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18.1 Introduction

Newton (1687, book 2, propositions 48-50) and Laplace
(1799) were aware that the principles governing the
ocean tides would also govern the atmospheric tides.
Helmbholtz (1889) showed that ocean waves and billow
clouds were manifestations of the same hydrodynamic
instability, and he speculated that storms were caused
by a similar instability. Had he known the structure of
the Gulf Streams meanders, he might have speculated
on their dynamic similarities to storms as well. Such
intercomparisons were natural to the great hydrody-
namicists of the past who took the entire universe of
fluid phenomena as their domain. Although a degree
of provincialism was introduced in the late nineteenth
and early twentieth centuries by the exigencies of
weather forecasting, it was just the practical require-
ments of weather observation that stimulated the de-
velopment of modern dynamic meteorology and led to
the deepening of its connections with physical ocean-
ography. The recent explosive growth of the three-di-
mensional data base, the exploration of other planetary
atmospheres, and the resulting increase in theoretical
activity have greatly extended the list of ocean-atmos-
phere analogues. Indeed, it is now no exaggeration to
say that there is scarcely a fluid dynamical phenomenon
in planetary atmospheres that does not have its coun-
terpart in the oceans and vice versa. This had led to
the discipline, geosphysical fluid dynamics, whose
guiding principles are intended to apply equally to
oceans and atmospheres.

Within this discipline the dominance of the earth’s
rotation defines a subclass of large-scale phenomena
whose dynamics may for the most part be derived from
quasi-geostrophy. For several years the authors have
conducted a graduate course at MIT on the dynamics
of large-scale ocean and atmospheric circulations in
the belief that a parallel consideration of large-scale
oceanic and atmospheric motions would broaden the
range of our students’ experience and deepen their un-
derstanding of the principles of fluid geophysics. C.-G.
Rossby (1951) put the matter well:

It is fairly certain that the final formulation of a com-
prehensive theory for the general circulation of the
atmosphere will require intimate cooperation between
meteorologists and oceanographers. The fundamental
problems associated with the heat, mass and momen-
tum transfer at the sea surface concern both these sci-
ences and demand a joint effort for their solution. How-
ever, an even stronger reason for that pooling of
intellectual resources . . . may be found in the fact that
the various theoretical analyses of the large-scale
oceanic and atmospheric circulation patterns which
have been called into being by our sudden wealth of
observational data, appear to have so much in common
that they may be looked upon as different facets of one
broad general study, the ultimate aim of which might
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be described as an attempt to formulate a comprehen-
sive theory for fluid motion in planetary envelopes.

He went on to say that “comparisons between the
circulation patterns in the atmosphere and in the
oceans provide us with a highly useful substitute for
experiments with controlled variations of the funda-
mental parameters.”

Needless to say, we subscribe to Rossby’s views and
therefore have willingly undertaken the task of review-
ing the fluid dynamics of a number of phenomena that
have found explanation in one medium and are deemed
to have important analogues in the other. Where the
analogues have already been explained, we have given a
brief review of some of their salient features, but where
little is known, we have not refrained from interpolat-
ing simple models or speculations of our own. In doing
so, we were aware that the subject has grown so large
that it includes most of geophysical fluid dynamics,
and that, even if it were limited to large-scale, quasi-
geostrophic motions, it could not be encompassed in
a review article of modest size. At least two excellent
review articles on this topic, by N. Phillips {1963} and
by H.-L. Kuo (1973), have already appeared, and there
is now a text by Pedlosky (1979a) on geophysical fluid
dynamics. For these reasons we have decided tb limit
ourselves to a small number of topics having to
do primarily with disturbances of the principal at-
mospheric and oceanic currents, their propagation
characteristics, their interactions with the embed-
ding currents, and, to a lesser degree, with their self-
interactions.

It is perhaps no accident that both Phillips and Kuo
are meteorologists. Dynamic meteorology has bene-
fited from a wealth of observational detail that has
been denied to physical oceanography. Consequently,
meteorologists have been the first to observe and ex-
plain many typical large-scale phenomena. This has by
no means always been the case, but it has been so
sufficiently often to justify the title of our review.

18.2 The General Circulations of Oceans and
Atmospheres Compared

If it had been possible in a meaningful way, it would
have been useful and instructive to make detailed dy-
namical comparisons of the general circulations of the
atmosphere and oceans. This has not been so, and we
must content ourselves with a few general remarks.
Because of its relative transparency to solar radiation,
the earth’s atmosphere is heated from below; the
oceans, like the relatively opaque atmosphere of Venus,
are heated from above. The differential heating of the
atmosphere produces a mean circulation that carries
heat upward and poleward. Its baroclinic instabilities
do likewise. These heat transports, combined with in-

ternal radiative heat transfer, tend to stabilize the at-
mosphere statically, and their effects are augmented by
moist convection which drives the temperature lapse-
rate toward the moist-adiabatic. The net result is that
the atmosphere is rather uniformly stable for dry proc-
esses up to the tropopause. Above the tropopause, it is
made increasingly more stable by absorption of solar
ultraviolet radiation in the ozone layer. The oceans are
rendered statically stable by heating from above, but
heating cannot take place everywhere because the
oceans, unlike the atmosphere, cannot dispose of in-
ternal heat by radiation to space; they must carry it
back to the surface layers, where it can be lost by
surface cooling. The most stable parts of the oceans are
in the subtropical gyres, where the oceans are heated
and Ekman pumping transfers the heat downward. The
least stable parts are in the polar regions, where cold
water is formed and carried downward by convection.
The atmospheric troposphere has sometimes been
compared with the waters above the thermocline, the
tropopause with the thermocline, and the stratosphere
with the deep waters below the thermocline (cf. De-
fant, 1961b). This comparison may be justified by the
fact that it is in the atmospheric and oceanic tropo-
spheres that the horizontal temperature gradients and
the kinetic and potential energy densities are greatest.
But from the standpoint of static stability, the absorp-
tion of radiation at the surface of the oceans makes its
upper layers more analogous to the stratosphere. The
static stability for the bulk of the atmosphere and
oceans is determined by deep convection occurring in
small regions. The analogy between deep convection
in the atmosphere and deep convection in the oceans
is between the narrow intertropical convergence zones
over the oceans and the limited areas of cumulus con-
vection over the tropical continents on the one hand,
and the limited regions of deep-water formation in the
polar seas on the other. From this standpoint, the ocean
waters below the thermocline are more analogous to
the atmospheric troposphere. Both volumes comprise
more than 80% of the total by mass and both are
controlled by deep convection.

It is remarkable that the regions of pronounced rising
motion in the atmosphere and sinking motion in the
oceans are so confined horizontally. Stommel (1962b)
was the first to offer an explanation for the smallness
of the regions of deep-water formation. His work mo-
tivated several attempts to explain the asymmetries in
the circulation of a fluid heated differentially from
above or below. We may cite as examples the experi-
mental work of H. T. Rossby (1965) and the theoretical
work of Killworth and Manins (1980) on laboratory
fluid systems, and the papers of Goody and Robinson
{1966) and Stone (1968} on the upper circulation of
Venus. Because of its cloudiness, Venus has been as-
sumed to be heated primarily from above, although it
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now is known that sunlight does penetrate into the
lower Venus atmosphere and that the high tempera-
tures near the surface are due to a pronounced green-
house effect (Keldysh, 1977; Young and Pollack, 1977;
Tomasko, Doose, and Smith, 1979). When a fluid is
heated from below, the rising branches are found to be
narrow and the sinking branches broad; when it is
heated from above the reverse is true. One may offer
the qualitative explanation that it is the branch of the
circulation that leaves the boundary and carries with
it the properties of the boundary that has the greatest
influence on the temperature of the fluid as a whole:
convection is more powerful than diffusion. In the case
of differential heating from below, the rising warm
branch causes most of the fluid to be warm relative to
the boundary and therefore gravitationally stable ex-
cept in a narrow zone at the extreme of heating where
the intense rising motion must occur. In the case of
differential heating from above, the sinking cold branch
causes the bulk of the fluid to be cold and gravitation-
ally stable except in a narrow region at the extreme of
cooling where the intense sinking motion must occur.
Theoretical models of axisymmetric, thermally driven
(Hadley) circulations in the atmosphere (Charney,
1973} show the same effect: a narrow rising branch and
a broad sinking branch. This effect is strengthened by
cumulus convection {Charney, 1969, 1971b; Bates,
1970; Schneider, 1977). The narrow rising branch of
the Hadley circulation directly controls the dynamic
and thermodynamic properties of the tropics and sub-
tropics and indirectly influences the higher-latitude
circulations. Similarly, the small sinking branches of
the ocean circulation determine the near-homogeneous
deep-water properties as well as some of the interme-
diate-water properties. But there is a difference: we
know how the heat released in the ascending branch
of the Hadley circulation is disposed of; we do not
know how the cold water in the abyssal circulation is
heated. Whatever the process, the existence of a pre-
ponderant mass of near-homogeneous water at depth
forces great static stability in the shallow upper regions
of the ocean. It demands a thermocline.

Again we have an analogy between the upper circu-
lation of the oceans and the upper circulation of Venus.
Rivas (1973, 1975) has shown that the intense circu-
lation of Venus is confined to a thin layer within and
just below the region of intense heating and cooling by
radiation. The more or less independent circulation
produced by the separate heat sources of the atmos-
pheric stratosphere is similarly analogous to the upper
ocean circulation. And here there is an atmosphere-
ocean analogy pertaining to our knowledge of transfer
processes. While the mechanisms of heat transfer in
the stratosphere are fairly well known, the mechanism
of transfer of thermally inactive gases or suspended

particles is not, for the latter involves a knowledge of
particle trajectories, which are not easily determined.
The large-scale eddies in the atmosphere, insofar as
they are nondissipative, cannot transfer a conserved
quantity across isentropic surfaces. Thermal dissipa-
tion is required for parcels to move from the low-en-
tropy troposphere to the high-entropy stratosphere.
Atmospheric chemists sometimes postulate an ad hoc
turbulent diffusion to explain the necessary vertical
transfers of such substances as the oxides of nitrogen
and the chlorofluoromethanes into the ozone layers.
But it is doubtful whether this type of diffusion is
needed to account for the actual transfer, because there
already exists the nonconservative mechanism of ra-
diative heat transfer, and this, together with the large-
scale eddying motion, can by itself account for the
transfers (Andrews and Mclntyre, 1978a; Matsuno and
Nakamura, 1979). The analogous oceanic problem has
already been mentioned: how is heat or salt transferred
from the deep ocean layers into the upper wind-stirred
layers? The cold deep water produced in the polar seas
and the intermediate salty water produced in the Med-
iterranean Sea must eventually find their way by dis-
sipative processes to the surface, where they can be
heated or diluted. While a number of internal dissipa-
tion mechanisms have been proposed in a speculative
way (double diffusion, low-Richardson-number insta-
bility zones, internal-wave breaking) one may invoke
Occam’s razor, as has been done so successfully to
explain the Gulf Stream as an inertial rather than a
frictional boundary layer (Chamey, 1955b; Morgan,
1956) and postulate no internal dissipative mechanism
at all. Then, outside of the convective zones, properties
will be advected by the mean flow or by eddies along
isentropic surfaces, and move from one such surface to
another only at the boundaries of the ocean basins
where we may assume turbulent dissipation does oc-
cur. It would be interesting to see how far one could
go with boundary dissipation alone. Welander (1959)
and Robinson and Welander (1963) have taken a first
step by investigating the motions of a conservative
system communicating only with an upper mixed
layer.

18.3 The Transient Motions

Meteorologists, pressed with the necessity of forecast-
ing the daily weather, have always been concerned
with the transient motions of the atmosphere. At-
tempts to understand the processes leading to growth,
equilibration, translation and decay of these “synoptic-
scale” (order 1000 km) eddies! have produced theories
of baroclinic instability (Charney, 1947; Eady, 1949),
Rossby wave motion (Rossby et al., 1939; Haurwitz,
1940b} and Ekman pumping (Charney and Eliassen,
1949). It was first recognized by Jeffreys (1926) and
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demonstrated conclusively by Starr (1954, 1957) and
Bjerknes (1955, 1957) that the dynamics of the mean
circulation are strongly influenced by the transports of
heat and zonal momentum by the eddies [for a review
of these developments, see Lorenz (1967)). This has
prompted research on eddy dynamics and also on the
parameterization of eddy fluxes (cf. Green, 1970;
Rhines, 1977; Stone, 1978; Welander, 1973).

The study of eddy motions in the ocean is a new
development. Although the existence of fluctuations
in the Gulf Stream was reported by early observers
such as Laval (1728) and Rennell (1832), actual predic-
tion of ocean eddies has never been a particularly prof-
itable exercise (perhaps the recent interest of yachts-
men in Gulf Stream rings may presage a change). The
serious study of deep ocean fluctuations really began
with M. Swallow {1961}, Crease (1962), and J. Swallow
(1971). At this point, oceanographers began to realize
that the mid-ocean variable velocities were not, as
might perhaps have been reasonably inferred from at-
mospheric experience, comparable to the mean flows
but rather were an order of magnitude larger. This has
spurred intensive experimental and theoretical inves-
tigations of the dynamics of the oceanic eddies and
their roles in the general circulation (see chapter 11).

Comparisons between the oceanic and atmospheric
eddies may be made in respect to their generation,
propagation, interaction (both eddy-mean flow and
eddy-eddy) and decay. In the sections below we shall
describe some of the theoretical approaches to these
problems.

In the atmosphere, energy conversion estimates |(cf.
Oort and Peixoto, 1974) clearly show a transformation
of zonal-available potential energy into eddy-available
potential energy, then into eddy kinetic energy and
finally into heat by dissipation, with some transfer
from eddy to zonal kinetic energy. The similarity of
the growth phase of this cycle to that exhibited in the
theory of small traveling perturbations of a baroclini-
cally unstable {but barotropically stable) flow, leads
naturally to the identification of the source of the
waves as the baroclinic instability of the zonal flow.
This idea has been supported further by the fact that
the energy spectrum has peaks near zonal wavenumber
six, which simple models predict to be the most rapidly
growing wavenumber. However, attempts to apply
these models directly to the atmosphere lead to prob-
lems: one expects that nonuniform mean flows, non-
homogeneous surface conditions, variable horizontal
and vertical shears, etc., will alter the dynamics; and
one may also wonder about the applicability of the
small perturbation-normal mode approach.

The topographically and thermally forced standing
eddies also draw upon zonal available potential energy
(Holopainen, 1970). The processes by which they do
this are not yet clearly understood; they may be related

to the form-drag instability to be described in section
18.7.3. The standing eddies, like the transient eddies,
also transport heat and momentum.

Overall energetic analyses have not been applied to
oceanic data. However, budgets for basin-averaged ki-
netic and potential energy have been calculated for the
““eddy-resolving general circulation models.” These are
reviewed by Harrison (1979b). In all but one of the 21
cases he considered, the eddy kinetic energy came from
both mean kinetic and mean potential energy. Collec-
tively, the eddies seem to be acting as dissipative
mechanisms, but Harrison cautions that because the
model statistics are inhomogeneous, the overall results
may not be representative of the actual dynamics in
any limited region. Indeed, the eddies may be acting as
a negative viscosity in parts of the domain. Thus, Hol-
land (1978} suggests that the eddies generated in the
upper layer of his two-layer model drive the mean flows
in the lower layer.

Oceanographers have examined local energy bal-
ances. The best known of these studies, by Webster
(1961a), has often been interpreted as an indication that
the Gulf Stream is accelerated by the eddies. However,
Schmitz and Niiler (1969) have pointed out that the
cross stream-averaged value of uv'v, is not distin-
guishable from zero, so that Webster’s results may be
an indication merely of transfer of energy from the
offshore to the onshore side of the jet and not a mean-
flow generation. Even this result is not unambiguous,
since the divergence term (uv'v), is not small com-
pared to the terms —(u'v'),v and u'v'v,, representing,
respectively, the eddy-mean flow and the mean flow-
eddy conversions. The same problem occurs in at-
tempts to compute regional energy budgets in numer-
ical models (cf. Harrison and Robinson, 1978} unless
considerable care is taken.

The conversion of mean-flow potential energy is
sometimes inferred from the tilting of the phase lines
of the temperature wave with height. This tilt is taken
as evidence that the wave is growing by baroclinic
instability of the mean flow. Here one must be careful:
it is the lagging of the temperature wave behind the
pressure wave and the consequent tilting of the phase
line of the pressure trough toward the cold air that is
important; the temperature phase line may tilt in any
direction or not at all. Thus in the Eady model of
baroclinic instability the temperature wave has the
opposite slope from the pressure wave, whereas in the
Charney model it has the opposite slope at low levels
and the same slope at high levels (Chamey, 1973, chap-
ter IX). It is appropriate, then, to caution that the
oceanically most readily available quantity, the phase
change of the buoyancy (or entropy) with height, may
not lead to a straightforward determination of the sign
of the buoyancy flux.
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This discussion should make it clear that very little
is settled concerning the source of the eddies in the
ocean and their effects on the mean flow. “Local” gen-
eration mechanisms, such as baroclinic or barotropic
instability, flow over topography, and wind forcing are
still being considered, and atmospheric analogues are
much in mind. But the fact that the transient atmos-
pheric perturbation velocities are comparable to those
of the mean flow, whereas the particle speeds for mid-
ocean mesoscale eddies are an order of magnitude
greater than the mean speeds, suggests that energy may
be generated only in limited regions (e.g., the western
boundary currents) and propagate from there to other
regions.

Oceanic eddies propagate in much the same manner
as atmospheric eddies, although there are differences
because of the upper-surface boundary conditions: at-
mospheric waves may propagate upward without re-
flection, whereas oceanic waves are reflected at the
upper boundary. In the atmosphere, the potential vor-
ticity gradients associated with the mean flow play an
important role in determining the vertical structure
and horizontal propagation for atmospheric waves,
whereas this role is played primarily by the gradient of
the earth’s vorticity for mid-oceanic waves.

The interaction mechanisms may be classified as
wave-mean flow interactions and wave-wave inter-
actions. As mentioned above, the concrete evidence for
significant wave-mean flow interaction is much
greater for the atmosphere than for the ocean. There is
not, of course, much oceanic data—Reynolds stresses
have been calculated only along a few north-south
sections (Schmitz, 1977). Moreover, these records are
not very long and the spatial resolution is not sufficient
to compute accurate gradients of the Reynolds stresses
(given the great inhomogeneity).

The wave-wave interactions, however, seem similar
in the two media. The crucial parameter is the Rossby
wave steepness parameter M = U/BL?, which distin-
guishes wavelike regimes (M < 1) from more turbulent
(M > 1) regimes as illustrated in the experiments of
Rhines {1975).2 The oceans are similar to the atmos-
phere in that this parameter is of order unity for both,
although it appears to vary considerably from one
oceanic region to another.

The physical mechanisms for dissipation of atmos-
pheric and oceanic eddies are thought to be similar
with respect to bottom friction and transfer of energy
to gravity wave motions or turbulence (though radia-
tion is a further factor in damping atmosphere waves),
but their relative importance may be quite different.
The crucial differences for the large-scale circulations
between the atmosphere and the ocean may not be in
the details of the dissipation mechanisms but rather in
their overall time scales. In the atmosphere, damping
times are of the order of a few days, comparable to the

eddy velocity advection time L/U, whereas the damp-
ing time in the ocean may be as long as several years
(cf. Cheney and Richardson, 1976) while the advection
time is of the order of a week.

18.4 The Geostrophic Formalism

18.4.1 The Development of the Geostrophic
Formalism

The discovery that the atmospheric winds are approx-
imately geostrophic is usually attributed to Buys Ballot
(1857). Ferrel {1856) suggested that ocean currents
might also have this property. But it took nearly a
century before this knowledge was used dynamically.
Because the geostrophic and hydrostatic equations ex-
press only a condition of balance, it is necessary to
consider the slight imbalances produced by forcing,
dissipation, and transience in order to predict the ev-
olution and to understand the processes that maintain
the balance. One of the first to exploit geostrophy was
Bjerknes (1937} in a seminal work on the upper tropos-
pheric long waves and their role in cyclogenesis. Basing
his analysis on semiempirical considerations of the
gradient wind and the variation with latitude of the
Coriolis parameter, he gave the first explanation of the
eastward propagation of the upper wave at a speed
slower than the mean wind. It was this work that led
Rossby et al. {1939) to their vorticity analysis of the
upper wave as an independent entity in planar flow.
Charney (1947) and Eady (1949) derived quasigeos-
trophic equations in their analyses of baroclinic insta-
bility for long atmospheric waves. General derivations
of these equations for arbitrary motions were presented
by Charney (1948), Eliassen (1949), Obukhov (1949),
and Burger (1958). A particularly simple form which
will be used in this review was given by Charmey (1962)
and Charney and Stern {1962).

In addition to these commonly used approximations,
there have been a number of simplifications of the
equations of motion which apply the concept of near-
geostrophic balance in a less restrictive form. When
flows become nongeostrophic in one horizontal dimen-
sion while remaining geostrophic in the other, as in
frontogenesis, flow over two-dimensional mountain
barriers, and in the western boundary currents of the
oceans, a set of “semigeostrophic’” equations derived
from Eliassen’s original formulation has often been
found useful (Robinson and Niiler, 1967; Hoskins,
1975). Both the quasi- and semigeostrophic equations
are special cases of the “balance equations” proposed
by Bolin {1955}, Charney (1955c, 1962), P. Thompson
(1956), and Lorenz (1960). They may be derived from
the consideration that in a large class of atmospheric
flows the constraints of the earth’s rotation and/or
gravitational stability so inhibit vertical motion that
the horizontal flow, even when it is not quasi-geo-
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strophic, remains quasi-nondivergent. The equations
derived by Eliassen (1952) for slow thermally and fric-
tionally driven circulations in a circular vortex are a
special case of the balance equations; they represent
the laws of conservation of angular momentum and
entropy and the requirement of equilibrium among the
meridional components of the pressure, grayity, and
centrifugal forces. For the equilibrium condition to be
valid, the flow must be gravitationally and inertially
stable. This implies that the potential vorticity must
be positive in the northern hemisphere and negative in
the southern hemisphere, and it may be shown that
this condition on the potential vorticity is also required
for the general asymmetric case.

One must also explain why external sources of en-
ergy excite quasi-geostrophic flows rather than gravity
wave motions to begin with and why so little energy
is transferred by nonlinear interactions into the gravity
modes afterward. The tendency toward geostrophy is
sometimes explained as an adjustment of an initially
unbalanced flow by radiation of gravity waves in the
manner discussed by Rossby (1938) {see also Blumen,
1968). However, since much of the forcing is applied
slowly, rather than impulsively, the calculations of
Veronis and Stommel (1956}, who consider the nature
of the exciting forces, are perhaps more relevant. They
showed that the flows will be geostrophically balanced
when the forcing period is very large compared to the
inertial period. Thus we expect most of the energy will
go into geostrophic motions.

The question of how much transfer occurs from geo-
strophic to nongeostrophic motions through nonlinear
interactions remains a matter of concern. Errico’s
{1979) work suggests that equipartition of energy be-
tween gravity waves and geostrophic motions will oc-
cur in a conservative, rotating system in statistical
equilibrium at sufficiently high energy. But in dissi-
pative systems resembling the atmosphere and oceans,
the energy will remain in the geostrophic modes be-
cause the gravity waves are dissipated on time scales
that are small in comparison with those of their gen-
eration. This problem has elements in common with
the so-called initialization problem in numerical
weather prediction: to find initial values of a flow field
that are at once compatible with the incomplete data
and at the same time minimize the initial gravity-wave
energy and its production rate {cf. Machenhauer, 1977;
Daley, 1978).

The problems of transfer from geostrophic into grav-
ity-wave energy are related to those of the production
of hydrodynamic noise by a turbulent flow, first stud-
ied by Lighthill {1952). An excellent review is presented
by Ffowcs Williams (1969). Here the problem is to
calculate the generation of acoustic energy in a tur-
bulent flow in which most of the energy resides in
nondivergent motions. Since the turbulence is confined

within a limited domain and radiates sound waves into
the surrounding medium, there is no possibility of
equipartition. An atmospheric or oceanographic anal-
ogy to the Lighthill problem would be the generation
of internal gravity waves by turbulence in a planetary
boundary layer (Townsend, 1965), except that here the
generation takes place, not within the layer, but at its
interface with the neighboring stable stratum.

Physicists, too, have struggled with problems in
which many scales interact simultaneously (cf. Wilson,
1979), but it is not known whether their renormaliza-
tion group methods can be usefully applied to atmos-
pheric or oceanic problems.

18.4.2 Natural Oscillations of the Atmosphere and
Oceans

The quasi-geostrophic equations have been derived for
ranges of the various nondimensional parameters that
are of interest in dealing with particular classes of at-
mospheric and oceanic motions. It is not to be expected
that they will remain uniformly valid throughout the
entire range of rotationally dominated flows, even
when the primary balance is geostrophic. Burger {1958)
was the first to point out explicitly that when the 8-
plane approximation L/a << 1, where L is the charac-
teristic horizontal scale and a is the radius of the earth,
is no longer valid, the dynamics of the motion change
radically. On a planetary scale the motion becomes
even more strongly geostrophic, but the vorticity bal-
ance changes. Sverdrup (1947) made implicit use of this
dynamics in his treatment of the steady, wind-driven
circulation of the oceans, and it has been used for the
treatment of steady thermohaline circulations of the
oceans by Robinson and Stommel (1959) and Welander
(1959). [See the review articles by Veronis (1969,
1973b), and chapter 5.]

In this section we present a classification of natural
oscillations in atmospheres and oceans in which rota-
tion plays a dominant role, paying special attention to
the domain of validity of the 8-plane, quasi-geostrophic
equations, the nature of the oscillations for which
these equations are not valid, and the effects of nonlin-
earity, which, especially in the oceans, may give rise
to solitary wave behavior.

Although the wave forcing is very different in the
oceans and the atmosphere, there are many features of
the responses that strongly resemble one another. This
results because the response of a forced system depends
strongly on the characteristics of the natural oscilla-
tions, and these have many similarities in the atmos-
phere and oceans. We shall discuss both the linear and
nonlinear natural {unforced and nondissipative) oscil-
lations of a simple model consisting of a single-layer,
homogeneous, incompressible fluid with a free surface
on a B-plane. This is a much oversimplified model, and
we must regard the conclusions to be drawn merely as
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suggestions of the way in which the fully stratified,
spherical system would behave. The most interesting
implication—that the dynamics of scales intermediate
between the Rossby radius and the radius of the earth
may be dominated by solitary waves, in which nonlin-
ear density advection balances linear dispersive ef-
fects—may not be very sensitive to the particular
model chosen.

At the beginning of each subsection to follow we
shall describe briefly the methods used and the results
obtained in order to make it possible for the reader to
omit the more detailed derivations. We begin the dis-
cussion of the normal modes of oscillation by stating
the shallow-water equations in a reference frame mov-
ing with the wave. The Bernoulli and potential vortic-
ity integrals then give two equations relating the wave
streamfunction ¢ to the surface elevation n above the
mean level H. These equations contain an unknown
functional %, the Bernoulli function, which we choose
by requiring the equations to hold for vanishing ¢ and
n.

We then obtain two coupled nonlinear partial differ-
ential equations defining an eigenvalue problem for the
phase speed c. These equations have three nondimen-
sional parameters: €, a Rossby number measuring the
ratio of the inertial to the Coriolis forces; 3, a static
stability parameter measuring the ratio of the defor-
mation scale Ly to the wave scale L; and 3, the frac-
tional change in the Coriolis parameter over the wave
scale. In the standard quasi-geostrophic range (e ~ 8 <<
1, § ~ 1), when motions have small Rossby numbers,
length scales comparable to the deformation radius,
the Bernoulli equation to lowest order is simply a state-
ment of geostrophic balance, and the potential vorticity
equation becomes the linear quasi-geostrophic wave
equation.

The single-layer equations will be written in dimen-
sional form
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where 7 is the displacement of the surface from mean
sea level, H is the mean depth of the fluid, g is the
gravitational acceleration (we shall use a reduced grav-
ity value here), f, = 2Qsin 0, 8 = 2QcosO/a, y = a A6,
where © is the central latitude and A© is the angular
distance from 6. In nondimensional form these equa-
tions become

S_—_(l‘*"éy)v .

Ao D A
B + (1 + Byl = -,

{18.2)
~Dn
Por Dt

_Q_i+_f(,,ﬁ+v£)
Dt ot BS\ ox oy’

where both x and y are scaled by L, 7 is scaled geo-
strophically by LUf,/g, and the nondimensional param-
eters are 8 = BL/f, = LcotOja = L|Lg, € = Ulf,L, and
S = gHIf3L* = L%/L2 We have also introduced the
definitions of two scales which turn out to be impor-
tant in determining the boundaries between various
types of behavior: the 8-scale Ly = fy/8 = atan®©, at
which variations in the vertical component of the
earth’s angular velocity are order of the angular veloc-
ity itself, and the Rossby radius of deformation Ly =
VgH|f, (Rossby, 1938). We shall use 3500 km for L,
(corresponding to © ~ 30°} and 50 km (oceanic) or 1000
km (atmospheric) for Ly. We have also made the choice
of the long-wave period for the time scale so that T =
L/BL%.

The quasi-geostrophic potential vorticity equation
may be derived by expanding (18.2) in powers of ¢ for
B~e<<1and$ ~ 1, giving

345 2] (rn 4o
—o. (18.3)

+(1 +S n’(ur+vu) =

The failure of this equation at small space or time
scales and near the equator is well known. Meterorol-
ogists since Burger (1958) have also recognized that
some larger than synoptic-scale motions also do not
evolve according to this equation. Rather, the appro-
priate equations are derived by assuming § and € to be
small (because L is very large) and B to be of order 1.
The resulting velocities remain geostrophic:

1 1
- 1 + By-"w V= 1 +3y 7’.1'1 (184)
and the height field evolves according to
li] 1 €
Ftn_(l-i-—By)z(l +§7I) n, = 0. (18.5)

Equations (18.3) and ({18.5) have very different proper-
ties: the quasi-geostrophic equation has uniformly
propagating linear-wave solutions which are essen-
tially dispersive even at large amplitudes (cf. Mc-
Williams and Flierl, 1979), while the Burger equation
does not have uniformly propagating linear-wave so-
lutions and initial disturbances steepen because of non-
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linearity. We shall demonstrate that there is an inter-
mediate band of length scales in which nonlinearity
and dispersion can balance to give cnoidal or solitary
waves. In the ocean, as we shall see, the change from
quasi-geostrophic to intermediate dynamics to Burger
dynamics occurs at a relatively small scale because the
deformation radius is so small compared to the radius
of the earth.

We may elucidate these differences by considering
the shallow-water equations under the assumption that
the motions are translating steadily at speed c:

(v —cX)Vv + 2(fo + By) X v = —gVn, (18.6)
(v —c&FVn + (H + n)Vev = 0, )

where % and % are unit vectors in the positive x and z
directions. We may define a transport streamfunction
in the coordinate system moving with the wave

(v —cX)H +7n)=2xVy

and write the Bernoulli and potential vorticity integrals
of motion:

31916 + cHy ) + gl#t + n* + ol + mp (for + )’
= (H + 7P®B(¢ + cHy), (18.7)
v YO L) L, + y) = (H + 06 + cHy),

H+ 7

where we have isolated the wave part of the stream-
function ¢ = ¢ — cHy. We require that (18.7) hold as
¢, n — 0; this determines the Bernoulli functional

@(Z)=§+gH oz B o7 (18.8)

H 2cH?
The choice of a single-valued, well-behaved Bermoulli
functional implies that only motions which reduce
smoothly to linear waves will be considered; thus the
solutions of Stern (1975b) or Flierl, Larichev, Mc-
Williams, and Reznik, {1980) which involve closed
streamlines and a multiple-valued # will not be ex-
amined here.

In nondimensional form, equations (18.7) become

€ - € \?
5 IVol* + BSce, + ﬂi+ 3 n)

=32§czn(1 +TeSn) +¢(1 +I§Y)! 1 +§ 17)2

+T€§j§c(l +-§n)2, (18.9}
SV%! 1 +§ n) — €VeeVn — BScy,
=91 + By) x!1+§n)2+%’(1+—§n)3. (18.10)

We show in figure 18.1 the dependence upon L and
U of our three basic parameters 8 = L/L; = BL/f, =
L cot©/a (the ratio of the wave scale to the radius of
the earth scale}, e = U/f, L (the Rossby number), and § =
L%/L? (the inverse of the rotational Froude number].
Note immediately the differences in scale separation
for oceanic versus atmospheric conditions. In the at-
mosphere L, is very close to Ly, so that there is only
a short range between the usual baroclinic Rossby wave
scales (8 ~ 1, 8 << 1) and the Burger range (§ << 1, 8 ~
1); in the ocean there is a large scale gap. Thus one
might expect the different dynamics to be seen more
clearly in the ocean.

Linear Waves (e = 0) The first step toward understand-
ing the various types of large-scale free motion is to
consider the linearized solutions. When the Rossby
number is very small, the two equations can be com-
bined into a single streamfunction equation which gov-
emns both gravity and Rossby waves. The Rossby wave-
phase speed increases as the length scales of the wave
increase, leveling off for L > Lj. For still larger scales,
however, the speed again increases as the wave ampli-
tude begins to be more pronounced equatorially. We
demonstrate that the natural dividing scale here is
what we call the “intermediate” scale L; = (LgL3)"3,
where § = 3 (see figure 18.1). This is the scale at which

IOZ H | 1

IO—<\

102+

|0-3 . N
10 10° 10° 10

Figure 18.1 Values of the Rossby number ¢, inverse Froude
number §, and beta parameter 8 as functions of the length
scale L and velocity scale U for oceanic and atmospheric
values of the deformation radius.
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the relative vorticity changes become as small as the
variations in vortex stretching due to the 8 term. Al-
ternatively, one could say that the rule, “f equals a
constant except when differentiated,”” breaks down
near the intermediate scale. The phase speed continues
to increase and, for large enough north-south scales,
the wave domain crosses the equator. Then the wave
becomes equatorially trapped and the phase speed again
becomes independent of L.

For the parameters we have chosen—L; = 3500 km,
Ly = 50 km {ocean), 1000 km (atmosphere}—the inter-
mediate scale L; = 210 km (ocean), 1500 km (atmos-
phere) is not very large. It represents the upper bound
to the scales for which the standard quasigeostrophic
equations are valid. It may again be seen that there is
a significantly greater separation among the various
scales in the ocean compared to the atmosphere. This
suggests that the ocean mesoscale motions may be a
cleaner example of quasi-geostrophic flow than the
synoptic-scale motions of the atmosphere; the approx-
imations used for the latter are less exact.

For linear motions, the Bernoulli equation (18.9) de-
fines 7 in terms of ¢; » may then be eliminated from
the potential vorticity equation (18.10) to yield a single
equation for the streamfunction

SV ~ El ¢ — (1 + Byl = B2S%2¢,,. (18.11)
Since the coefficients do not involve x, we may set
¢ = e*Gly;L). The resulting equation together with
boundary conditions presents an eigenvalue problem
for ¢(L) and the wave structure G(y;L).

It has three eigenvalues, corresponding to two grav-
ity-wave modes and one Rossby-wave mode. We can
identify the gravity modes with the retention of the
right-hand term in (18.11}. For mid-latitude modes this
term is significant only when $2§%2 ~ $ or c? (dimen-
sional) ~ gH; it is small for the Rossby mode solutions.
For equatorially trapped Rossby modes, the y scale con-
tracts so that $¢,, dominates both $¢,, and 28%2¢,.,.
Eliminating the right-hand side corresponds to
retaining only the underlined terms in (18.9)-(18.10).
The filtered linear equation becomes

$Vi —~ 6 =1+ fyPe, (18.12)
which has been discussed extensively by Lindzen
(1967) and others. Here we comment on the various
types of solution primarily as a guide to our later dis-
cussion of the effects of nonlinearity.

Figure 18.2 shows the nondimensional phase speed
as a function of L for atmospheric or oceanic parame-
ters under the simplifying boundary conditions ¢ = 0
at y = *wf2, which make the x and y scales of the

10°%1 WZLIL

-zl l2

rd

¢+~ EQUATORIAL
’

(NONDIMENSIONAL)

c

10 T . .
10 102 103 10%
L (km)

Figure 18.2 Phase speed nondimensionalized by BLZ as a func-
tion of the x scale L {wavelength/27) in a channel of width
7L. Also shown are typical shapes of the y structure function
Gly;L} for the various classes of motion.

domain similar. We can identify four different types of
behavior. )

Midlatitude Rossby waves [8<< 1, § ~ 1): For these
motions, first described by Rossby et al. (1939), the
streamfunction satisfies

$vip ——i b=a, (18.13)
which has solutions in the box

¢ =e cosy

with

c = -1/(1 +2§), (18.14)

or, more generally, for waves oriented in any direction,
we have

¢ = eik-x
with
c=-1/(1 + $kek) (18.15)

{see the discussion in chapter 10).

Intermediate scale waves (B ~ § << 1): The Rossby-
wave dispersion relation (18.14) remains valid for
B <« § << 1 and becomes
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=-1+28,

so that for a sufficiently small § the waves are nondis-
persive ¢ {dimensional) = —g8L%. However, when L in-
creases to the point where 8 ~ § << 1, the small cor-
rection in the formula above becomes invalid. This
occurs when the ¢By term becomes comparable to the
8 V24 term, that is, when L = (LgL3)'®, which is 210 km
for the oceans or 1500 km for the atmosphere. We
denote this scale as the “intermediate scale” L,. The
wave structure is determined by expanding {18.12) in

S (or B). Setting ¢ = @ + S¢® + --- andc = -1 +
Sc® + ---, we obtain
(V2 + ¢ — 28y/8)¢® = 0. (18.16)

When L = L; the y dependence of f can no longer be
neglected, the y scale becomes order of the interme-
diate scale, and the solutions begin to be concentrated
toward the equator (see figure 18.2). As L continues to
increase, § decreases but B increases and the phase
speed is no longer insensitive to L but begins to in-
crease; ¢ behaves like —1 + O|(B) rather than -1 +
O(8). The phase speed becomes less and less sensitive
to the x wavenumber, so that the waves may still be
considered approximately nondispersive. We have re-
quired that 8 and § be small, but figure 18.1 shows
that these quantities are small only for a rather narrow
range of L even in the oceanic case, and figure 18.2
shows that ¢ varies perceptibly with L everywhere. For
the atmospheric parameters a totally nondispersive re-
gime (B << 8§ << 1) does not exist at all.

Burger motions (8 ~ 1, § << 1): When L increases to
the point where 8 ~ 1, the motions become strongly
concentrated near the equator. The y scale contracts
(relative to L) so that the lowest order balance includes
all the terms in {18.12) and the y wave domain crosses
the equator. The phase speed rapidly increases from
that of the midlatitude Rossby waves to that of the
equatorial waves.

Now we can see why the Burger equation (18.5),
which assumes equal x and y scales, has no linear free-
wave solutions: free waves with a very large x scale do
not have the same y scale. Instead the unforced mo-
tions acquire a meridional scale between L; and the
(somewhat larger) equatorial scale. Forced motions, of
course, may have comparable x and y scales and may
therefore have evolution equations in which the terms
of (18.5) contribute along with the forcing terms.

Equatorial waves: Here we can drop the 1 in the 1 +
By term of equation {18.12) to change to the equatorial
B-plane (the f, factors will all cancel out upon dimen-
sionalization). The solutions are well known {cf. Lind-
zen, 1967) and again become nondispersive for small S.
Rescaling the equation for small § shows that the y
wave domain is confined to a region around the equator
of meridional extent 8-28*4, which corresponds to the

dimensional scale L, = (gH/B?)"* = (LsLg)"?, the well-
known equatorial deformation scale. For our assumed
parameters, this scale is 420 km for the oceans and
1900 km for the atmosphere; however, this estimate is
not very accurate since the equivalent depth for baro-
clinic motions varies considerably. Moore and Philan-
der (1977) give 325 km as an estimate of this scale for
the first baroclinic mode. The phase speeds are order
B718712 = L,/Lg, corresponding to a dimensional speed
BLZ = VgH. (The other solutions have ¢ ~ +3-12§-3/
A further discussion appears in chapter 6.

Nonlinear Waves (¢ > 0) When the motion becomes
of sufficiently large amplitude, the propagation char-
acteristics of a single wave change. We shall investigate
the size of the Rossby number necessary for this to
occur. This size may be quite different from the Rossby
number required for significant nonlinear interactions
in a full spectrum of waves. However, the nonlinear
behavior of a single wave can be of interest when it
allows the possibility for solitary waves. On the scale
of the mid-latitude Rossby wave, this does not appear
to occur and the nonlinearity gives only a correction
to the phase speed and shape; the lowest-order balance
remains strongly dispersive. However, as the scale be-
comes equal to or greater than the intermediate scale,
the phase speed becomes less dependent on the x wave-
number. When the Rossby number becomes of the or-
der L/L% the nonlinear advection term becomes com-
parable to the east-west dispersion term and the
solutions propagate as solitary waves. The structure of
these isolated high-pressure disturbances is found to be
the same as that of the sech?x solution to the Korteweg-
deVries equations. The implication of this section,
then, is that the dynamics of motions of the interme-
diate or large scales may be quite different from that
of the ordinary Rossby wave.

Let us now consider the conditions under which the
nonlinear terms can alter the propagation characteris-
tics of the free waves in our model. This can occur
whenever one of the € terms is comparable to one of
the linear terms that have been retained in the Ber-
noulli or potential vorticity equations {18.9)-(18.10)
(the underlined terms). This happens when e ~ 1, /8 ~
1, e/ ~ 1, €/BS ~ 1, or €/82 ~ 1. The velocities
required for each of these conditions are shown in fig-
ure 18.3, which emphasizes again the relative com-
plexity of the atmosphere: for 40-ms—* winds at 1000-
km scales, all of the nonlinear terms enter simultane-
ously. For the ocean, only strong meandering motions
could cause each of ¢, €/ and €/3? to be of order unity,
and in these circumstances 3 remains quite small. We
shall not attempt to deal with these more complicated
motions, but instead shall examine the nonlinear ef-
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Figure 18.3 Conditions under which nonlinear terms become
important. Labeled curves show relationship between U and
L such that a particular parameter ratio becomes equal to one.
This corresponds to one of the nonlinear terms in (18.9)-
(18.10) becoming equal in magnitude to one of the underlined
linear terms.
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Figure 18.4 Effects of nonlinearity on a short Rossby wave.
The upper figure shows the changes in the shape of the wave.
The lower figure shows the changes in the dispersion relation.

fects on each of the waves that has been considered
above.

Midlatitude Rossby waves: The first nonlinear con-
dition that occurs when § = 1 is € = 8. However, since
B remains small and does not enter the governing equa-
tion (18.13), we expect that this will not significantly
alter the behavior of a single steadily propagating sin-
usoidal wave. When ¢ or €/S becomes order 1, nonlin-
earity begins to affect the structure significantly. For
example, consider the parameter range € ~ 1, 8 <
8-1 < 1. To lowest order in an expansion of both ¢
and ¢ in 8- (c being of order 8-}, the potential vorticity
equation gives

1
V2p© = S ¢,

At first order we find the corrections to the phase speed
and shape of the wave. The result is

c=3“[—k—}k+$—‘(e2+ﬁ(_l—k}2) + ],

as sketched in figure 18.4. The order € nonlinear terms
cause a sharpening of the streamfunction crests and a
decrease in the propagation rate. '

Intermediate scale waves: When § << 1, nonlinear
terms first enter when € ~ B8 or € ~ §2 (see figure 18.3).
We can find the forms of the solutions by letting € =
ES? and 8 = BS and expanding for small § assuming E,
B to be of order unity or less. We get

{18.17)

c=-1+38cm,

v2¢(0) + c(l)¢(0) + %E[¢(0)]2 — 23y¢(0) = 0

(18.18)

for the equations governing the shape and the speed of
the wave.

The simple limit here is B = 8/S << 1, corresponding
to the range Ly << L << L;, and E of order unity, cor-
responding to particle speeds given by the €/$2 = 1 lines
in figure 18.3. The wave equation

v2¢(0) + c(1)¢(0) + %E[¢(0)]2 - 0

has both one- and two-dimensional solutions on the
plane. These include the cnoidal and solitary wave
solutions to the Korteweg-deVries equation (Whitham,
1974} for uniformly propagating waves:

K(m) kex ) l-m+m?—-1+2m
(0) — 2 . —
om = co (KPR m) =R,

c=-1+84Km\VT — m + m?/m?,
€$-% = 4amK¥m)/=,

(18.19a)

and
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'@ = sech?kex,
¢ = -1 — 43k-k,
€82 = 4kek.

(18.19b}

Plots of the shapes of the cnoidal and solitary waves
and the dispersion relations are shown in figures 18.5A
and 18.5B. The cnoidal waves show a phase speed de-
creasing with amplitude (as in the example above)
while the solitary wave speed increases as the wave
gets stronger.3

A second type of solution {cf. Flierl, 1979b) is a ra-
dially symmetric solitary wave

@ = GlkVx * x),
= —1 - 8k, (18.19¢)
€S2 = 1.59k?,

whose shape and dispersion relations are shown in fig-
ure 18.6.

It may be seen from equation (18.15) that the dynam-
ics of large-scale motions for which € ~ §? and 8 <
€/S are distinctly different from those of the quasigeo-

GO i €/§z é

18.5(A)

Figure 18.5 Effects of nonlinearity on long waves. (A) Cnoidal
waves: the upper figure shows the change in shape occurring
when the nonlinearity is increased while the lower figure
shows the changes in the dispersion relation. {B} Solitary
waves: the upper figure shows the shape of the wave while

strophic eddies. We might expect, if the motions are
governed by the Korteweg-deVries equation as sug-
gested by {18.18), that solitons will be formed and dom-
inate the subsequent evolution of the field. In the at-
mosphere, solitary-wave behavior would be difficult to
find because of the rapid frictional decay time, the
east—west periodicity for scales not so much larger than
those under consideration, and the rather limited pa-
rameter range for the Korteweg—deVries regime. In the
ocean, the situation is quite different; the parameter
range for solitary-wave behavior is more distinct, the
waves are of small scale compared to the size of the
basin, and the decay rates are slow so that there is
sufficient space and time for the necessary balance
between nonlinearity and dispersion to develop.

For scales larger than the intermediate scale, B be-
comes large in (18.18). If y is rescaled by B-!? (dimen-
sionally by L,), this equation can be solved by expan-
sion in powers of B~22. To lowest order, one obtains a
linear equation for the y structure; to next order, the
x dispersion and nonlinear steepening (if E is order
unity) are included and the x structure is then given
by an equation of the Korteweg—deVries type.

1.0

0% b+——B < | ——ATMOSPHERE —>
]
" fe——8<1 OCEAN ——>
P
° 2 .4 6 __ 8 ____lo S
ddg=——=—— CINEAR ~ROSSBY WAVE
¢ 2
B 80“74/9,.
-3
4+
18.5(B)

the lower figure shows the relationship between the length
and amplitude (3 and €) and also the propagation speed. For a
fixed deformation radius, €8~ is directly proportional to the
velocity scale U. The relationships are only valid for B < 1.
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Figure 18.6 Radially symmetric solitary solutions. The upper
figure shows the dependence of the pressure upon radius. The
lower figure gives the relationships between amplitude, size,
and propagation speed.

Burger range: Here also one can show that there are
motions whose y structure is determined by a linear
equation and whose x structure is determined by a
nonlinear equation of the Korteweg—deVries type. We
still require € ~ 82. Clarke (1971) has discussed this
type of solution {and also those described above for
large B) in more detail.

Equatorial motions: Boyd (1977) has shown that the
long waves in this case also satisfy an equation of the
Korteweg—deVries type. If we rescale the equatorial
versions of (18.9) and (18.10), letting y = B~12814Y (so
that Y has the scale L), ¢ = f87'2C, and 5 =
B12814N, we can show that there are only two param-
eters (in the absence of north-south boundaries) of in-
terest: § = B~12814 = [ /L and & = € 82873 = UL/BLS.
The cnoidal or solitary wave (in x} solutions are ob-
tained when é ~ 8 << 1. This gives an equatorial
velocity scale U = BL}/L3, as shown in figure 18.3.

In summary, then, we have seen three different types
of natural large-scale, long-period motions in the at-
mosphere and ocean. For scales on the order of the
deformation radius or less (L < 50 for the oceans and
=< 1000 km for the atmosphere), dispersive Rossby
waves dominate with nonlinear effects entering only
for large Rossby number €. Intermediate scales (§ << 1,
€52 ~ 1, B < €8~! implying 50 <« L < 210 km for

the oceans and 1000 << L << 1500 km for the atmos-
phere) have solitary or cnoidal wave structures as well
as circular solitary highs. As the scales become larger,
weak solitary or cnoidal wave structures may persist
with normal-mode y shapes concentrated near the
equatorward side of the domain. Stronger motions will
not remain permanent but will steepen in amplitude,
as do the solutions of Burger’s equation (18.5). When
the wave domain comes to include the equator, non-
linear equatorial wave motions satisfying a Korteweg—
deVries type of equation can exist.

Korteweg—deVries Dynamics Finally we shall demon-
strate that Korteweg—deVries dynamics does seem to
be appropriate for general motions (not necessarily uni-
formly propagating waves) on the intermediate scale
(B =8, e ~ 8% and § < 1). The previous derivations
have shown only that the permanent form is governed
by an equation that may be derived from the Korteweg—
deVries equation, but it is still necessary to show that
the time-dependent evolution equation is also of this
type. We return to our governing equations (18.2) and
set € = ES? and B = BS, where B and E are assumed to
be of order unity. This corresponds to L ~ L; and
U ~ f,L%/Lg (210 km, 5 cms™* for the ocean; 1500 km,
20 ms™ for the atmosphere]. We note that there will
be two time scales in the evolution: a fast time t cor-
responding to the nondispersive propagation and a slow
time T = St during which features evolve.

The lowest two orders of the expansion in § show
that the flow is geostrophic and that the advection of
planetary vorticity is balanced by vortex stretching,
leading to the usual nondispersive propagation of very
long Rossby waves. At the next order slow changes in
surface height force a divergence which creates relative
vorticity. The vorticity balance also is influenced by
north—south variations in vortex stretching due to var-
iations of f, while the nonlinear terms enter in the
mass balance. The resulting equation is a mix between
the Korteweg—deVries equation and the Rossby-wave
equation. However, when L is large compared to the
intermediate scale, the more detailed expansion to fol-
low shows that the x structure indeed evolves accord-
ing to a Korteweg—deVries equation.

At lowest order the flows are geostrophic

u® = _.’,g))’

VO = n©

ud +vP =0.

The first-order equations,

u® + Byu® = —n®,

v + Byy©® = p)

B.ngm + EV(O).v.n(ﬂ) + E,,’(O)v.v(o) + v.v(l) = 0’
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lead to Sverdrup (1947) or Burger (1958) type of balance
between advection of planetary vorticity and vortex
stretching,

u® +vip = B,
and to the nondispersive wave equation
Byi® — By =0,

which implies

_—=— or q=nqx+ty T)

At second order we obtain the vorticity equation
B(v® — u0’) + EvOV (v — u)

+ Bv® + Vey® — By Vey® = (

and the mass-conservation equation

anll;'l) + B,nsl) + Ev(l).v.n(o) + Ev“”'V'n‘”

+ Voy® 4 E.,’(l)v.vw) + En@Vey® =0,

which jointly lead to the evolution equation [after us-
ing 8/0t = 8/x for the fast time, and dropping the
superscript (0)]

BnT = EB")"J; + B(vzn)x

— 2B%m; + E](», V?n) (18.20)

[where J(A,B) is the Jacobian operator] or
B . .3
Bur = EJin —% v, V*n +3 Ev* — 2Bym).

One can readily show that the requirement of steady
propagation leads to (18.18). Furthermore, when L is
large compared to the intermediate scale L; but E re-
mains order one, the x structure of the solutions do
satisfy a Korteweg—deVries equation. In this case B is
large and E is order 1. Because the y scale becomes
limited to L,, the x dependence and the nonlinearity do
not enter in the primary balance, which serves to de-
termine the y structure and a correction to the phase
speed. At the next order, the nonlinearity {from both
quadratic and Jacobian terms) enters along with the
third x derivative and the slow-time derivative terms
to give a Korteweg-deVries equation:

n = Flx — ct, TIAI(Y),
¢ = -1 —uB — [2B)"®,,
Y = @, + (28] (y + ’—2’) (18.21)

Y, = —2.3381

- 3e([ ap f‘” -z)_a_
FT - F-l‘-l‘a? " 2 E (fWoAl / @loAI ox P

(zero of Airy function),

—_— +
Dt a+z

This section has demonstrated that some caution
must be exercised in applying the quasi-geostrophic
equations (which will be discussed throughout the rest
of the paper) to large-scale motions since they are valid
for the oceans only for scales up to the order of 200
km. The derivations suggest that the role of nonline-
arity may be very different for the intermediate and
large-scale motions—leading to coherent and phase-
locked structures rather than to turbulence. Clearly
these inferences must be backed up by more thorough
investigations which are beyond the scope of this ar-
ticle.

18.4.3 The Quasi-Geostrophic Equations
Because of the difficulties inherent in attacking the full
equations of motion either analytically or numerically,
various approximative equations have been developed.
For the study of the large-scale motions, the relevant
“filtering approximations” eliminate the acoustic and
inertiogravity motions.* We have mentioned the quasi-
geostrophic, semigeostrophic and balance equations
and have touched on their limitations. In this section
we shall discuss briefly the derivation of the quasi-
geostrophic equations for a stratified fluid under
oceanic conditions; details can be found in the appen-
dix. These equations are, of course, familiar, but, since
we shall use them in the rest of this chapter, we must
establish our notation. We wish also to remark on
differences between the standard derivation for the at-
mosphere (cf. Charney, 1973) and that for oceanic con-
ditions. Finally, we include the B-effect by explicitly
taking into account the two-scale nature of the prob-
lem: the planetary scale, that is, the earth’s radius, and
the scale of the fluid motions themselves.

For inviscid, adiabatic flow, the equations of motion
and continuity expressed in modified spherical coor-
dinates are

Du  uw _uwvtan® ,q n6 +20wcos®

a+z
- a _Op
T la+z)cos© 8D’
Dv  wv | u?tan© o a dp
Dt Tavz tTar, T2sin®= a+zao’
Dw u?+v? op
— - =—a - 22
D Py + 201 cos © as- —& (18.22)
iDa, 1 w1 b
aDt (a+2)cos©® o [a+2z)cosO 00

1 (]

+(a—+z)—za(a+z)zw—0,
b_ 98, uw 8 v 8 90
Dt 8t (a+z)cos®dP a+z00 az’
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where @ is the longitude, © the latitude, Q the angular
speed of the earth’s rotation, g the acceleration of grav-
ity, p the pressure, o the specific volume, and u, v, w
the eastward, northward, upward velocity components,
respectively. The radial coordinate is denoted by a +
z, where a is the mean radius of the earth and z the
height above mean sea level. This neglects the elliptic-
ity of the geoid [see Veronis (1973b) for a discussion of
this approximation].

We assume that the specific volume is determined
by an equation of state as a function of absolute tem-
perature 7, salinity &, and pressure:

a = of|T,¥,p) (18.23)
with salinity conserved,

D
5% =0, (18.24)

and temperature changes determined from the adi-
abatic thermodynamics

DT_T (20)

Dp _
Dt o, =0. (18.25)

dT/,., Dt

For dynamical modeling it is convenient to regard tem-
perature as a function of specific volume, salinity, and
pressure and to determine the evolution of the specific
volume from

Da o*Dp _
bt * o =0 (18.26)
which can be derived by taking the substantial deriv-
ative of (18.23), using (18.24)-(18.25) and the definition

of the sound speed:

T { 0 da -1
2 = _2|— 22 Oa _ 2
a=Te [c,, (aT)p,y + <‘9P)T.y] ciap,¥). (18.27)

Equations (18.26)-(18.27) replace {18.23) and {18.25);
since the speed of sound is large compared to the meso-
scale wave speeds and also is rather insensitive to its
arguments (especially salinity), it plays a rather minor
role in the large-scale dynamics.

In the appendix, we write the nondimensional forms
of these equations based on a time scale T, a horizontal
velocity scale U, a vertical velocity scale W, and a
depth scale H. For the horizontal coordinates we intro-
duce two scales of motion: the global, © and ® ~ 1 (the
B-effect is global); and the local, A® and A® ~ L/a,
where L is a typical horizontal scale (cf. Phillips’s 1973
WKB approach to Rossby waves). Thus we represent
all dependent variables Q in the form Q(6, ¢, z, t, 6,
®) with d¢ = {a/L)d® and d6 = (a/L)dO. We also
explicitly introduce a basic hydrostatically balanced
stratification of the ocean T{z), Pz}, @z}, P(z) satisfying

alz|p(z) = -g.

[In practice, given T{p), #(P) we find &[p) and integrate
to get z(F).] We then subtract out this hydrostatic state
and define the (nondimensional] geostrophic stream-
function ¢ by

p =P +20sin6ULY/a. (18.28)

We also define a “local” potential specific volume «,
of a fluid particle with specific volume « at pressure p
and depth z as the specific volume it would acquire if
the particle moved adiabatically to the horizontally
averaged pressure p(z). Equation (18.26) gives
o _

a,,=a——‘_:;(p—p) (18.29)
(as long as @ and p are not too different from their
averaged values). The buoyant force per unit mass after
this change becomes

b, (dimensional) =g a’; @

- a

o a _

=85 T&m o - p)

This leads to a redefinition of the specific volume in
terms of the nondimensional potential buoyancy:

— 2QsinO UL H
«ma1+ RGP (- 5)]

With the above scalings, we have eight nondimen-
sional parameters (many of which vary spatially):

= —20_3115—6—'!-' (a time Rossby number),

€= ___H_ (a velocity Rossby number],
2QsinOL

B = (Lla)cot®,

A =HIL,

A = (2Qsin O LP/[gH),

A, = gH[Et,

o = LW/(HU),

8 = H'N*z}/(2Qsin O L,
where N? is the square of the buoyancy frequency:
N? = (ga.[a) - (g*/c3).

Two of these parameters, € and 8, are identical to those
used previously with the definitions f, = 2Qsin© and
B = 2QcosO/a. We have also explicitly separated the
time scale from the Rossby wave period, whereas in
the previous section & was set equal to 38 with § =
gH/f3. The quantity analogous to $ for a continuously
stratified ocean is
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S = H2N2[z)/[2Qsin O L)?.

This nondimensional variable is of order unity for mo-
tions due to baroclinic instability (Eady, 1949). It is
useful to think of it as the squared ratio of two length
scales, LE/L? or H*/H%, where Ly ~ NH/f, is the analog
for a stratified ocean of the single-layer horizontal de-
formation radius VgH/f, introduced by Rossby (1938),
and by analogy Hr ~ f,L/N may be called a vertical
deformation radius. If the vertical scale is set, the nat-
ural horizontal scale will be Ly; if the horizontal scale
is set, the natural vertical scale will be Hy.

We now simplify the equations of motion by making
assumptions about the magnitudes of the various pa-
rameters. The first seven of our nondimensional pa-
rameters are small (for the atmosphere, A, may be of
order 1). However, the stability parameter $ is quite
variable. Taking H ~ 1000 m as a measure of the depth
of the main thermocline, we find that § is large in the
seasonal thermocline and near unity in the main ther-
mocline. Although this variability is occasionally wor-
risome in making scale arguments, we shall follow the
conventional choice of regarding § ~ Of1).

We begin by restricting the length scale L so that
A < 1 and A < 1, implying that L is large compared
to the ocean depth but small compared to the external
deformation radius VgH/f, ~ 3000 km. In practice, we
expect the upper limit for L to be determined by the
condition that § >> O(B), so that L must be less than
the intermediate scale L, defined in section 18.4.2. Us-
ing A << 1 and A < 1 and dropping small terms, we
obtain the Boussinesq hydrostatic forms of the primi-
tive equations (see the appendix).

Next we specify the time and velocity scale. For the
standard quasi-geostrophic motions, the time scale is
set by instabilities of the flow so that T = L/U (¢ ~ €
and the vertical velocity is determined by balance be-
tween local and advective changes in the vertical com-
ponent of relative vorticity and stretching of the vortex
tubes of the earth’s rotation {w = &). Finally, the ad-
vective changes of the relative and planetary vorticity
are assumed to be comparable, so that 8 ~ & also.
Expanding in &, we find, as expected, that the lowest-
order flows are geostrophic and hydrostatic:

L
0}, ’ - X ’

where we have redefined the rapidly varying coordi-

nates to look Cartesian by setting dx = L cos ©d¢ and

dy = L d# and have returned to dimensional variables.
The full pressure is related to the streamfunction by

(18.31)

- _ v
u= by =fogps (18.30)

p = plz) + foblalz).

The vorticity equation, which is derived by cross dif-
ferentiating the order-Rossby number momentum
equations (with special care taken with the © and ®

dependence), and use of the order-Rossby number con-
tinuity equation, becomes

0
(Kt + v~V) (V2 + By) = fow., (18.32)
and the buoyancy equation becomes
(—(% + V’V) ¥, + foSw = 0. (18.33)

Here S = N¥z)/f3, v = (—y,, ¥,), and V = (9/dx, 8/8y).
These two may be combined to give the quasi-geo-
strophic equation

(18.34)

9 0190
(5{ +V'V) (Vzdl +Ez--§6;l’l+ﬁy) ‘—=O,

which asserts that the quantity

01249
q=VH oo U+ By

0z S oz

is conserved at the projection of a particle in a hori-
zontal plane, not, like potential vorticity, at the parti-
cle. For this reason it is called pseudopotential vortic-
ity to distinguish it from potential vorticity. Because
the distinction vanishes for a fluid consisting of several
homogeneous incompressible or barotropic layers,
there has been some confusion of terminology in the
literature.

The temperature and salinity fields can be derived
from the streamfunction ¢ and the basic stratification
T(z), Pz}, using the salinity and temperature equations
together with the expression (18.33) for the vertical
velocity:

) .
(E +v-V) (¥ —FP) +wP, =0,

ﬁ R _ = _ 8 aT)_
(6t+vv)(T T)+W(Tz az, =0.

To complete the system of equations we need the
boundary conditions. At the bottom boundary vertical
velocities are forced by flow over topography:

w = vVb at z = —H, (18.354)

where H(O,®) is the (local) mean depth, the true bottom
being atz = —H + b. For consistency, |b|/H is required
to be order &. At the upper free surface z = 7, the
assumption that L is small compared to the external
radius of deformation implies that the boundary con-
ditions

Dn/Dt =w

p=0 } at z =17

can be approximated simply by

w =0 at z =0, (18.35b)
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with the surface displacement computed from

o

1;0'
n g!!'(XY )

Finally, on the side-wall boundaries it is necessary
to set both the order 1 and order £ normal velocities to
Zero, giving

Vs = 0,
§ v‘,’t'ﬁ = OI

(18.36)

where § is the unit tangent vector and fi the unit nor-
mal vector to the boundary.

All of these conditions will be modified in the pres-
ence of friction: the top and bottom layers because of
Ekman pumping into or out of the frictional layer (see
section 18.6) and the side conditions by the necessity
for upwelling layers which can feed offshore Ekman
transports and can accept mass flux from the interior
of the ocean.

18.5 Linear Quasi-Geostrophic Dynamics of a
Stratified Ocean

The quasi-geostrophic equations (18.33)-{18.36) have
been applied to large-scale, long-period, free- and
forced-wave motions in the atmosphere, to the study
of barotropic and baroclinic instability, to wave-mean
flow and wave-wave interaction, and to geostrophic
turbulence. We have mentioned already the review ar-
ticles by N. Phillips {1963) and Kuo (1973) and the book
by Pedlosky (1979a) in which their applications are
treated. In addition, Dickinson {1978} has reviewed
their application to long-period oscillations of oceans
and atmospheres and Holton {1975 their application
to upper-atmosphere dynamics.

In application to the mesoscale eddy range of oceanic
motions (10 km < L < 210 km), equations {18.32)-
(18.36) exhibit a rich variety of behavior depending on
the sizes of the various parameters and the initial and
boundary conditions. We cannot discuss all of them
here; rather we shall confine ourselves to a few topics
which are also familiar in a meteorological context.
We shall, whenever possible, use a typical oceanic N?(z)
profile (Millard and Bryden, 1973; also see figure 18.7)
rather than the constant- or delta-function profiles that
are most commonly considered. This allows us to de-
scribe the vertical dependence of theoretical predic-
tions in a way which is more directly comparable with
oceanic data.

We begin with phenomena that are essentially lin-
ear—involving no transfers of energy between scales—
deferring discussion of nonlinear motions to the next
section.

S
5000 IO,(I)OO I5,?OO 2Q(200 25.900 3Q900 35000
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Figure 18.7 Typical oceanic structure for S(z) = N?/f;. The
data are from Millard and Bryden (1973) and represent an
average over ten stations centered on 28°N and 70°W.

18.5.1 Rossby Waves and Topographical Rossby*
Waves
Rhines (1970) has discussed the nature of free quasi-
geostrophic waves in a uniformly stratified fluid with
bottom topography in some detail. We shall describe
the behavior of these waves with the aid of a formalism
that permits us to extend Rhines’s results to real N?(z)
profiles.

When the bottom slope is uniform (b, and b, con-
stant), the equations are separable, so that we can write
the streamfunction in the form

= AF(z)sin[k(x — ct) + ly], (18.37)
where
c = —BIk:+ 2 + A? (18.38)

and A, the separation constant, governs the z depend-
ence:

o14d

— _1)2
BzSBZF NF.

(18.39)

To close the system, we make use of the boundary
conditions

9
ot
9
ot

$.=0, z=0,

lpz = _fOS(_H,I(|l’lb'I z = _Hl

which become

F,=0, z=0, (18.40a)
_;fo__S___(—_H_)( _d )
Fz - B by k b.z‘
x (k2 +12 + \})F, z=—H. (18.40D)
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To solve (8.39) and (18.40) we proceed as follows: given
S(z) we integrate (18.39) with the boundary condition
(18.40a) and the normalization condition

(1/H) f_oHdz Piz;)) = 1

(using a simple staggered-grid difference scheme with
50-m vertical resolution). We then define the nondi-
mensional function

—HF,{—H;\?)

RIN) =S mF—Ea)

(18.41)
in terms of which the bottom boundary condition
{18.40b) becomes

R(A\?) = f" b, — 1 bl,)(kz + 2 + 22, {18.42)
This can be used to determine A\? and the vertical struc-
ture F(z), given the wave scale (k* + I?)¥2 and the
propagation angle tan 8 = I/k.

Thus, we can summarize all of the information in
one graph. Figure 18.8 shows R(A?), from which A% can
be determined given the wave numbers and the topo-
graphic slopes by a graphical solution of (18.42). From
the resulting set of A values, the values of the phase
speeds of the various waves can then be determined
from (18.38). The vertical structures of the waves and

the dependence of their phase speeds on the slopes and
wave numbers are qualitatively similar to those in
Rhines’s (1970) constant-N model. We shall describe
these results and give useful approximate formulas
forc.

When there is no slope effect, the A, values are sim-
ply the inverses of the deformation radii associated
with the various modes F,(z) which are eigensolutions
of (18.39) under the condition F, = 0 for z = 0, —H,
normalized so that (1/H)f®;dz F%(z) = 1. The barotropic
(n = 0) and first baroclinic modes [n = 1, Ly = 46 km)
correspond to the structures observed in oceanic data
(cf. Richman, 1976). The vertical dependence of these
structures are shown also in figure 18.8. The dispersion
relation (18.38) and the propagation characteristics of
the various modes are described in many places (see
chapter 10).

For the weak topographic slope effect, the phase
speeds are altered to

[p+f°F2‘ H’(b 1 b)]/(k2+12+)\,,),

derived by solving {18.39) for A> — A% small. We find
the familiar result that the bottom slope, by causing
vortex stretching or shrinking, acts as an effective S.
The bottom-slope effect in the baroclinic modes is
weaker by a factor FZ(—H) than the corresponding effect

5

-.002 -.001

-.05¢

-

Figure 18.8 Normalized ratio of bottom shear to bottom am-
plitude as a function of the separation constant A% For given
topographic slopes and wavenumber vector, the values of A
are the intersections of this curve with the line R =

(LHIBIb, — (kb I(A? + k? + I?). Also shown is the vertical
structure F|z) of the streamfunction (normalized to rms value
unity) at various (A% R) values.
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on the barotropic mode. This factor is smaller than 1
for the stratification used (about 0.4 for the first baro-
clinic mode).

When the slope effect f,H[b, — {I/k)b_.]IB is negative,
there is also a bottom-trapped eastward-moving wave.
The vertical trapping scale is H, = — (f,o/B)(b, — {I/k)b.],
and the speed

¢ = AN(—HIH3f3

can be regarded as that of a long wave in a fluid with
a deformation radius based on the vertical scale H, and
the local value of N.

For large slopes the modes all have large vertical
shear. Most of them are surface trapped, having essen-
tially zero bottom amplitude and a westward compo-
nent of phase speed. For a slope effect opposing the -
effect, there is also a rapidly eastward-moving wave
whose vertical trapping scale is Hy = fo/N(~H)Vk? + I?
and whose propagation speed is

¢ = ~fulby ~% bllHlk* + )

in the limit of L << Ly.

The constant N or two-layer models make significant
qualitative errors in describing one or another of these
types of behavior. The flat-bottom baroclinic modes in
a constant-N model have bottom velocities comparable
to the surface velocities; when a weak slope is added,
this produces a large change in the vortex stretching
and in the phase speed. Thus, the effect of the slope on
the baroclinic modes is twice as great as on the baro-
tropic mode, not, as in the realistic ocean, half as great.
For large slopes the trapping scale for constant N is
much smaller than the correct scale because N(—H) is
small compared to the average value of N which would
be used in a constant N model. This results in an
overestimate of the phase speed. The two-layer model
generally misrepresents the eastward-traveling mode:
for weak slopes, it is altogether absent, while for strong
slopes the two-layer model predicts ¢ ~ (k* + P!
rather than the correct (k? + I2)~*2 dependence.

Although we have derived the solutions {18.37)-
(18.42) from the linearized equations, the individual
waves are also finite amplitude solutions to the equa-
tions of motion (18.32)-(18.36) because both

0134

(72 +-5£§5'Z‘) l’l and l’lz

are proportional to ¢ at each horizontal level. In fact,
the nonlinearities in the equation of motion {18.34)
will vanish for any set of waves having each of their
wave vectors parallel or having the same total scale
{k? + I> + A?]7¥2 In the latter case, all the waves have
the same phase speed so that the composite stream-
function pattem propagates uniformly. The nonline-
arity in the bottom boundary condition likewise van-

ishes if all waves have the same value of R, that is, if
the wavenumber vectors are parallel or b, = 0. Thus
sets of waves with horizontal scales (k? + I?)"V2 such
that both k2 + I2 + \? = constant and R(A) = constant
will be full nonlinear solutions for north-south bottom
slopes. Instabilities may, of course, prevent such pat-
terns from persisting.

18.5.2 Generation of Rossby Waves by Flow over
Topography
Flow over topography has been of practical interest to
meteorologists attempting to forecast conditions near
large mountain ranges for many years. There is an
extensive bibliography of such studies (Nicholls, 1973;
Hide and White, 1980). Many of these concentrate on
smaller-scale lee-wave properties, although there have
also been attempts to model the large-scale standing
atmospheric eddies as topographically forced Rossby
waves (cf. Charney and Eliassen, 1949; Bolin, 1950).

In the ocean, there are also many standing features,
some of which clearly can be identified with topogra-
phy (cf. Hogg, 1972, 1973; Vastano and Warren, 1976).
In this section we shall discuss a simple oceanic anal-
ogy to the common atmosphere model for standing
waves produced by flow over topography.

Steady solutions to (18.33)-(18.35) may be written

2y 4 0190 -
VY +o sV A P(y,z),
. =Ty}, z=0, (18.43)

'!’z + fos(‘H)b = Tb(‘m; z = —Hr

where P, T, and T, are arbitrary functionals. If we
allow ¢ to represent a mean zonal flow plus a topo-
graphically induced deviation,

= —ﬁ(z)y + ¢(X,Y,Z),
we find
4 19T
Pzl = - (8-233) uim
T, =T, =0

are suitable functionals to match the terms linear iny
in (18.43). We have restricted ourselves to flows such
that @ # 0 everywhere and @i, = 0 at z = 0, —H. The
conditions that the upper and lower surfaces be iso-
thermal are not fundamental and could be relaxed eas-
ily; we make them simply to restrict the discussion to
a reasonable number of parameters. If, however, the
@ # 0 condition is violated, the analysis becomes much
more difficult since the critical-layer (where T = 0)
problem must also be solved.

Given these restrictions, however, the fluctuation
field satisfies the simple equations
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B — (8/0z)(1/S)(6T/8z) 6=

318
2 — — —
Vot sz ? Tt i 0,

¢.=0,
‘#z = _'/bs(__}llthIY’r z = __LL

where no small-amplitude assumption has been made
beyond the assumption that the nondimensional top-
ographic amplitude is of the order of the Rossby num-
ber. The linearity of these equations is due to the par-
ticularly simple form of the upstream flow—a
streamfunction field which is linear in y. Any horizon-
tal shear in the upstream flow would give rise to non-
linear terms in P, T;, and T,, and thereby to nonlinear-
ities in the equations {18.44). For simple sinusoidal
topography b = b,sin(kx + ly), the topographically
forced wave looks like

z=0, (18.44)

¢ = foboHF(z)sinlkx + ly),

where

816 [kz cp_B- (6/62)(_1/S)(aﬁlaz)] ,

0z 8 8z a

F,=0, z=0, (18.45)
F,= -S(-H)H, z=-H.

When the zonal flow is barotropic (I = constant) the
system (18.45) becomes essentially identical to (18.39)-
{18.40) except that the amplitude is determined by the
bottom boundary condition. We summarize the shapes
and amplitudes of the forced waves in figure 18.9. We
have used again the simplest form A% = 8/T — [k? + I?)
for the dependent variable.

The most striking feature in the response is, of
course, the resonant behavior when

a = BIk® + I* + A3)

for A2 one of the inverse-square deformation radii. Near
such a resonance, the amplitude becomes very large:

Fn(Z)Fn( _H)
[k® + I* — (Bfd) + A2JH?®

When the mean flow is eastward at a few centimeters
per second, it may be near a resonance for one of the
baroclinic modes and may therefore generate substan-
tial currents even above the thermocline. Vertical
standing-wave modes associated with vertical propa-
gation and reflection at the upper boundary will be
found for A2 > 0 or

F(z) =

0<i<pg/k®+ P

For A? < 0 the motions are trapped and decay away
from the bottom. The trapping scale becomes very
small when 7 is nearly zero but westward or when the
topographic wavelength is short. In the latter case, the

[h}
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Figure 18.9 Energy and vertical structure of a topographically
forced wave as a function of A? = (/@) — k + k, where k is the
topographic wavenumber.

vertical scale of the fluctuations is Hy ~ f,L/N{—H),
where L = (k? + [2|¥2, When T is weak and westward
(0 < la| < BN*—H)H?/f} ~ 4 cms), the vertical scale
will again be small compared to the fluid depth.

Although this type of problem is suggested by the
atmosphere analogue, a warning about its applicability
may be in order. Periodic problems are natural for the
atmosphere. In the ocean, however, it is less plausible
that a fluid particle periodically will revisit a topo-
graphic feature in a time less than the damping time
for the excited wave. (The Antarctic Circumpolar Cur-
rent could perhaps be an exception.) We can illustrate
the differences between periodic and local topography
by considering uniform eastward flow over a finite se-
ries of hills and valleys:

[ b,sin kx,

O0=x=<nwlk
b =
0, x<0 or x>nmlk.

We consider the barotropic component of flow which
satisfies the depth averaged form of (18.44):

vig+Lg5= Joppy)

Its solution is

é=0 forx <0,

_ fobo
¢ = H(k?* - Bfa)
X (sinkx -k \/Esin \/Ex)
B ua
forO<x <£I<E ,
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Figure 18.10 shows the average energy in the far field
{(normalized by 3(f,bo/Hk)? as a function of 7k?/8. We
note that the resonance peak becomes significant only
when the topography has a number of hills and valleys;
this suggests that the idea of resonance, in the ocean,
should be applied with caution.

When there is vertical shear in the mean flow, the
situation becomes somewhat different, although equa-
tion (18.45) can still readily be integrated. However,
one can gain a qualitative picture of the response for
arbitrary shear and small perturbations by using the
methods of Charney and Drazin (1961) as described in
the next section.

18.5.3 Propagation and Trapping of Neutral Rossby
Waves

In many circumstances, the ocean or atmosphere is
directly forced by external conditions—heating,
winds—which may have temporal and spatial varia-
tions. The forcing may generate wave disturbances in
one region that propagate into a neighboring region
(e.g., the propagation of tropospheric disturbances into
the stratosphere). In these circumstances the motion
is determined by the nature of the forcing and the
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Figure 18.10 Downstream energy averaged over a wavelength
of waves forced by flow over isolated bumps as a function of
the normalized mean flow speed. The wavenumber of the
topography in the region where it is varying is k. For an
infinite topography, resonance would occur at Tk?/8 =. 1. Re-
sults are shown for varying numbers of elevations and depres-
sions in the topography.
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refractive properties of the intervening medium. Char-
ney (1949) first treated the vertical propagation of
Rossby waves in a stratified atmosphere and Charney
and Drazin (1961) first suggested the analogy between
vertical propagation of Rossby waves and electromag-
netic wave propagation in a medium with a variable
index of refraction (possibly complex, corresponding to
wave absorption). Holton (1975) has reviewed these
concepts for meteorologists; oceanographers have
tended to make less use of them [see, however, Wunsch
{1977), who applied them to vertically propagating
equatorial waves excited by monsoon winds].

The simplest derivation of an index of refraction is
for waves in a zonal flow with vertical and horizontal
shear. Consider waves of infinitesimal amplitude hav-
ing east-west wavenumber k and frequency w. The
north-south and vertical dependencies of the ampli-
tude § = ¥(y,z)e***« are determined by the standard
stability equation (cf. Charney and Stern, 1962):

9z S oz

-3 G 5w 4) ¥
4]

- 0140 _
+(B—Hw—52§32~11)‘1’=0.
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If we follow the procedure that has been used for ver-
tically propagating waves, we transform this into a
Helmholtz equation with a variable coefficient of the
undifferentiated term. This is quite straightforward if
we are considering propagation only in the y direction
with T, = 0 and ¥ = ®(y)F,(z}, where F, is one of the
flat bottom eigenfunctions. Then the y structure is
governed by
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where

y) = [(B — T,M(T — w/k)] — k* — A (18.46)

A simple illustrative example is the radiation from
a meandering Gulf Stream into the neighboring Sar-
gasso Sea (cf. Flierl, Kamenkovich, and Robinson, 1975;
Pedlosky, 1977). The forcing specifies ¢ at some lati-
tude. When we have no mean flow (@ = 0} and the
motions are barotropic, the index of refraction becomes

Vy) = —k* — (Bk/w)

The north-south scale of the response |¢|~! is shown as
a function of w (>0) and k (=0} in figure 18.11. Most
observations indicate eastward-traveling motions, w/k >
0, implying that the mid-ocean response will be
trapped close to the Gulf Stream.

We may obtain a similar representation of the index
of refraction for the full two-dimensional (y and z)
problem. This result, for reasons discussed below, is
probably of more interest to meteorologists than to
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Figure 18.11 Solid lines show north-south length scales
(wavelength/2n7) and dashed lines shown trapping scales (e-
folding distance) for barotropic waves generated by a mean-
dering current with inverse frequency w™! and inverse wave-
number k-!. Eastward going meanders (k > 0} produce
trapped waves; westward going meanders (k < 0) may produce
propagating disturbances. The symbols ® correspond to typ-
ical observational estimates of w™! and k.

oceanographers; however, we include it to illustrate
some of the effects of the z structure. If we substitute
Y(y,z) = SY4d(y,{), where { = [?, $'?(z’')dz’ is a modi-
fied vertical coordinate, we find
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where the index of refraction v¥y,{) is given by
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When »? > 0 there are sinusoidal solutions and energy
propagates freely, whereas when »? < 0 there are only
exponential solutions (along the ray) and the waves die
out. There are also, of course, diffraction effects and
tunneling effects if the regions of negative »? (or, at
least, significantly altered »?) are relatively small. This
form is useful when N is a simple function (e.g., Nye*¢)
so that the first term in (18.47) is also simple
[—3/(4d2S]]. The stratification then contributes a rela-
tively large and negative term which increases toward
the bottom, inhibiting penetration into the deep water.
For our S{z) profile (figure 18.7), however, numerical
differentiation proved to be excessively noisy. More-
over, in the oceans, most of the motions of interest
have vertical scales that are significantly influenced by
the boundaries and are larger than the scales of varia-
tion of »?, so that a local (WKB) interpretation of »?
variations is not possible.

We can, however, associate modifications in »* oc-
curring on large scales with modifications in the struc-
ture of ¥. Thus in the topographic problem, if the shear
in the vertical is such that
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there will be a decrease in the value of »?, implying
that the wave will become either more barotropic (v2 >
0) or more bottom trapped (¢#* < 0). In the example of
Rossby wave radiation from a meandering Gulf Stream,
(18.46) implies that the baroclinic modes {A2 > 0] be-
come trapped even more closely than the barotropic
modes.

As a final example, we note that the motions forced
in the ocean by atmospheric disturbances tend to have
large positive w/k and large scales. In the absence of
mean currents, the vertical structure equation, with
¥ = ¢F(z), becomes
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implying that the forced currents are nearly barotropic.
However, the recent work of Frankignoul and Miiller
(1979) suggests a possible mechanism by which signif-
icant baroclinic currents may be produced. Because the
ocean is weakly damped and has resonant modes (1? =
AZ), even very small forcing near these resonances can
cause the energy to build up in these modes. This is
another example of the strong influence of the bound-
aries on the oceanic system.

18.6 Friction in Quasi-Geostrophic Systems

18.6.1 Ekman Layers

Ekman (1902, 1905), acting on a suggestion of Nansen,
was the first to explore the influence of the Coriolis
force on the dynamics of frictional behavior in the
upper wind-stirred layers of the oceans. He considered
both steady and impulsively applied, but horizontally
uniform, winds. In an effort to understand how surface
frictional stresses 7 influence the upper motion of the
atmosphere and, in particular, how a cyclone “‘spins
down,”” Charney and Eliassen {1949) were led to con-
sider horizontally varying winds. They showed that
Ekman dynamics generates a horizontal convergence
of mass in the atmospheric boundary layer proportional
to the vertical component of the vorticity of the geos-
trophic wind in this layer. Thus a cyclone produces a
vertical flow out of the boundary layer which com-
presses the earth’s vertical vortex tubes and generates
anticyclonic vorticity. The time constant for frictional
decay in a barotropic fluid was found to be (f,E'?)7,
where E is the Ekman number v,./f,H?, with v, the eddy
coefficient of viscosity and H the depth of the fluid.
Greenspan and Howard (1963) investigated the time-
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