barotropic
instability equation. As M decreases the instability (6
real) becomes restricted more and more to a band
around the frequency resonance line (see below). When
w decreases from 1 to a quantity smaller than 1 (@ >
B/k?), the point of maximum growth rate for M = «
moves to smaller wavenumbers I,. For finite M, the
same thing occurs—the largest growth rate moves to-
wards k, = I, = 0 as p decreases. On the other hand,
when u increases from 1 the forced wave becomes
stable for small k, and I, even for small M, and the
wavenumber for maximum growth migrates to smaller
scales.

We are thus led to consider the three limits for
(18.61):

Strong waves (A or M large): When A is large, the
frequency o is order A and we can neglect all of the
B’s to find

> - Auzold \/—(k“:; -

Clearly the flow will be unstable for K < k2 < K2, K2 ;
this will always be possible by proper choice of I, and
k,. This is just the Rayleigh instability of the shear
flow corresponding to the wave field. The maximum
growth rate occurs at k, = 0:

BIKEKE — K2,) + K2,(k% — K3)]
KZK3K2, '

_1 1/2
(=1 + Vp? + uf? > (\/5—2)

b= V3 - 1)
) (5

{18.62)
2

However, in the topographic case, A can be large not
only for very strong topography (f,b,k/H >> 8}, but also
because the zonal flow is nearly critical. In the latter
case u = 1, so that the free and forced wave instabilities
are indistinguishable. If the flow is not critical, but
rather is forced by strong topography, the formula
shows the maximum growth rate occurs at ky— 0,
I,— 0.

Weak waves (A very small or M small): Here the
critical condition is that two of the roots of the left-
hand side of (18.61}—for example, —B/K?% and —B,/K?—
coalesce. This resonance condition

B,/K§ = By/K}
or

kolk? — K§) (ko + k){ki — K})
k22 k2K?

permits the order A part of the frequency to be complex
since

2 A2],2
K3k + By =122 (i ~ KikE — K
has a complex root for K3 < k2 < K% The growth rate

18

_ Allk| \/ (k3 — K3)(K3 — k3)
M} K2K2 :

However, the resonance condition must also hold. We
can relate this to the more familiar wave-resonance
conditions by defining the intrinsic frequencies of the
two components of the perturbation and also that of
the mean flow by

_Bk()/K%r
1 “B(ko + k)/K¥I
& = —pklkE = —k.

[N

0

[

The resonance conditions
(ko + k, 1) = (ko,Io) + (k,0),
@, =0y + &

both hold. We show the resonance curves and growth
rates for various values of k,/k in figure 18.15.

For large u (small mean flow speed), the resonant
interaction (except for large I, is really a triplet inter-
action between the two perturbation waves and the
topography itself (rather than the forced wave). This is,
of course, a stable situation. As u becomes less than
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Figure 18.15 Curves above x axis show relation between k,
and ], required by resonance condition. Curves below axis are
plots of —&, showing the dependence of the growth rate upon
k,.

about 0.9, however, the maximum growth rate again
occurs as kg — 0 and I — 0 [1, ~ (u2ke/1 — 2]

Form-drag instability: Thus in either case we are led
to consider what will be shown to be a form-drag in-
stability—the nonzero growth rates occurring at small
ko and I—when p < 0.79. There is some difficulty here
since the origin is a singularity for M finite; this prob-
lem would be eliminated in a bounded geometry. For
convenience, we will take the limits ko, — O first and
then I, — O since this case has a simple physical inter-
pretation. Applying these limits to (18.61) gives the
frequency:

B — K2
o=(f T

The flow is unstable when the right-hand side is neg-
ative, which cannot occur for Rossby waves k, = k,
but may occur for topographic waves when k, < k or
T is greater than the critical speed B/k2% In fact, the
range is

Blk: < < Blk? (1 + [—; (%"’)2%:]”3) .

(The resonant triad instability for u < 1 does not appear
here; rather, the limit k, — 0~ and 1, ~ (—ko"? — 0*
must be used.) So far we kave looked at the mathe-
matics; let us now discuss the physics of this instabil-
ity and also show that the truncation to three terms is
valid.

The form-drag instability involves one component
A, which has very large x and y scales and two com-
ponents with the same scale as the topography. Ex-
amination of the individual amplitudes shows that

27,2
£ i - 1o,

(18.63)

Ay ~ 1/1,, so that Aje' contributes a term in the
perturbation streamfunction which is proportional to
y—a modification of the zonal mean flow. This sug-
gests an alternative approach, which is to consider the
zonal x-averaged momentum equation and the equa-
tion for the deviations. We begin with the quasi-geos-
trophic equations for a homogeneous fluid,

fov =pa,

fou = —p,,

u + (uu), + (uv), — Byv — fov'? = —p%,
Ve + (uv); + (vv), + Byu + fou® = —pf,

u + v~ ubl. + [vbl] =,

and consider the zonally averaged equations
(v) =0,
(u)t + (u")u = fO(Vm>I

(V) = (7).

If the topography vanishes at some y far from the region
of interest [following the arguments suggested by Hart
(1979b), who showed that the Charney-DeVore trun-
cated spectral problem was identical to that of forced
flow over topography varying slowly with y], we can
integrate the last equation to find

(u)e + (uv), =1 (vb).

The vorticity equation can be used to find the x-de-
pendent part of the flow. In particular, if we assume
the y scale is very large, we can drop all y derivatives
to get two coupled equations:

Vot ()7 + By = — L2 ()b

For the topography b = b,sinkx, we have a steady
solution ‘

(u) =1,
v = Ak coskx.

The deviations from this state satisfy

1£b .
(u): =§Z'-’-H—° (v’ sinkx),
Ve + v, +Bv' =k (AI(z —f—"I_Il-)B) (u)’ coskx
_pfobo__ B :
=k e _B(u) coskx,
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which may be solved explicitly to give the dispersion
relation (18.63). Here too one sees that it is the coupling
between the change in the zonal flow induced by the
wave drag and the change in the waves due to changes
in zonal flow which leads to the instability. If we de-
crease the mean flow for a supercritical case (i.e., if we
take (u)’ to be negative), we produce low vorticity on
the upwind slopes of the topography and high vorticity
on the lee slopes. Associated with this vorticity change
is high pressure on the upslope side of the mountains
and low pressure on the downslope. This pressure
pushes eastward on the topography so that the topog-
raphy pushes westward on the fluid and decelerates the
mean flow still further.

Flow in the Presence of Topography The previous sec-
tion has described the influence of wavy topography
upon the stability of the flows that go over it. However,
there also exists topography that does not alter the
mean-flow structure, either because the mean current
is parallel to the topographic contours or because the
currents occur only at levels above the peaks of the
topography. In this section, we shall show that the
stability of a parallel mean flow in the presence of
topography can be quite different from that of the iden-
tical mean flow in a flat-bottomed ocean. We have been
guided by the result of Charney and Straus (1980}, who
show that the form-drag instability can catalyze the
release of available potential energy in a baroclinic
shearing flow that would be stable in the absence of
topography. In their study of multiple equilibria and
stability in forced baroclinic flow over topography, they
found that form-drag instability may occur for weaker
thermal driving than conventional baroclinic instabil-
ity, and that this type of instability leads to transition
from one finite-amplitude, quasi-stationary equilib-
rium state to another. Baroclinic and barotropic insta-
bilities of the stationary topographically perturbed
flows give rise to westward-propagating, vacillating
wave motions with periods of the order of 5 to 15 days.
They suggest that the form-drag instability leads to
transition from one stationary regime to another and
that the observed westward- and eastward-propagating
long planetary waves (zonal wavenumbers 1-4) are the
propagating instabilities associated with these station-
ary regimes.

The simplest and most obvious example of the des-
tabilizing effect of topography is the case of zonal bar-
otropic flow with meridionally varying topography.
The topography alters the effective value of 8 and
thereby the growth rates and stability criteria: even
though the energy source remains the horizontal shear,
the topography can alter the possibility of extracting
this energy. In particular, the Charney-Stern necessary
criterion for instability [that 8 — @,, + (fo/H) b, must

change sign in the domain] suggests that instability
may occur for lower values of shear when b, # 0. The
necessary condition may, of course, not be sufficient;
in particular, when @, = 0O, the flow will be stable even
if B + (fo/H)b, changes sign. However, in the case of
sinusoidal @(y) and b(y), the necessary condition seems
also to be sufficient {using a simple truncated expan-
sion in y}, and the topography does destabilize the flow.

DeSzoeke (1975) discussed baroclinic flow over mer-
idionally varying topography and found that the topog-
raphy destabilizes the flow at some wavenumbers by
a resonant instability involving two baroclinic waves
which happen to travel at the same speed. Similar ef-
fects can be identified in the work of Durney (1977).
We would like to focus our discussion, however, on
the specific problem of destabilization by form-drag
instability of a baroclinic flow which is neutrally stable
in the absence of topography.

We shall consider the conventional two-layer model
whose governing equations (cf. Pedlosky, 1979b) are

(V]
(E + VI'V)

A2
X [V — 1+6(1_¢2‘+B)’]=
9
(at +V2'V)
X (V4 ~ 1o (i — ) + By +L2 1+ 81 = 0

where v, and y, are the velocity and streamfunction in
the upper layer and v, and ¢, the corresponding quan-
tities in the lower layer, § is the ratio of the upper to
the lower layer mean depths, and A;? is the layered
version of the first baroclinic mode deformation radius

= fo (1 + 8]*/g(Ap/p)HS. We write the x-averaged
equations
ﬁ [_.“ +__}f__ (_ —_71 )
£ R T R

6}/2 "’lr(ayz '«l‘l +5 ‘Pé) = 01

i} — o
R T

o N __fo
572‘!’21( 2‘!’2 1+8¢) (1+8]6 2'#21‘

and the equations for the deviations

(i**hi)[zW‘Tzswl ’]

AZ
+p+ 2w -] wi
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7]

o _ 0 A2
(ﬁ + uz&) [Vz%'v ~T1slt i

+—f§(1 + a)b] + [B 18)‘

+ 8 uz)] ¢21‘

+l[¢4,v2w; 1+8(¢2 ¢1)+f°(1+8)b]

e [ T
If we now consider y scales that are order 1/A of the x
scales or the deformation scale and expand &@; =
0 + AP + -0, Yixy) = $Ox) + AWO(x,y) +

-+ (where the topography is assumed to vary only in
x) we find

so that the induced changes in mean flow are baro-
tropic. This occurs because the form-drag forcing of the
mean is at much larger scales than the deformation
scale. Eliminating the T terms at second order from
the two mean flow equations, noting that the Reynolds
stresses drop out because ;@ is independent of y, we
find that the barotropic component of the zonal flow
is accelerated or decelerated by the form drag,

auz fO !
Ty l"z.rb (18.64)
while the deviation fields are given by

. a1[.. _
[+ @l + 812 ] [ hee — 2y 0 - wa]

2

+(8 4355 wa =0 (18.65)
[_ + 0, 8X] ["’2.1-1' “1x 8("’2 ‘l’l)]
+ (,3 on A”) e = 719 (1 + 8)Ebs. (18.66)

Here we have dropped the superscript (0) and intro-
duced the notation Au for the time-independent shear
across the interface.

From the equations (18.64)-(18.66) one could derive
a single nonlinear governing equation for &I, and deter-
mine the linear instability and finite-amplitude evo-
lution of the flow. For our purposes, however, it will
be sufficient to demonstrate that the initial state
i, = 0, ¥, = 0, ¢4 = O can be unstable in the presence

of weak topography to infinitesimal perturbations even
when the flow would be baroclinically stable in the
absence of topography. We can do this by considering
the stability in the special case Au = 8(1 + 8}/8A%. This
is the maximum shear for which the Rayleigh neces-
sary criterion for stability in the absence of topography,

8A2 2
(-2 ) (112 aa) =0,

is satisfied. Equations (18.14})-(18.16) simplify to the
set

_fo
(")t " H

+8(350) v =0,

OA%
1+8

¥3.b,

2 [bhee -5 - w0)] = - o0+ sy,

We split the streamfunction into sine and cosine parts

as in section 18.7.3 and solve this system of equations
to find the growth rate equation

o (T'i‘?s) i + NP

(e 1)’

+0'2|:M k-
TR
+2(H T K ) K+ N
i (B el - 155 0) (e -5 )
L) AZ(H kK> = MK - M

=0. (18.67)

The real solutions to (18.67) for several values of
foboA/BH are shown in figure 18.16. Notice the insta-
bility occurring for topographic scales on the order of
70 to 110 km, with growth rates proportional to the
topographic height (for small heights, at least). We have
thus demonstrated that the available potential energy
in the flow can be tapped by the orographic instability
even in situations where normal baroclinic instability
is unable to extract mean-flow energy. Thus it is pos-
sible that mesoscale topography plays a role in cata-
lyzing the conversion of mean flow potential to eddy
energy in the oceans.

18.7.4 Multiple Equilibria

We have already mentioned the work of Charney and
DeVore (1979) and Charney and Straus (1980, who
have begun to explore the possibility that the atmos-
phere may possess a multiplicity of steady equilibrium
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Figure 18.16 Normalized growth rates for a topographically
destabilized vertical shear flow. The curves are labeled by
foboA/BH values.

states for given external forcing in the presence of top-
ographic inhomogeneities. In the case of sinusoidal to-
pography in a periodic channel, they have found states
resembling both the “normal”’ configuration in which
there is a strong zonal flow and a relatively weak wave
perturbation, and the “blocking” configuration in
which there is a weak zonal flow and a relatively strong
wave perturbation. They suggest that the blocking phe-
nomenon is an equilibrium state which occurs by a
transition via a form-drag instability from the normal
to the anomalous blocking configuration. Hart (1979b)
has applied similar ideas to laboratory flows and has
succeeded in producing stationary multiple equilibria
experimentally.

Oceanically, one phenomenon that stands out as a
possible example of multiple quasi-stable equilibrium
states is the large meander of the Kuroshio which
sometimes occurs. Figure 18.17 shows the two quasi-
stable configurations that are observed. The transitions
between these configurations occur relatively rapidly.
White and McCreary (1976) have considered a model
for the meandering process involving flow around
bumps in the Japanese coastline. Because their discus-
sion was in terms of linear dynamics, Solomon (1978)
has rightly pointed out that the model must have a
smooth transition between the two states as the in-
dependent variable {the maximum inlet flow speed)
varies. If, however, the phenomenon is nonlinear, cat-
astrophic changes in the state of the Kuroshio may
occur: an infinitely small change in parameters may
produce a finite change in response, and several stable
responses may be possible for the same set of param-
eters.

We propose a simple model of this process consisting
of the steady, nonlinear flow of barotropic current on

a B-plane along a variable coastline (see figure 18.18).
Let the latitude of the coastline be h(x) and let n be the
north-south distance from the coastline. The potential
vorticity equation becomes

[(6—‘1 —hf%)z +ai;2] W + Bln + h) = Fly).

If we split the streamfunction into an upstream part
[x > —o, h = 0) ¥(n) and a topographically induced
part é(x,n) we find

[( S —ho) +%] = Fl + 6] - Ff)

ax an
— Bh — Y, h2, (18.68)
where
_ LY
F{{m)) = Bn +3;;g,
(18.69)

¢6—>0 forn=0 7> -x

When &I = — 0¢/d7 is not constant, equation {18.69)
implies that F is a nonlinear functional, so that {18.68)
becomes essentially a forced nonlinear oscillator equa-
tion; it is well known that such equations may have
multiple stable solutions. We note also a similarity
between the equations here and the equations for flow
of a barotropic fluid over topography. In the derivation
below we assume that the coastline variations are
small and occur on scales large compared to the cross-
stream scale. We shall show that the nonlinearity plays
an important role in determining the amplitude of the
nonzonal flow component when the upstream flow is
near the critical speed U,. This speed is defined by the
condition that long waves (x wavelength large com-
pared to the width of the current) are stationary. Near
critical speeds, the amplitude becomes large. The low-
est-order dynamic equation only determines the cross-
stream wave structure. The first-order equation shows
a balance between advection by the mean flow, effects
of the coastline variations, dispersion, and nonlinear-

ity.

We shall work with the nondimensional forms of
(18.68)-(18.69). Our scaling is guided by the versions

F > -
(: + ) 6= -8 +F (¥

— _gh —B—T‘-’"" " (18.70)

obtained by linearizing in ¢ and h. We obtain F'(¢) by
differentiating {18.69). If h = h,coskx, resonance oc-
curs when
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Figure 18.17 Sketch of two equilibrium positions of the Ku-
roshio. See Taft (1972) and White and McCreary (1976) for
detailed tracks.

Figure 18.18 Model for coastline induced meandering. The
deviation of the coastline from a latitude circle is denoted
hx}; the coordinate 7 is equal to y — h(x). The upstream flow
is @ly).

35N
30N
9* ﬂ _Evm .
(W + T ) ¢ _k2¢l

6=0 m0 (18.71)

For forcing on a scale long compared to the width of
the current (|8/dx]| << |8/07m|) we expect that one of the
underlined terms in (18.70) will balance the forcing
from the side-wall variations —pgh giving ¢ ~ Uh, or
¢ ~ Bh,l?, where U is the scale of &7 and [ is the cross-
stream scale. When the flow profile is nearly critical
for long waves—meaning that the left-hand side of
(18.71) vanishes for some nonzero function ¢ which
also satisfies the boundary conditions, the long-wave
solutions of (18.70} have the two underlined terms
nearly canceling, so that the forcing must be balanced
by the ¢, term. This gives a scale of ¢ ~ gh,L?, where
L is the downstream scale of variation of the topogra-
phy.

Therefore, we scale x by L, h by h,, ¢ by gh,L? n by
1, and @ by U in (18.68)-(18.69) to find

02 0 0\2
[31? +8 (5 - ’/6”’@%) ] ¢
- _ -1_ 0 7_8 — Bl — 27
= o + 25| F(% + 23 8) - )| - Moz,

F (@ln)} = m + M,

with M = U/BI?, y = h,L*/I%, and & = I?/L2. If we assume
that the width of the current is small compared to the
downstream scale (8§ << 1) and that the variations in
coastline are weak enough so that y < 1, we can sim-

plify to
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02 0? _ ,—_Cé
(—+8—()¢——8h +F (¢)M

omn? ox?
F”(lb) + 0O(8?) {18.72)
d) i 01 n= 0/ —%,
with
F’ w’) — Miiy),
(18.73)
P = [— L= M)

which are known functions of » given the specification
of the upstream (x — —=) flow T (7).

We assume that the flow is nearly critical so that
U = Ul + A) where U, is the critical speed (defined
exactly below) and therefore M = M,(1 + A). We expand
(18.72)-(18.73) assuming A ~ § and M. ~ 1, y = 1, and
find to lowest order

0?2 Uy — M!
57_754):%(1,’

=

(18.74)
¢ =0,

which defines the eigenvalue M, and thus the critical
speed U, given the shape of the upstream flow. The 7
structure of ¢ must be an eigenfunction G of (18.74),
¢ = f[x)G[n). At next order in A and §, the solvability
condition for (18.72) gives

n= OI —-%,

[ ancanl] e

— b [ ancio] +5 [ [ Gl 1
e3| [ dncmiLn- M| 5 foh

This ordinary differential equation for the x structure
of the wave f(x) is to be solved for a particular form as
A/8 and y vary. For convenience we shall normalize G
and redefine parameters slightly to write

f = &f + 3% = —hix).

The simplest problem to illustrate the characteristics
of (18.75) is the linear case with h{x) = cosx. (This
topography extends to x = —o, which is not really
consistent with our original model: however, it does
point out some of the properties of these nonlinear
flows.) The solution to (18.75) with % = O is

(18.75)

cosx
f=3 +4’
showing a resonance at A = —1 (see figure 18.19).

For weak nonlinearity ($ small), we can express f as
a Fourier series

f=Acosx + %Ay + Aycos2x) + 9 > A,cosnx,

n=3

which implies a cubic equation for A:

(1 + A4 — Azad [1 (18.76)

! ] -1

(4 + A)
(One can show that the higher-order terms will not
contribute, even near resonance.] Figure 18.19 also
shows the solution of (18.76) for ¥ = 0.2. Here we
clearly see that there are three equilibrium states for
A < —1.3. The state with intermediate amplitude is un-
stable; thus we see that we can have either a large
positive amplitude wave (in phase with topography) or
a small negative amplitude wave (out of phase).

This simple model suggests that the Kuroshio mean-
der may be a case of multiple states depending on the
flow rate at the inlet. Slight decreases in speed may
cause a sudden transition to a meander state, with
hysteresis effects likely, so that large increases are nec-
essary before the Kuroshio would return to its path
closer to the coast.

The above results merely suggest the possibility of
multiple equilibria because, to begin with, we have
required the coastline to have an infinite number of
ridges and troughs in order to create the possibility of
linear resonance. As shown in figure 18.10, an infinite
number of periods may not be necessary, but there
must be at least two ridges and a trough or vice versa.
A single coastal ridge (as in the half-wave case) would
not be enough to give a maximum response. One must
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Figure 18.19 The wave amplitude as a function of A (propor-
tional to the magnitude of the upstream current). Sketches
show the relationship between the streamlines and the coast-
line. Multiple equilibria occur for A < —-1.3.
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ask: Can a single ridge or, in the case of blocking in
the atmosphere, a single mountain range, in an ex-
tended domain give rise to multiple equilibria? And is
resonance needed?

In problems of nonrotating shallow-water flow over
an obstacle, multiple states can exist when the Froude
number &I/V/gH is greater than unity. For certain values
of the Froude number and the ratio of the obstacle
height to H, two states are found, one corresponding
to smooth flow with no upstream disturbance and one
corresponding to a permanent elevation of the free sur-
face upstream of the obstacle—created during the ap-
proach to equilibrium by a bore traveling upstream
(Baines and Davies, 1980). Similar examples of multiple
equilibria are also found in transonic compressible flow
past obstacles. Thus we suspect that the upstream flow
in our problem cannot be specified arbitrarily but may
very well be affected by the upstream propagation of
energy. It may be that, as in the periodic models of
Charney-DeVore and Charney-Straus, the flow must
be dealt with as a global or basin-wide unit.

18.7.5 Quasi-Geostrophic Turbulence
We have considered only wave-wave or wave-mean
flow interactions involving a small number of com-
ponents. In particular, we have not considered energy-
cascade processes involving large numbers of compo-
nents and leading ultimately to turbulent dissipation.
It was pointed out by Onsager (1949}, Lee {1951}, Batch-
elor (1953a}, and especially by Fjertoft (1953) that vor-
ticity conservation in two-dimensional flow imposes
a strong constraint on scale interactions. Later Charney
(1966, 1971a) showed that the conservation of pseu-
dopotential vorticity in three-dimensional quasi-geo-
strophic flow imposes similar constraints. Such con-
straints suggested to Kraichnan (1967} that there may
be an inertial subrange in two-dimensional, homoge-
neous, isotropic turbulence in which the energy spec-
trum is controlled by uniform transfer of enstrophy
{mean-squared vorticity) from large to small scales at
scales less than the excitation scale, and by uniform
transfer of energy from small to large scales at scales
greater than the excitation scale. He predicted a k3
spectral energy density for scalar wavenumber k in the
former range, and a Kolmogorov k%2 law in the latter
range. In extending these ideas to three-dimensional,
quasigeostrophic turbulence, Charney (1971a) also ob-
tained a k3 law at the tail of the spectrum and conjec-
tured that in this region there would also be equipar-
tition between the two components of the kinetic
energy and the available potential energy. This conjec-
ture has been confirmed by Herring (1980} in a homo-
geneous quasi-geostrophic turbulence closure model.
The topic of quasi-geostrophic turbulence has been
investigated by a number of oceanographers, notably
Rhines (1975) by numerical simulation, and Holloway

and Hendershott {1977} and Salmon (1978) by means of
closure [see also Herring (1980) and Leith (1971]]. It
may be that their work is more applicable to the at-
mosphere than to ocean basins, where meridional
boundaries play important roles and where statistical
inhomogeneity of excitation cannot be ignored.

The existence of quadratic invariants, energy and
enstrophy—mean-squared vorticity in two-dimen-
sional or mean-squared pseudopotential vorticity in
three-dimensional quasi-geostrophic flows—permits
application of the principles of statistical mechanics.
These have been applied by Onsager {1949} and Kraich-
nan (1975) to two-dimensional flow, and by Salmon,
Holloway, and Hendershott (1976) to a two-layer quasi-
geostrophic flow. In the two-dimensional case, the en-
ergy in each horizontal mode is L?/(b + aL?), where a
and b are constants depending on the total energy and
enstrophy. With typical choices of these constants, the
largest scale waves have the most energy. In the two-
layer case, the equilibrium spectrum is dominated by
the largest scales, and these motions are barotropic.
The available potential-energy spectrum, correspond-
ing to the thermocline displacement spectrum, is
peaked near the deformation radius. These spectra rep-
resent the effects of the nonlinear terms alone; one
expects [as Errico (1979) found in studying the partition
of energy between gravity-wave and geostrophic mo-
tions] that the spectra which are actually realized in a
forced and dissipative system will be determined
largely by the wavenumber dependence of the forcing
and dissipation.

The comerstone for the theory of quasi-geostrophic
turbulence is the conservation (in the inviscid limit) of
the energy f[f |V¢|? + (1/S)|0¢/8z|* and the enstrophy
V3 + (8/8z)(1/S)(0y/0z)]2. We emphasize the frag-
ility of the last principle: enstrophy can increase or
decrease if there are (1) temperature gradients along
horizontal boundaries, (2} side walls on the domain, or
(3) topography.

If we first consider the case when none of these
restrictions obtain—flow in a periodic, flat-bottomed
domain—we can readily argue that the energy will be
transferred to large horizontal scales and to more bar-
otropic motions by the nonlinear terms. If we expand
the streamfunction in the flat-bottomed normal modes
and perform a Fourier transform horizontally,

¥ = % Ffz) [f dki, (k,tle™™,

we can use the conservation principles
0 -
5 S 1 dk [k + M)l =0,

25 f dilk + 23 hft = 0
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(A, is the reciprocal radius of deformation for the nth
baroclinic mode; see section 18.5.1) in exactly the same
manner as Fjgrtoft (1953) or Charney (1971a) to show
that the amount of energy with k% + A2 > K3 is a small
fraction of the initial energy, if K, is large compared to
the initial mean wavenumber

3, Jf dk (k® + A3)2((k? + AZ)]

K==, 77 dxtie + naop)

In essence the nonlinearity does not transfer energy to
small scales. Another way to show the reverse cascade,
is to use Rhines’s (1975) argument that the turbulence
spreads energy out in wavenumber space

=S J dki(k® + X" - REQKE + M)t > 0.

Combining this with the definition of K and using the
conservation laws shows that the mean total wave-
number must decrease

0 -

™ K <0.

Thus energy cascades to larger horizontal and vertical
scales, implying an increase in energy for small A2, that
is, a tendency for the motion to become more baro-
tropic.

This tendency for the flow to become barotropic in
the absence of topography or side walls has been well
demonstrated through numerical simulation by Rhines
(1977). He has also shown that rough topography can
halt this cascade for flows that are not too energetic.
The B-effect slows the cascade when the scale has in-
creased so much that the wave steepness M becomes
order one. This could occur while the motions are still
baroclinic if the initial energy were small compared to
BLA.

Rhines (1975) has also argued that side walls can stop
the reverse cascade. This has been demonstrated in
laboratory experiments by Colin de Verdiere (1977). Es-
sentially the western boundary serves as a source of
enstrophy and the eastern boundary a sink. This can
be understood—as Pedlosky (1967), in a slightly differ-
ent context, has revealed—by considering reflection of
Rossby waves from the western boundary. For linear
waves with ¢ = —g/(k? + I> + A%}, the x component
of the group velocity is negative for k2 < (2 + AZ).
Therefore the reflected wave’s zonal wavenumber k, =
(I2 + A2)/k is larger than k. One can readily show that
the energy fluxes of the incident and reflected waves
(cg times the energy density) are equal and opposite,
but that the enstrophy flux of the outgoing wave is
larger by a factor k./k than the flux of the incident
wave,

Rhines (1977) has discussed many of the topics
above, and in particular has demonstrated clearly that

the strong nonlinear interactions involved in geo-
strophic turbulence cannot occur unless nonlinearity
is much stronger than wave dispersion, that is, unless
the wave steepness Uk?/8 >> 1. At these scales there is
some, but not conclusive, evidence in support of a k=
spectrum for the atmosphere {Julian and Clive, 1974).
The enstrophy cascade mechanism has not yet been
checked adequately either by direct measurement or
by numerical simulation. It remains possible that the
observed atmospheric spectra can be explained in terms
of ordered (periodic) frontal structures, rather than ran-
dom cascades of enstrophy, as suggested by Andrews
and Hoskins (1978). They obtain a k%2 dependency
which is as much in accord with observations as the
k=* spectrum—or perhaps better. However, the pre-
dicted spectra are highly anisotropic, and this does not
seem to be in as good agreement with observations or
results from numerical modeling as the predictions of
the theory of geostrophic turbulence.

So far the data do not exist for a corresponding
oceanic check.

18.8 Summary Remarks

Our primary focus has been on oceanic analogues of
transient atmospheric motions of large scale. As prom-
ised in the introduction, it has been possible to find
formal oceanic analogues for most categories of large-
scale atmospheric motions: indeed, it has been almost
trivial to do so. Far more difficult, however, has been
to demonstrate the physical reality and importance of
these analogues. It is only recently, through studies of
the meanders of the western boundary currents and
through such concentrated, large-scale observational
programs as MODE, Polygon, POLYMODE, and the
oceanographic component of the GARP Atlantic Trop-
ical Experiment (GATE), that some understanding of
the nature of the transient motions has begun to
emerge. Although many of the oceanic analogues we
have dealt with are hypothetical to a greater or lesser
degree, we have chosen them on physical grounds as
at least of potential importance. We feel that contrast-
ing them with their atmospheric counterparts, with
respect to both their individual properties and their
roles in the generation and maintenance of the large-
scale circulation patterns, has been a useful exercise.

In section 18.4, it is shown that the quasi-geos-
trophic, 8-plane formalism derived for the atmosphere
applies to oceanic motions whose horizontal scales are
on the order of the deformation radius of the first bar-
oclinic mode Ly, that is, the scales corresponding to
baroclinic instability. It is characteristic of these mo-
tions that they are dispersive at both small and large
amplitudes. At larger scales the dynamics change: lin-
ear free modes may no longer have the same east-west
and north-south scales and vertical density advection
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becomes an important cause of nonlinearity. For mo-
tions with length scales near the “‘intermediate scale’”
(Lza)*® with velocities of order f,L&/a (where a is the
radius of the earth), the vertical component of vorticity
changes not only because of g-effects and horizontal
advection but also because of vertical density advection
and variation of the undifferentiated Coriolis parame-
ter. Thus both Rossby and Burger terms appear. For
east-west scales on the order of the intermediate scale
(210 km for the ocean and 1500 km for the atmosphere)
or larger, dispersion and nonlinearity can balance to
give solitary or cnoidal waves. For larger scales, we
show that the evolution is determined by a Korteweg—
deVries equation, so that solitons will be the natural
end product of the evolution of an initially isolated
disturbance. Because of the slower dissipation and the
larger scale separation between the intermediate and
basin scales, such waves are more likely to be found in
the ocean than in the atmosphere. These results sug-
gest that the larger-scale dynamics of the ocean tran-
sients may be dominated by more orderly, phase-coh-
erent structures than are predicted by the theory of
geostrophic turbulence. If this is so, then at scales
larger than the excitation scale the low-wavenumber
components would be more highly correlated than if
they were due to a random reverse cascade.

The theory of free and forced small-amplitude
Rossby waves in the oceans may be transposed almost
entirely from the corresponding atmospheric theory.
The MODE and Polygon experiments have provided
evidence of the importance of Rossby-wave propaga-
tion, particularly on time scales greater than a month
(McWilliams, 1976). In section 18.5, we present some
of this theory in an oceanographic context, paying par-
ticular attention to the influence of bottom topography
in altering the propagation of free waves and in gen-
erating waves from a mean flow. Rhines’s results for
a uniformly stratified fluid are extended to arbitrarily
stratified flows. The major result, the prediction of
bottom-trapped modes, has been verified from obser-
vations at site D {Thompson, 1977} although no obser-
vations of the eastward-traveling modes which should
exist when the topography opposes the g-effect have
been reported.

The idea of Rossby-wave propagdtion in a medium
with a variable (real or imaginary) index of refraction
was first advanced to account for the vertical trapping
of shorter waves by upper easterlies and strong wester-
lies. We apply these ideas in an oceanographic context
not only to vertical propagation from the surface or
bottom but also to horizontal propagation of waves
generated by the meandering of the Gulf Stream. East-
ward-propagating meanders produce trapped disturb-
ances close to the Gulf Stream, while westward-prop-
agating meanders may give a real index of refraction
and southward propagation.

In section 18.6, we describe briefly the influence of
friction both on the generation of ocean currents by
wind and on the decay of individual oceanic eddies.
Existing theory is not adequate to account for the spin-
up of the real ocean or for the decay of the real atmos-
pheric circulation. Interest in the baroclinic spin-down
problem was originally motivated by a desire to un-
derstand the long persistence of Gulf Stream rings;
however, the axisymmetric models that had previously
been employed do not account for the complete decay
of a baroclinic eddy. We show that the B-effect permits
vertical propagation of energy and therefore allows for
complete spin-down.

In the last section, we consider oceanic disturbances
in which advective effects are important—either
through wave-mean flow interaction as in the break-
down of an unstable mean flow, through the interac-
tion of waves generated elsewhere with the local mean
flow, or through wave-wave interactions. The last type
of interaction can occur when the unstable flow is
itself a wave or when waves generated in any manner
interact with one another as in turbulence.

The concept of baroclinic instability was developed
to explain the principal traveling waves and vortices
embedded in the atmospheric westerlies; it has been
applied to the oceans in an effort to account for the
meandering of the western boundary currents and the
existence of mid-ocean mesoscale eddies. The mean-
dering does seem to be an effect of baroclinic instabil-
ity, modified by barotropic effects, but it is highly ques-
tionable on theoretical and numerical-modeling
grounds whether the mid-ocean eddies are due to local
baroclinic instabilities. It seems more likely that these
eddies are vortices cast off from, or forced in some
more general fashion by, the meandering western
boundary currents and their extensions.

In our exposition of the baroclinic and barotropic
instability problem, we use the methods of Arnol’d and
Blumen to extend the integral theorems of Kuo, Char-
ney-Stern, and others to a class of basic flows that need
not be zonal, that may translate with constant speed,
and that may be influenced by topography.

The work on wave-mean flow interactions originated
by Eliassen and Palm and Charney and Drazin in an
atmospheric context is applied to the problem of the
rectification of Rossby waves radiated from the western
boundary currents and their extensions. Of particular
interest is the so-called recirculation flow found by
Worthington and others south of the Gulf Stream ex-
tension. Rhines has attempted to account for this re-
circulation as driven by the westward-propagating
Rossby waves produced by the meandering. We present
a slight generalization of his work by considering also
the effects of eastward-traveling meanders. The results
do suggest that a relatively strong westward flow, con-
fined fairly close to the Gulf Stream, can be produced
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by eastward-propagating wave-mean flow interactions
in the presence of dissipation.

In recent times, the stability analyses for the atmos-
phere have been extended to wavy motions in an at-
tempt to account for nonlinear cascades of energy in
large-scale motions. The stability of forced wavy mo-
tions has also been studied to account for the transition
from one stationary state to another of a forced flow
over topography. It has been found from a study of
simple truncated spectral models that the stationary
flow equilibria produced by the forcing of a zonal flow
over topography in a rotating system may be indeter-
minate in the sense that for a given forcing, there exists
a multiplicity of equilibrium states. This result has
been utilized in an attempt to explain the so-called
blocking phenomenon in the atmosphere—the persist-
ence of large-amplitude anticyclonic flow anomalies in
the planetary circulation. The existence of multiple
equilibria for a given forcing appears to be common; it
also occurs for supercritical-Froude-number flow in
hydraulics and transonic flow in gas dynamics. A nat-
ural oceanic analogue of multiple, quasi-stationary
equilibrium in the atmosphere is the known existence
of two states of flow for the Kuroshio in the vicinity
of the Japanese coast. We investigate a simple model
of such a flow and find indeed that two different steady
states may be produced by a given upstream flow as it
passes a wavy boundary. Our model leaves much to be
desired, but it does point a direction for future research.

We find that the transition between one state and
another in topographically forced flows occurs via a
form-drag instability in which the perturbed form drag
(mountain torque) modifies the mean flow in such a
way that the perturbation increases in amplitude. The
instability of a forced topographic wave is thus differ-
ent from that of a free wave. The latter instability was
shown by Gill to be basically a Rayleigh-like shear
instability or a resonant-triad wave interaction. We
have presented the wave-stability analysis for both free
and forced waves in a unified fashion to bring out the
similarities and differences between the shear, reso-
nant, and form-drag instabilities.

The form-drag instabilities producing transition
grow in place; however, the wavy equilibrium states
themselves may also exhibit traveling Rayleigh-like
instabilities. It has been suggested that instabilities of
this kind account for the observed eastward- and west-
ward-propagating very long (zonal wavenumbers 1-4)
planetary waves in the atmosphere. One may speculate
that a careful analysis of the topographically induced
meanders of the western boundary currents in the
ocean will also reveal such secondary wave instabili-
ties. If these are westward propagating, then they could
contribute to a broader recirculation region.

The final topic is quasi-geostrophic turbulence. Fjor-
toft’s prediction that there will be a transfer of energy

from the excitation scale to larger scales in 2-dimen-
sional energy-and-enstrophy-conserving flow may be
extended to 3-dimensional quasi-geostrophic flows if
the bottom and top boundaries are flat and isentropic.
The theory predicts that the scale will increase verti-
cally as well as horizontally, that is, that the flow will
become increasingly barotropic at large horizontal
scales. Rhines has verified this result in a series of
numerical experiments, and the oceanic observations
of Schmitz (1978) show that the mesoscale eddies tend
to be more barotropic the more energetic they are. This
observation, while not verifying the inertial theory of
geostrophic turbulence, is at least consistent with it.
As Rhines has shown, the inertial theory applies only
when the effects of nonlinearity dominate those of
linear dispersion, that is, when the wave steepness
Uk?/B is much greater than unity. Thus one expects
the prediction to be valid only in the energetic parts of
the ocean. The similarity prediction of a k= spectrum
at scales smaller than the excitation scale is not incon-
sistent with observations in the atmosphere, but there
are as yet no data to test this theory in the ocean. The
effects of topography, side boundaries, and surface gra-
dients of entropy also have not been thoroughly ex-
plored.

We have not produced a systematic or comprehen-
sive treatment of atmosphere-ocean analogues. Our
excuse, as we have stated, is that virtually all large-
scale atmospheric motions have oceanic counterparts
and there are simply too many of these to discuss. We
have preferred to deal with analogues for which there
is observational evidence or at least some physical ba-
sis for believing they should exist. We have been forced
to speculate, and, as the reader will surely have per-
ceived, our own speculations have been guided pri-
marily by our own experience and interests.

Appendix: The Quasi-Geostrophic Equations

Here we shall give details of the derivations of the
quasi-geostrophic equations. We begin by nondimen-
sionalizing the equations of motion (18.22)-(18.27), us-
ing the definitions of the geostrophic streamfunction
and the potential buoyancy b, in (18.28} and (18.29).
Using the characteristic scales described in the text,
we obtain

A~ UW tan © . uvtan?0

s% + weAf €B . —AwcotOw — v
-2 (G +pmod)y, (18.A1)
e% + (oe)\ﬁ’vw';ane + Eﬁuzta;nze +u

_ _%ﬁ (‘e??o + [atane-a%) sin @y, (18.A2)
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are used as abbreviations.

The quasi-Boussinesq approximation entails choos-
ing the scale of motion to be small compared to the
external radius of deformation A << 1. We therefore
drop terms from {18.A1)-(18.A5) which are small in
this sense. The definition of “small’”’ requires some
care because the various Rossby numbers are also
small. Thus in equations {18.Al), (18.A2), (18.A4) we
shall keep both order 1 and order &, ¢, 3, w terms so
that we may drop only terms of order €A, €A, wA. Equa-
tions (18.A1) and (18.A2) are changed only slightly: «
is replaced by 1. The other equations become

1 i} i) 1/8
rcose(a_¢+ﬂtaneacb)u+ (60+,Btan6 )
{18.A6)
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For the ocean, we can further refine these equations by
noting that A, is also very small, so that the continuity
equation (18.A6) becomes that of an incompressible
fluid, and the potential buoyancy equation becomes
simply

1 D
Smeasmeb + = Sw 0.

(18.A9)

The hydrostatic approximation applies to a thin layer
of fluid: A << 1. This allows us to drop the centrifugal
terms involving w, the vertical accelerations, and to
replace r by 1, giving us

Du o,
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Equations (18.A9)-(18.A14] are the Boussinesq hydro-
static equations.

Finally, the quasi-geostrophic 8-plane approximation
assumes that 8 ~ ¢ ~ € << 1 and [by necessity) that
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must also be of this order. We set w = ¢ and expand in
powers of ¢ to find the lowest-order balances
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by oz

and the continuity equation

1 au(ﬂ)

aV(ﬂ)
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=0
which is consistent with the geostrophic equations. At
first order we have the momentum equations
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from which we form the vorticity equation
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Combining this with the first-order continuity equa-
tion
(0)
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(note that for the atmosphere, we would have an ad-
ditional term —A,ew'? in this equation) leads to the
vorticity equation
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The lowest-order potential-buoyancy equation

(0)
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can now be combined with the vorticity equation to
give the quasigeostrophic conservation equation:
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For the atmosphere, the additional term in the conti-
nuity equation appears as an extra contribution

A0

(0)
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in the potential vorticity. Alternatively, the thickness
term can be written as

0 1 0

* oz 38z 0z ¥

for atmospheric quasi-geostrophic motions.

Notes

1. Unfortunately, meteorologists use ‘‘mesoscale’” very dif-
ferently from oceanographers. We shall use mesoscale in the
oceanic sense to refer to motions that are dynamically anal-
ogous to the “synoptic” scale motions of the atmosphere.

2. Note that the U here is characteristic of the disturbances,
not of the mean flow.

3. Some care needs to be used in the cnoidal wave case since
the mean depth of the fluid becomes H + (1/2#L)f3"dx v and
the last term does not vanish. For the figures we have cor-
rected for this effect to show ¢ nondimensionalized by L%
where Ly is based on the actual average depth. Thus we have
plotted Cocruar = (1 = €{0)/Sacruarlc as a function of S,eua = S
+ €(7), and also subtracted out the mean from the plots of
¢©. The same process was used for the nonlinear Rossby wave
but had no effect on the dispersion relation.

4. The "anelastic equations’’ (Batchelor, 1953b; Ogura and
Charney, 1962; Ogura and Phillips, 1962) filter only acoustic
waves.

5. It is customary to call any quasi-geostrophic wave a Rossby
wave.

6. Geisler and Dickinson (1975) studied critical layer absorb-
tion in the western boundary current but did not explicitly
include a reflected wave. It is also possible that the effects of
the mechanisms maintaining the western boundary current
are important in the interaction process.

7. It can be shown trivially that there is no nonlinear inter-
action in a spectrum of Rossby waves with all components
having the same scale (k? + A*~Y2 (including baroclinic ef-
fects).
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