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Internal Waves
and Small-Scale
Processes

Walter Munk

9.1 Introduction

Gravity waves in the ocean’s interior are as common
as waves at the sea surface—perhaps even more so, for
no one has ever reported an interior calm.

Typical scales for the internal waves are kilometers
and hours. Amplitudes are remarkably large, of the
order of 10 meters, and for that reason internal waves
are not difficult to observe; in fact they are hard not to
observe in any kind of systematic measurements con-
ducted over the appropriate space-time scales. They
show up also where they are not wanted: as short-
period fluctuations in the vertical structure of temper-
ature and salinity in intermittent hydrocasts.

I believe that Nansen (1902} was the first to report
such fluctuations;! they were subsequently observed
on major expeditions of the early nineteen hundreds:
the Michael Sars expedition in 1910, the Meteor ex-
peditions in 1927 and 1938, and the Snellius expedition
in 1929-1930. [A comprehensive account is given in
chapter 16 of Defant (1961a]]. In all of these observa-
tions the internal waves constitute an undersampled
small-scale noise that is then ‘““aliased” into the larger
space-time scales that are the principal concern of clas-
sical oceanography.

From the very beginning, the fluctuations in the hy-
drocast profiles were properly attributed to internal
waves. The earliest theory had preceded the observa-
tions by half a century. Stokes {1847} treated internal
waves at the interface between a light fluid overlaying
a heavy fluid, a somewhat minor extension of the the-
ory of surface waves. The important extension to the
case of a vertical mode structure in continuously strat-
ified fluids goes back to Rayleigh (1883). But the dis-
creteness in the vertical sampling by hydrocasts led to
an interpretation in terms of just the few gravest
modes, with the number of such modes increasing with
the number of sample depths (giving j equations in j
unknowns). And the discreteness in sampling time led
to an interpretation in terms of just a few discrete
frequencies, with emphasis on tidal frequencies.

The development of the bathythermograph in 1940
made it possible to repeat soundings at close intervals.
Ufford (1947) employed three vessels from which bath-
ythermograph lowerings were made at 2-minute inter-
vals! In 1954, Stommel commenced three years of tem-
perature observations offshore from Castle Harbor,
Bermuda, initially at half-hour intervals, later at 5-min-
ute intervals.2 Starting in 1959, time series of isotherm
depths were obtained at the Navy Electronics Labora-
tory (NEL| oceanographic tower off Mission Beach, Cal-
ifornia, using isotherm followers (Lafond, 1961) in-
stalled in a 200-m triangle (Cox, 1962).

By this time oceanographers had become familiar
with the concepts of continuous spectra (long before

264
Walter Munk




routinely applied in the fields of optics and acoustics),
and the spectral representation of surface waves had
proven very useful. It became clear that internal waves,
too, occupy a frequency continuum, over some six oc-
taves extending from inertial to buoyant frequencies.
[The high-frequency cutoff had been made explicit by
Groen (1948).] With regard to the vertical modes, there
is sufficient energy in the higher modes that for many
purposes the discrete modal structure can be replaced
by an equivalent three-dimensional continuum.

We have already referred to the measurements by
Ufford and by Lafond at horizontally separated points.
Simultaneous current measurements at vertically sep-
arated points go back to 1930 (Ekman and Helland-
Hansen, 1931). In all these papers there is an expression
of dismay concerning the lack of resemblance between
measurements at such small spatial separations of os-
cillations with such long periods. I believe {from dis-
cussions with Ekman in 1949) that this lack of coher-
ence was the reason why Ekman postponed for 23 years
(until one year before his death) the publication of
“Results of a Cruise on Board the ‘Armauer Hansen’ in
1930 under the Leadership of Bjérn Helland-Hansen”
(Ekman, 1953). But the decorrelation distance is just
the reciprocal of the bandwidth; waves separated in
wavenumber by more than Ak interfere destructively
at separations exceeding (Ak)™. The small observed
coherences are simply an indication of a large band-
width.

The search for an analytic spectral model to describe
the internal current and temperature fluctuations goes
back over many years, prompted by the remarkable
success of Phillips’s (1958) saturation spectrum for sur-
face waves. I shall mention only the work of Murphy
and Lord (1965), who mounted temperature sensors in
an unmanned submarine at great depth. They found
some evidence for a spectrum depending on scalar
wavenumber as k53, which they interpreted as the
inertial subrange of homogeneous, isotropic turbu-
lence. But the inertial subrange is probably not appli-
cable (except perhaps at very small scales), and the
fluctuations are certainly not homogeneous and not
isotropic.

Briscoe {1975a) has written a very readable account
of developments in the early 1970s. The interpretation
of multipoint coherences in terms of bandwidth was
the key for a model specturm proposed by Garrett and
Munk (1972b). The synthesis was purely empirical,
apart from being guided by dimensional considerations
and by not violating gross requirements for the finite-
ness of certain fundamental physical properties. Sub-
sequently, the model served as a convenient ‘‘straw-
man” for a wide variety of moored, towed and
“dropped”’ experiments, and had to be promptly mod-
ified [Garrett and Munk (1975), which became known

as GM75 in the spirit of planned obsolescence]. There
have been further modifications [see a review paper by
Garrett and Munk {1979]]; the most recent version is
summarized at the end of this chapter.

The best modern accounts on internal waves are by
O. M. Phillips (1966b), Phillips {1977a), and Turner
{1973a). Present views of the time and space scales of
internal waves are based largely on densely sampled
moored, towed, and dropped measurements. The pi-
oneering work with moorings was done at site D in the
western North Atlantic (Fofonoff, 1969; Webster,
1968). Horizontal tows of suspended thermistor chains
(Lafond, 1963; Charnock, 1965) were followed by towed
and self-propelled isotherm-following ‘“‘fishes”’ (Katz,
1973; McKean and Ewart, 1974). Techniques for
dropped measurements were developed along a number
of lines: rapidly repeated soundings from the stable
platform FLIP by Pinkel (1975), vertical profiling of
currents from free-fall instruments by Sanford (1975)
and Sanford, Drever, and Dunlap {1978), and vertical
profiling of temperature from a self-contained yo-yoing
capsule by Caims and Williams (1976). The three-di-
mensional IWEX (internal wave experiment| array is
the most ambitious to date (Briscoe, 1975b). These ex-
periments have served to determine selected parame-
ters of model spectra; none of them so far, not even
IWEX, has been sufficiently complete for a straight-
forward and unambiguous transform into the multi-
dimensional (w, k)-spectrum. The FLIP measurements
come closest, giving an objective spectrum in the two
dimensions , k,, with fragmentary information on k,
k,. Otherwise only one-dimensional spectra can be
evaluated from any single experiment, and one is back
to model testing. Yet in spite of these observational
shortcomings, there is now evidence for some degree
of universality of internal wave spectra, suggesting that
these spectra may be shaped by a saturation process
(the interior equivalent of whitecaps), rather than by
external generation processes.
~ Internal waves have surface manifestations consist-
ing of alternate bands of roughened and smooth water
(Ewing, 1950; Hughes, 1978), and these appear to be
visible from satellites {figure 9.1). High-frequency sonar
beams are a powerful tool for measuring internal wave
related processes in the upper oceans (figures 9.2, 9.3).
The probing of the deep ocean interior by acoustics is
ultimately limited by scintillations due to internal
waves (Flatté et al., 1979; Munk and Wunsch, 1979)
just as the “diffraction-limited” telescope has its di-
mensions set by the small-scale variability in the upper
atmosphere.

It will be seen that internal waves are a lively subject.
The key is to find the connections between internal
waves and other ocean processes. The discovery of ever
finer scales, down to the scale of molecular processes,
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Figure 9.1 SEASAT synthetic aperture radar image off Cabo
San Lazaro, Baja California (24°48'N, 112°18'W) taken on 7
July 1978. Scale of image nearly matches that of bathymetric
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area. The pattern in the right top area is most likely formed
by internal waves coming into the 50 fathom line. {I am
indebted to R. Bernstein for this figure.)
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Figure 9.2 The water column is insonified with a narrow
downward sonar beam of 200 kHz (wavelength 0.75 cm). The
dark band is presumably a back-scattering layer convoluted
by shear instabilities. In a number of places the instabilities
have created density inversions. This is confirmed by the two
orprofiles. The acoustic reflection from the sinking CTD
along the steeply slanting lines shows the depth-time history
of the a,-profiles. The profiling sound source was suspended
from a drifting ship. The horizontal distance between over-
turning events was estimated to be 60-70 m. (I am indebted
to Marshall Orr of Woods Hole Oceanographic Institution for
this figure; see Haury, Briscoe, and Orr, 1979.)
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has been a continuing surprise to the oceanographic
community for 40 years. Classical hydrographic casts
employed reversing (Nansen) bottles typically at 100-
m intervals in the upper oceans beneath the thermo-
cline, and half-kilometer intervals at abyssal depths.
Only the gross features can be so resolved. Modem
sounding instruments (BT, STD, CTD) demonstrated
a temperature and salinity? fine structure down to me-
ter scales. An early clue to microstructure was the
steppy traces on the smoked slides of bathythermo-
graphs. These steps were usually attributed to “stylus
stiction,” and the instruments suitably repaired.

Free-fall apparatus sinking slowly (~0.1 ms~} and
employing small, rapid-response (~0.01 s} transducers,
subsequently resolved the structure down to centime-
ter scales and beyond. The evolving terminology

larger than 100 m vertical
1 m to 100 m vertical
less than 1 m vertical

gross structure:
fine structure:
microstructure:

is then largely based on what could be resolved in a
given epoch (see chapter 14). The fine-structure meas-
urements of temperature and salinity owe much of
their success to the evolution of the CTD (Brown,
1974). The pioneering microscale measurements were
done by Woods (1968a) and by Cox and his collaborators
(Gregg and Cox, 1972; Osbom and Cox, 1972). Meas-
urements of velocity fine structure down to a few me-
ters have been accomplished by Sanford (1975) and
Sanford, Drever, and Dunlap (1978). Osbom (1974,
1980} has resolved the velocity microstructure between
40 and 4 cm. Evidently velocity and temperature struc-
ture have now been adequately resolved right down to
the scales for which molecular processes become dom-
inant. At these scales the dissipation of energy and
mean-square temperature gradients is directly propor-
tional to the molecular coefficients of viscosity and
thermal diffusivity. The dissipation scale for salinity
is even smaller {the haline diffusivity is much smaller
than the thermal diffusivity] and has not been ade-
quately resolved. The time is drawing near when we
shall record the entire fine structure and microstruc-
ture scales of temperature, salinity and currents [and
hence of the buoyancy frequency N{z} and of Richard-
son number Ri(z|] from a single free-fall apparatus.
Perhaps the discovery of very fine scales could
have been anticipated. There is an overall ocean bal-
ance between the generation and dissipation of mean-
square gradients. Eckart (1948} refers to the balancing
processes as stirring and mixing. Garrett {1979) has put
it succinctly: “Fluctuations in ocean temperature pro-
duced by surface heating and cooling, and in salinity
due to evaporation, precipitation, run-off and freezing,
are stirred into the ocean by permanent current sys-
tems and large scale eddies.” Mixing ultimately occurs
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Figure 9.3 Measurements of Doppler vs. range were made at
2-minute intervals with a quasi-horizontal 88-kHz sound
beam mounted on FLIP at a depth of 87 m. Bands of alternat-
ing positive and negative Doppler (in velocity contours) are
the result of back scatter from particles drifting toward and
away from the sound source (the mean drift has been re-
moved). The velocities are almost certainly associated with
internal wave-orbital motion. The range-rate of positive or
negative bands gives the appropriate projection of phase ve-
locity. The measurements are somewhat equivalent to suc-
cessive horizontal tows at 3000-knots! (I am indebted to Rob-
ert Pinkel of Scripps Institution of Oceanography for this
figure.}

through dissipation by ‘““molecular action on small-
scale irregularities produced by a variety of processes.”
The microstructure (where the mean-square gradients
largely reside) are then a vital component of ocean
dynamics. This leaves open the question whether mix-
ing is important throughout the ocean, or whether it
is concentrated at ocean boundaries and internal fronts,
or in intense currents {an extensive discussion may be
found in chapter 8).

What are the connections between internal waves
and small-scale ocean structure? Is internal wave
breaking associated with ocean microstructure? Is
there an .associated flux of heat and salt, and hence
buoyancy? Does the presence of internal waves in a
shear flow lead to an enhanced momentum flux, which
can be parameterized in the form of an eddy viscosity?
What are the processes of internal-wave generation and
decay? I feel that we are close to having these puzzles
fall into place (recognizing that oceanographic “‘break-
throughs” are apt to take a decade), and I am uncom-
fortable with attempting a survey at this time.

Forty years ago, internal waves played the role of an
attractive nuisance: attractive for their analytical ele-

267
Internal Waves



gance and their accessibility to a variety of experimen-
tal methods, a nuisance for their interference with
what was then considered the principal task of physical
oceanography, namely, charting the “mean” density
field. Twenty years from now I expect that internal
waves will be recognized as being intimately involved
with the vertical fluxes of heat, salt, and momentum,
and so to provide a vital link in the understanding of
the mean fields of mass and motion in the oceans.

9.1.1 Preview of This Chapter

We start with the traditional case of a two-layer ocean,
followed by a discussion of continuous stratification:
constant buoyancy frequency N, N decreasing with
depth, 2 maximum N (thermocline), a double maxi-
mum. Conditions are greatly altered in the presence of
quite moderate current shears. Short (compliant) inter-
nal waves have phase velocities that are generally
slower than the orbital currents associated with the
long (intrinsic) internal waves, and thus are subject to
critical layer processes. There is further nonlinear cou-
pling by various resonant interactions.

Ocean fine structure is usually the result of internal-
wave straining, but in some regions the fine structure
is dominated by intrusive processes. Microstructure is
concentrated in patches and may be the residue of
internal wave breaking. Little is known about the
breaking of internal waves. Evidently, there are two
limiting forms of instability leading to breaking: ad-
vective instability and shear instability.

The chapter ends with an attempt to estimate the
probability of wave breaking, and of the gross vertical
mixing and energy dissipation associated with these
highly intermittent events. An important fact is that
the Richardson number associated with the internal
wave field is of order 1. Similarly the wave field is
within a small numerical factor of advective instabil-
ity. Doubling the mean internal wave energy can lead
to a large increase in the occurrence of breaking events;
halving the wave energy could reduce the probability
of breaking to very low levels. This would have the
effect of maintaining the energy level of internal waves
within narrow limits, as observed. But the analysis is
based on some questionable assumptions, and the prin-
cipal message is that we do not understand the prob-
lem.

9.2 Layered Ocean

We start with the conventional discussion of internal
waves at the boundary between two fluids of different
density. The configuration has perhaps some applica-
tion to the problem of long internal waves in the ther-
mocline, and of short internal waves in a stepwise fine
structure.

Following Phillips (1977a), this can be treated as a
limiting case of a density transition from p, above z =
—h to p; beneath z = —h, with a transition thickness
8h (figure 9.4). The vertical displacement {(z) has a peak
at the transition, and the horizontal velocity u(z)
changes sign, forming a discontinuity |vortex sheet) in
the limit 8k — 0. For the second mode (not shown), Z(z)
changes sign within the transition layer and ufz)
changes sign twice; this becomes unphysical in the
limit 8h — 0. For higher modes the discontinuities are
even more pathological, and so a two-layer ocean is
associated with only the gravest internal mode.

For the subsequent discussion it is helpful to give a
sketch of how the dependent variables are usually de-
rived and related. The unknowns are u,v,w,p (after
eliminating the density perturbation), where p is the
departure from hydrostatic pressure. The four un-
knowns are determined by the equations of motion and
continuity (assuming incompressibility). The linear-
ized x,y equations of motion are written in the tradi-
tional f-plane; for the vertical equation it is now stan-
dard [since the work of Eckart (1960)] to display the
density stratification in terms of the buoyancy (or
Brunt-Viisila) frequency

{12 () )
Niz) =4 —-=|=5- — |5 , 9.1
) { P[ dz dz/ agianatic 9-1)
thus giving
w _10p
o _poz't Nz =0.

The last term will be recognized as the buoyancy force
—g8plp, of a particle displaced upwards by an amount
{ = fwdt

For propagating waves of the form {[z) expilkx — wt)
the equations can be combined (Phillips, 1977a, §5.2
and §5.7) into

Figure 9.4 A sharp density transition from p, to p, takes place
between the depths —z = h — $8h and —z = h + 48h. This is
associated with a delta-like peak in buoyancy frequency N(z).
Amplitudes of vertical displacement {(z), horizontal velocity
u(z), and shear u’(z) = du/dz are sketched for the gravest
internal wave mode.
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- +k2N2(Z)

dz? o —f2 {=0.

(9.2)

The linearized boundary conditions are { = 0 at the
surface and bottom.

A simple case is that of f = 0 and N = 0 outside the
transition layer. We have then

{. = Asinhkz,
cl = BSinhk‘Z + H’,

above and below the transition layer, respectively. The
constants A and B are determined by patching the ver-
tical displacement at the transition layer:

Lu=4=a

The dispersion relation is found by integrating Eq. (9.2)
across the transition layer:

G- G- —kchahdz—Ni(f{—“’z

at z = —h.

wzab) at z = —h,

where {' = d{/dz. In the limit of small k 8h, that is, for
waves long compared to the transition thickness, the
foregoing equations lead to the dispersion relation

gl3p/p)k
cothkh + cothk(H — h)’

w? =

For a lower layer that is deep as compared to a wave:
length, the denominator becomes cothk(h — H) + 1.
If the upper layer is also deep, it becomes 1 + 1, and

1
=3 gk gk é(pz + pu)
As p, — 0, w* > gk, which is the familiar expression
for surface waves in deep water.

The case of principal interest here is that of an iso-
lated density transition 8p << p and k8h << 1. Then
w? = igk 8p/p. The vertical displacement is a maximum
at the transition and dies off with distance &z from the
transition as a exp(—k|dz|).

A question of interest is the variation of Richardson
number across the transition layer. We know from the
work of Miles and Howard [see Miles (1963)] that for
a transition p(z) and a steady ufz) of the kind shown in
figure 9.4, the flow becomes unstable to disturbances
of length scale 6h if Ri < %. I find it convenient to refer
to the root-reciprocal Richardson number

Ri~2 = |u’'/NJ,

so that large values imply large instabilities (as for Rey-
nolds numbers); the critical value is [u'/N| = 2. One
would think offhand that [u‘/N| is 2 minimum at the

transition where N reaches a maximum, but just the
opposite is true. To prove this, we use the condition of
incompressibility, iku(z) — iw¢’ = 0, and equation (9.2)
to obtain

' __io n__Nztz,_wz
w)=g0=—-——ka (9.3)
and so u’ ~ N? for small w/N; accordingly u'/N varies
as N. Thus the layers of largest gravitational stability
(largest N} are also the layers of largest shear instability

(largest |u'/N]).
9.3 Continuously Stratified Ocean

The simplest case is that of constant N. The solution
to (9.2) is

2
{(z) = a sinmz, m?= kzliz _;‘;2 (9.4)
with m so chosen that { vanishes at z = —H. Solving
for w?,
kz 2 2
AN mH = =12, (95)

mi}+k* '’

This dispersion relation is plotted in figure 9.5. The
vertical displacements for the first and third mode are
shown in figure 9.6. Very high modes (and the ocean
is full of them) in the deep interior are many wave-
lengths removed from the boundaries, and we can ex-
pect the waves to be insensitive to the precise config-
uration of top and bottom. The discrete dispersion w;(k}
is then replaced by an equivalent continuous dispersion
wlk, m).

The standard expressions for the particle velocities
u,w and the group velocities ¢; with components
dw/0k, dw/dm as functions of the propagation vector

To1
0.1¢cpkm
j=10
1cpkm

\0 ook
P

w (cph)

j=1000, 100 cpkm

o T T T T T T — T 1
o 2 4 6 8 10

Kk (cpkm)

Figure 9.5 The dispersion ok} [equation (9.5)], for modes
j = 1,10,100, 1000, corresponding to vertical wavenumbers
m = 0.1,1,10, 100 cpkm in an ocean of depth 5 km. The in-
ertial frequency is taken at f = 0.0417 cph (1 cpd), and the
buoyancy frequency at N = 1 cph.
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Figure 9.6 Vertical displacements {[z) in a constant-N ocean,
formodesj =1 and;j = 3.
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Figure 9.7 The wavenumber vector k = (k, m) and group ve-
locity ¢, near the inertial frequency (o = f + €} and near the
buoyancy frequency {w = N — ¢), respectively. A packet of
wave energy is projected on the {x, z)-plane. Crests and troughs
in the wave packet are in a plane normal to k, and travel with
phase velocity ¢ in the direction k. The wave packet travels
with group velocity ¢, at right angles to k, thus sliding side-
ways along the crests and troughs. The particle velocity u {not
shown) is in the planes at right angles to k.

k = (k, m} are easy to derive, but hard to visualize. Con-
sider a wave packet (figure 9.7) with crests and troughs
along planes normal to the paper and inclined with
respect to the (x, z)-axis as shown. The phase velocity
is in the direction k normal to the crests, but the group
velocity ¢, is parallel to the crests, and the wave packet
slides sideways. k is inclined to the horizontal by

N2_0)2 1/2
wz-fz)

tantﬁ?=E =(

X (9.6a)

and so the angle is steep for inertial waves (w = f + €
and flat for buoyancy waves (o = N — €). The energy
packet is propagated horizontally for inertial waves,
and vertically for buoyancy waves, but the group ve-
locity goes to zero at both limits.

The flow u = (u, w) takes place in the plane of the
crest and troughs. For inertial waves, particles move in
horizontal circles. The orbits become increasingly el-
liptical with increasing frequency, and for buoyancy
waves the particle orbits are linear along the z-axis, in
the direction of ¢,. The wavenumber k is always nor-
mal to both ¢; and u. [The nonlinear field accelerations
{u+ V)u vanish for an isolated elementary wave train,
leading to the curiosity that the linear solution is an
exact solution.] Readers who find it difficult to visu-
alize (or believe) these geometric relations should refer
to the beautiful laboratory demonstrations of Mowbray
and Rarity {1967).

It is not surprising, then, that internal waves will do
unexpected things when reflected from sloping bound-
aries. The important property is that the inclination 6
relative to the x-axis depends only on frequency [equa-
tion {9.6a)]. Since frequency is conserved upon reflec-
tion, incident and reflected # must be symmetric with
respect to a level surface rather than with respect to
the reflecting surface. At the same time the flow u for
the combined incident and reflected wave must be par-
allel to the reflecting boundary. For a given o, there is
a special angle for which the orbital flow is parallel to
the boundary. This requires that the boundary be in-
clined at a slope

tanBlz) = tan(90° — 6] = [M] " (9.6b)

N3z} — «*
It can be shown that for slopes steeper than B, the
energy of ‘“shoreward” traveling internal waves is re-
flected “seaward”: for slopes of less than S, the energy
is forward reflected. Repeated reflections in a wedge-
shaped region such as the ocean on the continental
slope can lead to an accumulation of energy at ever
smaller scales (Wunsch, 1969). For a given slope, we
can expect an amplification of the internal waves at
the frequency w determined by [9.6b). Wunsch {1972b)
has suggested that a peak in the spectrum of temper-
ature fluctuations measured southeast of Bermuda
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could be so explained. Pertinent values are N =
2.6 cph, f = 0.045 cph, and 8 =~ 13°. Equation {9.6b)
gives w = 0.59 cph, in agreement with the observed
spectral peak at 0.5 cph.

9.4 Tuming Depths and Tuming Latitudes

Figure 9.8 shows the situation for an ocean with vari-
able N{z|. For frequencies that are less than N through-
out the water column, the displacements are similar to
those for constant N (figure 9.6) except that the posi-
tions of the maxima and zeros are displaced somewhat
upward, and that the relative amplitudes are somewhat
larger at depth. The important modification occurs for
frequencies that exceed N(z) somewhere within the
water column. At the depths z; where w = N{z4), called
turning depths, we have the situation shown to the
right in figure 9.8. Equation (9.2) is locally of the form
{" + z{ = 0 where z is now a rescaled vertical coordinate
relative to zy. The solution (called an Airy function)
has an inflection point at the turning depth {(here z =
0), is oscillatory above the turning depth, and is expo-
nentially damped beneath. The amplitudes are some-
what larger just above the turning depth than at greater
distance, but nothing very dramatic happens.

The refraction of a propagating wave packet is illus-
trated in figure 9.9. As the packet moves into depths
of diminishing N(z) the crests and troughs turn steeper,
and the direction of energy propagation becomes more
nearly vertical. The waves are totally reflected at the
turning depth z; where @ = N(z1). Modal solutions
Llz) X exp ilkx — o) with ¢z) as illustrated in figure
9.8 can be regarded as formed by superposition of prop-
agating waves with equal upward and downward en-
ergy transport. The wave energy remains trapped be-
tween the surface and the turning depth.

The common situation for the deep ocean is the
main thermocline associated with a maximum in N{z).
Internal waves with frequencies less than this maxi-
mum are in a waveguide contained between upper and
lower turning depths. For relatively high (but still
trapped) frequencies the sea surface and bottom bound-
aries play a negligible role, and the wave solutions can
be written in a simple form (Eriksen, 1978). The bottom
boundary condition {9.5) for a constant-N ocean, e.g.,
m;H = jm, j = 1,2,..., is replaced in the WKB approxi-
mation by

N2 — ?
N - o®

where b is a representative thermocline (or stratifica-
tion) scale. Equation (9.7) assures an exponential atten-
uation outside the waveguide. For the case of a double
peak in Niz) with maxima N, and N,, the internal wave
energy is concentrated first at one thermocline, then

1/2
m;b = i1r( ) ~ jwNIN,, 9.7}
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Figure 9.8 Vertical displacements {[z} in a variable-N ocean,
for modes j = 1 and j = 3. w, is taken to be less than Niz} at
all depths. w, is less than N(z} in the upper oceans above z =
—2z, only.

Figure 9.9 Propagation of a wave packet in a variable-Njz)
ocean without shear (U = constant}. The turning depth z,
occurs when w = Nizq).

-z U(z)

-zeF

Figure g.10 Propagation of a wave packet in a constant-N
ocean with shear. The critical depth z; occurs where U =

clzc).
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the other, migrating up and down with a frequency
IN; — N,| (Eckart, 1961}. This is similar to the behavior
of two loosely coupled oscillators. The quantum-me-
chanical analogy is that of two potential minima and
the penetration of the potential barrier between them.
There is a close analogy between the constant- and
variable-N ocean, and the constant- and variable-f
ocean (the f-plane and B-plane approximations). For a
fixed , the condition = f = 2Q sin ¢ determines the
turning latitude ¢;. Eastward-propagating internal
gravity waves have solutions of the form
nlv)¢(z) expilkx — wt). The equation governing the local
north-south variation is {Munk and Phillips, 1968)

7' = d*n/dy?,

where y is the poleward distance (properly scaled) from
the turning latitude. This is in close analogy with the
up-down variation near the turning depth, which is
governed by

' +yn=0,

' +z{=0, " = d2g/dz2.

Thus n(y) varies from an oscillatory to an exponentially
damped behavior as one goes poleward across the turn-
ing latitude. Poleward-traveling wave packets are re-
flected at the turning latitude.

From an inspection of figure 9.7, it is seen that the
roles of horizontal and vertical displacements are in-

terchanged in the N{z) and f(y) turning points. In the
Niz) case the motion is purely vertical; in the f(y) case
the motion is purely horizontal (with circular polari-
zation).

It has already been noted that nothing dramatic is
observed in the spectrum of vertical displacement (or
potential energy) near ®« = N—only a moderate en-
hancement, which can be reconciled to the behavior of
the Airy function (Desaubies, 1975; Cairns and Wil-
liams, 1976). Similarly we might expect only a mod-
erate enhancement in the spectrum of horizontal mo-
tion {or kinetic energy) near w = f. In fact, the spectrum
is observed to peak sharply. If the horizontal motion is
written as a sum of rotary components (Gonella, 1972},
it is found that the peak is associated with negative
rotation {clockwise in the northern hemisphere).

I have made a parallel derivation of the spectra at the
two turning points (figure 9.11), assuming horizontally
isotropic wave propagation within the entire equatorial
waveguide. It turns out that the buoyancy peak is in
fact much smaller than the inertial peak at moderate
latitudes. But at very low latitude the inertial peak
vanishes. This is in accord with the equatorial obser-
vations by Eriksen (1980). Fu (1980) gives an interesting
discussion of the relative contributions to the spectral
peak at the local inertial frequency @ = fioea from two
processes: (1) local generation of resonant inertial

60 ~_ T T T T T I T T

o . 45°

2 -]
O
(&)
w —4
>
S
O .
| .
=
0
[N | i
O
10°

M ot ]
O 30°

| 45°

-20 L ) Ll i L a1
Af 2f .5f f 2f 5f
w

Figure 9.11 Enhancement of the kinetic-energy spectrum
(left) and of the potential-energy spectrum (right) at the iner-
tial and buoyancy frequencies, respectively. The inertial spec-

trum is drawn for latitudes 1°,5° 10°,30°, 45°. The buoyancy
spectrum is drawn for two depths, corresponding to N = %, §
times the maximum buoyancy frequency.
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waves ® = fioca; and (2} remote generation of waves of
the same frequency ® = fica at lower latitudes (where
f < fioca)- Figure 9.11 is drawn for case 2 under the
assumption that the equatorial waveguide is filled with
horizontally isotropic, freely propagating radiation.
Take the curve marked 30°, say. Then for > f a
station at lat. 30° is within the equatorial waveguide;
for @ < f the spectrum is the result of evanescent
extensions from a waveguide bounded by lower lati-
tudes. Over rough topography and in regions of strong
surface forcing, the case can be made for local genera-
tion of the inertial peak. It would seem that the buoy-
ancy peak at mid-depth must always be associated with
remote generation.

9.5 Shear

Internal waves are greatly modified by an underlying
shear flow.4 A variable U(z) can have a more traumatic
effect on internal waves than a variable N|z). For ready
comparison with figure 9.9 showing the effect of a
variable Nz) on a traveling wave packet, we have
sketched in figure 9.10 the situation for a wave packet
traveling in the direction of an increasing Ulz). As the
wave packet approaches the ‘“‘critical depth” z; where
the phase velocity (in a fixed frame of reference| equals
the mean flow, ¢ = Ufz), the vertical wavenumber
increases without limit (as will be demonstrated).

For the present purpose we might as well avoid ad-
ditional complexities by setting f = 0. The theoretical
starting point is the replacement of 8, by 8, + U3, +
w 0, in the linearized equations of motion. The result
is the Taylor-Goldstein equation [Phillips (1977a, p.
248)]:

ax ( N U 2) -
dzz+ {U-cP U-c k*)e=0,
p (9.8)
v &U
U' =gz

where c is the phase velocity in a fixed reference frame.
(This reduces to
d¥

+kzu

dz? ? £=0

(9.9}
for U = 0.) The singularity at the critical depth where
U = c is in contrast with the smooth turning-point
transition at N = w; this is the analytic manifestation
of the relative severity of the effect of a variable Ulz]
versus that of a variable N{z).

Thorpe (1978c) has computed the wave function ¢z}
for (1) the case of constant N and U’ and (2) the case
where N and U’ are confined to a narrow transition
layer. The results are shown in figures 9.12 and 9.13.
The profiles are noticeably distorted relative to the case

L)~

oL \

Figure 9.12 First mode vertical displacements {[z] in a
Couette flow {constant U’ and constant N), for U’/N =0, +1.
Waves move from left to right, and U is positive in the direc-
tion of wave propagation. (Thorpe, 1978c.)

N(z)—~ u(z)—~
1] [

-HL

Figure 9.13 Similar to figure 9.12, but with U’ and N confined
to a narrow transition layer.
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of zero shear, with the largest amplitudes displaced
toward the level at which the mean speed (in the di-
rection of wave propagation) is the greatest. Finite-am-
plitude waves have been examined for the case 2.
Where there is a forward® flow in the upper level (in-
cluding the limiting case of zero flow), the waves have
narrow crests and flat troughs, like surface waves; with
backward flow in the upper layer, the waves have flat
crests and narrow troughs. Wave breaking is discussed
later.

9.5.1 Critical Layer Processes®

The pioneering work is by Bretherton (1966¢), and by

Booker and Bretherton (1967). Critical layers have been

associated with the occurrence of clear-air turbulence;

their possible role with regard to internal waves in the

oceans has not been given adequate attention.
Following Phillips (1977a), let

™) k

N (k% + m2)e = cos §

wp =kU + o, (9.10)
designate the frequency in a fixed reference frame. Ulz)
is the mean current relative to this fixed frame, and
wp — kU = w is the intrinsic frequency [as in (9.5)], as
it would be measured from a reference frame drifting
with the mean current Ulz).

Bretherton (1966¢) has given the WKB solutions for
waves in an ocean of constant N and slowly varying
U. [It is important to note the simplification to (9.8)
when U” = 0 at the critical layer.] Near the criticial
layer depth z, the magnitudes of w, u, and of the ver-
tical displacement { vary as

€~ IZ — ZC|—”2.

The quantities wy and k are constant in this problem,
but m and o are not. The vertical wavenumber in-
creases, whereas the intrinsic frequency decreases as a
wave packet approaches its critical layer:

Wl -z u -z

m~|z -z, o~z — z¢|

A sketch of the trajectory is given in figure 9.10. Waves
are refracted by the shear and develop large vertical
displacements { (even though w — 0}, large horizontal
velocities u, and very large induced vertical shears u'.
This has implications for the dissipation and breaking
of internal waves.

For Ri > %, Booker and Bretherton (1967) derived an
energy transmission coefficient

p = exp(—2aVRi — 1.

In the usual case, U’ << 2N so that Ri > 4 and p is
small. This is interpreted as wave energy and momen-
tum being absorbed by the mean flow at z¢. As Ri —
®, p— 0, consistent with the WKB prediction of Breth-
erton (1966¢) that a wave packet approaches but never
reaches the critical layer.

(9.11)

The small coefficient of transmission for Richardson
numbers commonly found in the ocean implies that
the critical layer inhibits the vertical transfer of wave
energy. This effect has been verified in the laboratory
experiments of Bretherton, Hazel, Thorpe, and Wood
(1967). When rotation is introduced, the energy and
momentum delivered to the mean flow may alterna-
tively be transferred from high-frequency to low-fre-
quency waves (if the time scales are appropriate). Thus
it is possible that some sort of pumping mechanism
may exist for getting energy into, for example, the high-
mode, quasi-inertial internal waves. This mechanism
can be compared with McComas and Bretherton’s
(1977) parametric instability, a weakly nonlinear inter-
action (section 9.6).

The work of Bretherton and of Booker and Bretherton
has prompted a great number of critical-layer studies.
One of the most interesting extensions was done by
Jones (1968). Whereas Booker and Bretherton found the
critical layer to be an absorber, not a reflector, when
Ri > 4, Jones found that reflection from the critical
layer is possible when Ri < %; in fact, the reflected
wave amplitude can exceed that of the incident wave.
Jones called these waves ‘‘overreflected,” their energy
being enhanced at the expense of the mean flow. This
is illustrated in figure 9.14, based on a solution for a
hyperbolic-tangent profile intended to display the re-
sults of linear theory. Transmission and reflection ra-
tios at z = + were derived using definitions of wave
energy density appropriate to moving media. “Over-
transmission’’ as well as overreflection occurs at very
small Richardson numbers, with the internal waves
gaining energy from the mean flow on both counts.

We shall now consider the condition for critical-layer
absorption. Let w, designate the intrinsic frequency of
a wave packet at some depth z, with a mean flow U,
in the direction of wave propagation. According to
(9.10),

wy =kU; + w,.

Let U increase to some value U, at z,. Then since wg
and k are conserved along the trajectory of the wave
packet,

wp =kU, + w,.

For the special case that z, is to be a critical depth, we
have wy = kU,, hence w, = 0, and so

wl/k =U, -U,

The vertical wavenumber of internal waves is given
by the dispersion relation

N2 — 2\ 12
m =t (=7)

~kN/w for f<<w<<N. (9.12)
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Figure 9.14 Fractional internal wave energy reflected and
transmitted through a mean shear flow U = Ujtanh(z/d) at
constant N, as a function of the minimum Richardson number
Ri = N2d*/U3. Internal wave energy is lost to the mean flow
for |[R|* + |T|* < 1, or Ri > 0.18; internal wave energy is gained
from the mean flow for Ri < 0.18. The plot is drawn for
Ri = 20?2, where a = kd is the dimensionless horizontal wave-
number. This corresponds to a wave packet traveling at an
inclination of 45° at z = =, (Ri = o? corresponds to the
limiting case of vertical group velocity to +=.) (I am indebted
to D. Broutman for this figure.)

For critical absorption within the interval Az over
which the mean flow varies by AU, we replace w/k by
AU, and obtain the critical vertical wavenumber

me = N/AU. (9.13)

R. Weller {personal communication} has analyzed a
month of current measurements off California for the
expected difference AU = |U, — U] in a velocity com-
ponent (either of the two components) at two levels
separated by Az = |z, — z;|. The observations are, of
course, widely scattered, but the following values give
representative magnitudes:

0 10 25 50 100
0 4 7 10 15 (upper 100 m)
0 7 10 12 15(100-300 m depth)

For AU = 10 cms™ and N = 0.01s™ (6 cph), (9.13)
gives m¢ = 107% cm™ (16 cpkm). Internal waves with
vertical wavelengths of less than 60 m are subject to
critical-layer interactions.

A large fraction of the measured velocity difference
AU can be ascribed to the flow field u(z) of the internal
waves themselves, and deduced from the model spec-
tra. The expected velocity difference increases to V2
times the rms value as the separation increases to the
vertical coherence scale, which is of order 100 m. Here
most of the contribution comes from low frequencies
and low wavenumbers. I am tempted to interpret AU

Azinm
AU in cms™!

for critical layer processes as rms u from the internal
waves themselves. The internal wave spectrum is then
divided into two parts: (1) the intrinsic part m < myg,
which contains most of the energy, and (2) the com-
pliant part m > m¢, which is greatly modified by in-
teraction with the intrinsic flow field. The phase speed
for critical reflection is

Cc = rmsu, (9.14)
and the critical wavenumber is
m¢ = N/msu. (9.15)

There is the separate question whether the internal
waves at the critical layer will be underreflected, just
reflected, or overreflected, and this depends on the am-
bient Richardson number. In the underreflected case
there is a flux of energy from the compliant to the
intrinsic waves. In the overreflected case the flow is
the other way. For an equilibrium configuration, one
may want to look for a transmission coefficient p near
unity, and the exponential behavior of p(Ri) will then
set narrow bounds to the ambient spectrum. But this
gets us into deep speculation, and had better be left to
the end of this chapter.

9.6 Resonant Interactions

Up to this point the only interactions considered are
those associated with critical layers. In the literature
the focus has been on the resonant interaction of wave
triads, using linearized perturbation theory. There are
two ways in which critical layer interactions differ
from resonant interactions: (1) compliant waves of any
wavenumber and any frequency are modified, as long
as ¢ equals u somewhere in the water column; and (2)
the modification is apt to be large (the ratio u/c being
a very measure of nonlinearity). For the wave triads,
the interaction is (1} limited to specific wavenumbers
and frequencies, and (2} assumed to be small in the
perturbation treatment.” To borrow some words of
O. M. Phillips (1966b), the contrast is between the
““strong, promiscuous interactions’ in the critical layer
and the ‘“weak, selective interactions’ of the triads.
The conditions for resonance are

kl * k2 = kg,

W, * Wy = W,

where k; = (k; 1, m;), and all frequencies satisfy the
dispersion relation w;fk;). Resonant interactions are
well demonstrated in laboratory experiments. For a
transition layer (as in figure 9.4), Davis and Acrivos
(1967) have found that a first-order propagating mode,
which alternately raises and lowers the transition
layer, was unstable to resonant interactions, leading to
a rapid growth of a second-order mode, which alter-
nately thickens and thins the transition layer like a
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propagating link sausage. Martin, Simmons, and
Wunsch (1972) have demonstrated a variety of resonant
triads for a constant-N stratification.

Among the infinity of possible resonant interactions,
McComas and Bretherton (1977) have been able to
identify three distinct classes that dominate the com-
puted energy transfer under typical ocean conditions.
Figure 9.15 shows the interacting propagation vectors
in (k,m)-space. The associated frequencies w are
uniquely determined by the tilt of the vectors, in ac-
cordance with (9.4}. Inertial frequencies (between f and
2f, say) correspond to very steep vectors, buoyancy fre-
quencies (between 3N and N| to flat vectors, as shown.

Elastic scattering tends to equalize upward and
downward energy fluxes for all but inertial frequencies.
Suppose that k; is associated with waves generated
near the sea surface propagating energy downward (at
right angles to Kk, as in figure 9.7). These are scattered
into k;, with the property m; = —mj, until the upward
energy flux associated with k, balances the downward
flux by k,. The interaction involves a near-intertial
wave k, with the property m, = 2mjs. (The reader will
be reminded of Bragg scattering from waves having half
the wavelength of the incident and back-scattered ra-
diation.) Similarly, for bottom-generated k, waves with
upward energy fluxes, elastic scattering will transfer
energy into k; waves.

Induced diffusion tends to fill in any sharp cutoffs
at high wavenumber. The interaction is between two
neighboring wave vectors of high wavenumber and fre-
quency, k, and k;, and a low-frequency low-wavenum-
ber vector k,. Suppose the k, waves are highly ener-
getic, and that the wave spectrum drops sharply for
wavenumbers just exceeding |kg|, such as |k,|. This in-
teraction leads to a diffusion of action {energy/w) into
the low region beyond |k,|, thus causing k, to grow at
the expense of k,.

Parametric subharmonic instability transfers energy
from low wavenumbers Kk, to high wavenumbers k, of
half the frequency, , = $w,, ultimately pushing energy
into the inertial band at high vertical wavenumber.
The interaction involves two waves Kk, and k; of nearly
opposite wavenumbers and nearly equal frequencies.
The periodic tilting of the isopycnals by k, varies the
buoyancy frequency at twice the frequency of k, and
k,. (The reader will be reminded of the response of a
pendulum whose support is vertically oscillated at
twice the natural frequency.)

The relaxation (or interaction) time is the ratio of
the energy density at a particular wavenumber to the
net energy flux to (or from) this wavenumber. The
result depends, therefore, on the assumed spectrum.
For representative ocean conditions, McComas (in
preparation) finds the relaxation time for elastic scat-
tering to be extremely short, of the order of a period,
and so up- and downgoing energy flux should be in

balance. This result does not apply to inertial frequen-
cies, consistent with observations by Leaman and San-
ford (1975) of a downward flux at these frequencies.
The relaxation time for induced diffusion is typically
a fraction of a period! (This is beyond the assumption
of the perturbation treatment.)] Any spectral bump is
quickly wiped out. The conclusion is that the resonant
interactions impose strong restraints on the possible
shapes of stable spectra.

In a challenging paper, Cox and Johnson (1979}
have drawn a distinction between radiative and dif-
fusive transports of internal wave energy. In the ex-
amples cited so far, energy in wave packets is radiated
at group velocity in the direction of the group velocity.
But suppose that wave-wave interactions randomize
the direction of the group velocity. Then eventually
the wave energy is spread by diffusion rather than ra-
diation. The relevant diffusivity is k = ${cZ)r, where 7
is the relaxation time of the nonlinear interactions.
Cox and Johnson have estimated energy diffusivities
and momentum diffusivities (viscosities); they find
that beyond 100 km from a source, diffusive spreading
is apt to dominate over radiative spreading. There is an
interesting analogy to crystals, where it is known that
energy associated with thermal agitation is spread by
diffusion rather than by radiation. The explanation lies
in the anharmonic restoring forces between molecules,
which bring about wave-wave scattering at room tem-
peratures with relaxation times in the nanoseconds.

9.7 Breaking

This is the most important and least understood aspect
of our survey. Longuet-Higgins has mounted a broadly
based fundamental attack on the dynamics of breaking
surface waves, starting with Longuet-Higgins and Fox
(1977), and this will yield some insight into the inter-
nal-wave problems. At the present time we depend on
laboratory experiments with the interpretation of the
results sometimes aided by theoretical considerations.

Figure 9.16 is a cartoon of the various stages in an
experiment performed by Thorpe (1978b). A density
transition layer is established in a long rectangular
tube. An internal wave maker generates waves of the
first vertical mode. Before the waves have reached the
far end of the tube, the tube is tilted through a small
angle to induce a slowly accelerating shear flow. The
underlying profiles of density, shear, and vertical dis-
placement correspond roughly to the situation in figure
9.13.

For relatively steep waves in a weak positive? shear,
the waves have sharpened crests. At the position of the
crest, the density profile has been translated upward
and steepened (B;}. There is significant wave energy
loss in this development (Thorpe, 1978c, figure 10).

276
Walter Munk



elastic scattering induced diffusion

f 2f

ky

ks

parametric subharmonic
instability

ks

k.

k

Figure 9.15 Resonant triads for three limiting classes of in-
teraction, according to McComas and Bretherton (1977). The
propagation vectors are drawn in (k, m)-space. Radial lines

designate the tilt of the k vectors for @ = f, 2f, iN, n. taking
N = 24f.
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Figure 9.16 Cartoon for various stages of Thorpe’s experi-
ment. The early stages lead to the development of advective
instability (upper three sketches), and the final stage to shear
instability (bottom). Waves are traveling from left to right;
the mean flow is forward (in the direction of wave propaga-

tion} above the density transition layer and backward below
the transition layer. The density profiles along the indicated
vertical sections are shown to the left; a velocity profile is
shown to the top right (thin lines give the undisturbed pro-
files).
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With increased positive shear, or with increased time,
the particles at the crest accelerate, the isopycnal wave
front becomes momentarily vertical, and a jet of fluid
moves forward of the crest (B,). The resulting density
inversion gives rise to a Rayleigh-Taylor instability,
forming a turbulent patch (shaded) whose turbulent
energy is irretrievably lost to the organized wave mo-
tion. The turbulent patch becomes fairly well mixed,
and introduces a steplike feature into the density pro-
file (B;). The patch spreads horizontally under the in-
fluence of the ambient stratification, forming blini, or
pancakes. The detailed dynamics are complicated (Bar-
enblatt and Monin, 1979); it is possible that in the
oceans the spreading of the patches is eventually re-
tarded by geostrophic confinement.

In Thorpe's laboratory experiment, the later stages
of horizontal spreading are interrupted by the sudden
formation of billows that grow rapidly, extracting en-
ergy from the mean shear flow (bottom of figure). Their
wave length is quite short, only several times the
thickness of the transition layer.

Hence, Thorpe {1978b, 1979) distinguishes between
two types of instability leading to internal wave break-
ing. In the case of advective instability, breaking grows
out of existing large-amplitude internal waves: more
precisely, waves associated with steep isopycnal slopes.
Eventually the particles in the crest are advected for-
ward of the crest, leading to a local density inversion
with the potential for a Rayleigh-Taylor instability.
Advective instability can take place in the absence of
ambient shear, though it is advanced by shear. The

e
s/opGI ing,

second type is induced shear instability (Kelvin- Helm-
holtz instability in the limit of an abrupt density tran-
sition), and can take place even in the absence of any
{finite) wave disturbance, but is catalyzed by an exist-
ing wave background.

The two types appear as end points on a stability
curve in slope-shear space, constructed by Thorpe
{1978b, 1979) from theory and experiment (figure
9.17). Under the conditions described by the author,
internal waves on a transition layer are unstable if their
slope exceeds 0.34 in the absence of ambient shear, and
if the shear exceeds 2N in the absence of slope. Away
from the end points, there is advective instability mod-
ified by shear, and shear (K-H) instability modified by
advection. The stability curve for the transition profile
is not symmetric, implying that {under the prescribed
geometry) negative shear delays instability.

The essential feature of advective instability is that
the particle speed at the crest eventually exceeds the
wave speed. The stability curve in figure 9.16 has been
constructed from tey = C (carrying the theory to third
order in wave slope). This is in fair agreement with
experiment. From a similar point of view, Orlanski and
Bryan (1969) had previously derived the required criti-
cal amplitude for advective instability in the oceans,
and have checked their analysis with numerical exper-
iments. They conclude that more than enough internal
wave energy exists for this type of instability to occur.
They also conclude that conditions favor advective
instability over shear instability, by the following very
simple argument. From (9.12),

of . 6
Couette transition layer
o | profile s |
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Figure 9.17 Stability diagram for internal waves in a shear
flow for a Couette profile (as in figure 9.12) and for a transition
layer (as in figure 9.13). Slope is defined as = wave
height/wavelength. The ordinate is U’/N {or =Ri~'2), with U
in the direction of wave propagation. For the transition profile,

U’ and N? are proportional to sechlz — h), and hence
U’'IN ~ sech{z — h) has its maximum value at the transition
z = h. The curves are drawn for the specific dimensions
described by Thorpe {1978a, 1979).

278
Walter Munk



mu _u_(_l—w”/Nz)”z
N ok \1-fl?

for f<<w<<N. (9.16)

~ 2

" ok
But mu/N = Ri™'? = 2 for shear instability, and
u/(w/k) = 1 for advective instability. The linearized®
treatment then says that waves have to be twice as
high to be shear unstable than to be advectively un-
stable. The trouble with this argument is that it is lim-
ited to the self-shear of an elementary wave train, and
does not take into account the imposed ambient shear
(possibly due to other components of the internal wave
spectrum). Thorpe’s stability plot (figure 9.17) shows
that the instabilities can go either way, depending on
wave slope and the ambient shear.

McEwan (1973) has generated breaking internal
waves in the laboratory by crossing two internal wave
beams from separate sources. He finds that the break-
ing is associated with localized, abruptly appearing in-
tensification in density gradient and shear. These
“traumata’’ persist and spread, and become the locus
of incipient turbulence. True turbulent disorder was
always preceded by the sudden and widespread occur-
rence of the traumata.

In some further laboratory experiments with break-
ing internal waves, McEwan (personal communication)
has estimated separately the work done in generating
internal waves (allowing for wall friction), and the frac-
tion of this work going into mixing, e.g., going into the
increase in the potential energy of the mean stratifi-
cation. The remaining energy is dissipated into heat.
McEwan finds that something less than % of the input
energy goes into mixing, in support of an estimate by
Thorpe {1973b). (In the ocean, the mixing of salt and
heat may proceed at different rates because of the dis-
parity in the diffusivities.] Thompson (1980) argues
that this ratio is, in fact, the critical Richardson num-
ber.

All of this points toward a strong connection be-
tween breaking internal waves and the microstructure
of density and velocity. Evidently, breaking internal
waves can modify a density profile, reducing gradients
in turbulent patches and sharpening them elsewhere.
This can lead to a steppy fine structure. But we have
shown that internal wave shear is concentrated at the
steps, thus producing conditions for shear instability,
and renewed breaking. This is like the chicken and the
egg: which comes first?

9.8 Ocean Fine Structure and Microstructure
Measurements by Gregg (1975) off Cabo San Lucas and

in the North Pacific gyre (figure 9.18 and table 9.1}
speak for great geographic variability in the mixing

processes. (This is apart from the local patchiness in
microstructure even in regions of strong mixing.) Three
water masses intermingle off Cabo San Lucas: the sa-
line outflow from the Gulf of California, the relatively
fresh waters being brought in from the northwest by
the California Current, and Equatorial Water of inter-
mediate salinity from the eastern tropical Pacific. MR6
remains in Equatorial Water. MR7 is from a shallower
drop taken the next day within a few kilometers of
MR6. Here we see the intermingling of the three water
masses, each jostling for a level appropriate to its den-
sity.

Temperature inversions (negative dT/dz) are gener-
ally balanced by positive salinity gradients, so that the
density increases with depth, and N2 is positive. The
temperature inversions have typical vertical scales of
5 m, with a step structure (e.g., just beneath feature D)
attributed to the diffusive regime of double diffusion.
The underside of temperature inversions (just above E)
is often characterized by strong salinity inversions
(positive dS/dz), and by prominent microstructure at-
tributed to the fingering regime of double diffusion.
Double-diffusive processes can be very important lo-
cally; they are discussed by J. S. Turner in Chapter 8.

Occasional density inversions (such as at 13 m depth
in MR7} are accompanied by intense microstructure.
These inversions are very local, and they disappear in
a plot of 3-m averages. We are tempted to attribute the
density inversions and associated intermittent micro-
structure to internal wave breaking.

MR?7 is a good example of intrusive fine structure.
Stommel and Fedorov (1967) gave the first discussion
of such features based on their measurements near
Timor and Mindanao. At the bottom of a well-mixed
layer they found a pronounced temperature inversion
{balanced by high salinity) that could be traced for
200 km! Evidently the warm saline water was formed
1 or 2 months earlier over the Australian continental
shelf at a distance of 500 km, sliding down along an
isopycnal surface. The thickness of the inversion layer
varied from 20 to 40 m. Beneath the inversion layer, a
number of warm, saline lamina of typically 5-m thick-
ness could be traced over 5 km. All these features are
associated with horizontal pressure gradients that must
be geostrophically balanced. The authors made some
calculations of the rate of lamina spreading associated
with frictional dissipation in Ekman spirals above and
beneath the lamina boundaries. Once the lamina are
thinner than 1 m, they are swiftly conducted away. I
refer the reader to Stommel and Fedorov’s stimulating
discussion.

Table 9.1 summarizes some statistical parameters.
For comparison we have included MSR4 from the mid-
gyre of the central North Pacific {Gregg, Cox, and
Hacker, 1973). The three stations MR7, MR6, and
MSR4 characterize strongly intrusive, weakly intrusive
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Figure 9.18 The water structure at two stations 60 km south-
west of Cabo San Lucas (the southemn tip of Baja California),
and the associated T-S diagrams (from Gregg, 1975). The
measurements have been processed to give the fine structure
of S, T, s, N and the microstructure of dT/dz. Note differ-
ences in scale. The cuspy T-S diagram for MR7 is an indica-
tion of intrusive fine structure.
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Table 9.1 Variances and Spectra of Vertical Gradients in the Ocean Fine Structure and Microstructure at Two Stations off
Cabo San Lucas [MR7 and MR6) and in the Mid-Gyre of the Central North Pacific (MSR4)

MR7 MR6 MSR4e
Strongly intrusive Nonintrusive
) o\ 2
{(8.T — 8,TF) in (—n%) 26 9x10-8 1x10-®
o, 2
(8,T)?in (;?) 4x10® 8x104 6x10*
Thermal diffusivity
in cm?s™! g 0.015 0.002
Cycles per meter 0.1 1 10 01 1 10 0.1 1 10
Spectrum of
) 2
6,Tin(—§)/ cpm Ix10'  1x10®  1x10 2x10®  2x10~  7x10~° 7x10~* 1x10~* 3x10-
2
3,8 in (%’)/ cpm 2x10-2  1x10®  8x10™*  5x10%  1x10° 1 4x10*  8x10°* 2x10°*
. {gem™ 2 — —10 —10 —10 ~11 -11 — -
d.pin(E—)/epm  2x10®  7x100  7x10 2x10 210 ? 2x10 1x107  9x10~2
Spectrum of
_3\2
aa,Tin(gcx )/ cpm 2x10-* 1x10~°  1x10®  2x10°* 2x10t ? 3x10™1  4x102  1x107%2
—3\2
bo.S in(g':;l“ )/ cpm 1x10®* 0.6x10® 05x10° 0.3x107° 0.6x10™ ? 03x107 5x1072 13x10-1
—3\ 2
a,pin(g°m )/ cpm  02x10-* 0.7x10° 0.7x10° 2x10°*° 2x10™% 2 2x10-"  10x10-2 9x 10712

a. MSR4 is not necessarily representative for the mid-gyre; subsequent cruises have given larger mean-square gradients.
b. The vertical heat flux for MR7 can probably not be modeled by an eddy coefficient (Gregg, 1975).

and nonintrusive situations, respectively. The conclu-
sions are: (1) The ratio of the mean-square gradient to
the mean gradient squared {the “Cox number”’) for tem-
perature is highly variable, from 5000 at MR7 to 2 in
the mid-gyre. Under certain assumptions (Osborn and
Cox, 1972), the eddy diffusivity is the molecular dif-
fusivity times this ratio, giving values all the way from
8 to 0.002 cm2s™! (but see the footnote to table 9.1).
The canonical value of 1 cm?s™! [for which I am partly
responsible (Munk, 1966]] is of no use locally. (2)
Spectral levels in vertical gradients diminish with in-
creasing vertical wavenumber up to 1 cpm, and then
level off. (3) The relative contributions to the density-
gradient spectrum has been estimated from 9. =
—ad,T + ba,S, witha = 1.7 x 107t gem=3(°C)™, b =
8 x 107* gcm™(%o)~%. For MR7 at 0.1 cpm, the meas-
ured density gradient is much smaller than that in-
ferred from either temperature alone or salinity alone.
This is consistent with the near cancellation between
temperature and salinity for intrusive features. {4} At
higher wavenumbers for MR7, and at all wavenumbers
of MRé6 and MSR4, the density gradient spectrum is of
the same order as that inferred from temperature or
salinity alone, thus implying the dominance of internal
‘waves.

Probability densities of the temperature gradients are
highly non-Gaussian with an enormous flatness factor
(138 for MR?7, 55 for MR6) attesting to the patchiness
(Gregg, 1975). The construction of meaningful ensem-
ble averages in a highly intermittent environment
(space and time) is an important task for the future.

To return now to internal waves, we can distinguish
between two quite different effects on vertical profiles:
{1) an (irreversible) microstructure and fine structure
associated with intermittent internal wave breaking,
and (2) a (reversible) fine structure due to the vertical
straining of an otherwise smooth profile by internal
waves of short vertical wavelength. The reversible con-
tribution to fine structure by internal waves was first
noticed by Lazier (1973b} and Garrett (1973). How are
we to distinguish it from diffusive {and other irrever-
sible) fine structure?

Let 8T and 8S designate departures in (potential) tem-
perature and salinity from some long-time or long-dis-
tance averages T(z), So{z) at the same depth. Then

o = —a8T + b&S

is the associated density departure, with a(T, S, p) and
b(T, S, p) designating the (positive) coefficients of ther-
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mal expansion and haline contraction. Take first the
case of an intrusion only (figure 9.19). If it is totally
compensated,

8p =0,

and if it is not totally compensated, it soon will be {in
a time of order N71). It follows that any vertical dis-
placement of the isopycnals is not intrusive but due to
a vertical displacement of the water, which we asso-
ciate with internal waves (see next section). The ver-
tical displacement { can be found from conservation of
potential density:

plz + &) = polz).

For the case of internal waves only, conservation of
potential temperature and salinity give

Tz +{) =Tolz),  Slz + ) = Slz),

and the {-values from the three preceding equations
should be the same:

o =0r =0

Then in general, {, gives the vertical displacement by
internal waves, and {; — {, and {5 — {, are measures of
intrusive activity.

Figure 9.20 shows the situation in (T, S)-space. In the
combined case, a projection parallel to the isopycnals
can separate the two effects. For constant a and b, it is
convenient to introduce a family of lines that are or-
thogonal to the lines of equal potential density (Ve-
ronis, 1972). They are here designated by =, for “spici-
ness’’ (hot and salty?9), and they give a measure of the
strength of the intrusion. The construction in (p, 7}
space has some convenient properties. If the x- and y-

(9.17)

internal wave intrusive glob
\‘1‘___‘,,—" V

P

Figure 9.19 Contours of potential temperature, salinity and
potential density in a vertical section [x,z) for an internal
wave hump and a compensated warm and salty intrusive glob.

axes are scaled in equivalent density units, bS and aT,
then

8p = —aT + bS,  m =aT + bS. (9.18)

Figure 9.21 shows plots of the inferred vertical dis-
placements in an area 200 miles southwest of San
Diego (Johnson, Cox, and Gallagher, 1978). {r, s, and
¢, should all be alike for the case of a fine structure
due to internal waves only [equation (9.17)], and this
turns out to be the case down to a depth of 225 m.
There is a broad intrusion between 225 and 260 m, and
a narrow intrusion at 275 m. From a spectral analysis
it was found that internal waves dominated the fine
structure for all vertical scales that could be resolved,
that is, down to 5 m.

The displacement spectrum in vertical wavenumber
m steepens from approximately m~2 form <m, tom™3
for m > m,, with m, near 0.6m™ (~0.1 cpm). This
kink appears to be 2 common feature in temperature
spectra (Gregg, 1977; Hayes, 1978), and is most clearly
portrayed in the temperature-gradient spectra {figure
9.22). A similar steepening is found in the spectrum of
currents and current shear, but at a somewhat lower
vertical wavenumber (Hogg, Katz, and Sanford, 1978).

A free-fall instrument called the “camel” for meas-
uring the velocity microstructure has been developed
by Osbormn {1974; see chapter 14). Figure 9.23 presents
measurements in the Atlantic Equatorial Undercurrent
during the GATE experiment (Crawford and Osbormn,
1980). The most intense microstructure of temperature
and current was found above the velocity core. The
microstructure in the core was weak and intermittent.
Moderately intensive microstructure was found below
the core, near the base of the thermocline. This is
shown in great detail in figure 9.24. As an example,
between 81 and 82 m there is an active temperature
microstructure with positive and negative 8,T, accom-
panied by an active velocity microstructure. Similar
evidence is found in horizontal tows, as for example in
the upper part of figure 9.25 (Gibson, Schedvin, and
Washburn, personal communication; see Gibson,
1980). The important conclusion is that velocity mi-
crostructure and small-scale temperature inversions
must be closely linked, for one is not found without
the other.

Occasionally one encounters patches of temperature
microstructure without velocity microstructure. The
inference is that these patches are the remains of a
mixing event for which the velocity microstructure
has decayed (fossil turbulence). Examples are found in
the vertical profiles (figure 9.24 between 69 and 70 m
depth), and in the horizontal tows {figure 9.25, bottom).
But for the vertical profiles the temperature micro-
structure is here limited to only positive d,T; the au-
thors suggest that this might be a peculiarity of the
core {velocity and salt) of the undercurrent.
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Figure 9.20 T-S relations for an internal wave hump and a
compensated intrusive glob. The dots (#) correspond to the
undisturbed positions of the five contours in figure 9.19. The
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Figure 9.21 Displacement profiles in meters as inferred from
the temperature, salinity, and density profiles. These should
be alike for internal wave produced fine structure. The mean
T and § gradients were of opposite sign (as in figure 9.19),
hence the opposite signs of {; — ¢, and { — {,. (Johnson, Cox,
and Gallagher, 1978.)
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Figure 9.22 Temperature gradient spectra for two stations in
the North Pacific. (Gregg, 1977.)

open circles (o) give the positions through the center of the
disturbance. The “isospiceness” lines (constant ) are orthog-
onal to the isopycnals (constant p).

Crawford and Osborn have calculated the dissipation
rates. Typical values just beneath the core of the un-
dercurrent range from € = 10~* to 1072 cm?s™ (1073 to
10~* W m~3). (Measurements away from the equator fall
within the same limits.) But Belyaev, Lubimtzev, and
Ozmidov (1975) obtain dissipation rates in the area of
the undercurrent from horizontal tows that are higher
by two orders of magnitude.11

The question of the relative magnitudes of vertical
and horizontal scales has been examined by Hacker
(1973) from a comparison of wing tip and nose tem-
peratures of a rotating free-fall instrument. The hori-
zontal separation is 1.7 m. The two records are coher-
ent for vertical wavelengths down to 1 m. At smaller
wavelengths the analysis is made difficult by the ran-
dom tilts {5° rms) associated with internal waves. By
selectively analyzing depth ranges of small tilts, Elliott
and Oakey (1975) found coherence over a horizontal
spacing of 0.5-m down to 10-cm vertical wavelengths.
The conclusion is that anisotropy extends beyond the
fine structure into the microstructure, perhaps as far
as the dissipation scale {(~1 cm).

The picture that emerges is one of a fine structure
that is usually dominated by internal wave straining
and is fairly uniform, in contrast to a microstructure
that is extremely patchy and variable even in the mean.
Patches of temperature microstructure without veloc-
ity microstructure (“fossil turbulence”) evidently mark
the demise of internal waves that had previously bro-
ken.

9.9 An Inconclusive Discussion

Is there a connection between internal wave activity,
dissipation, and buoyancy flux? What is the explana-
tion for the seeming steadiness of the internal wave
field? Having gone this far, I cannot refrain from con-
tinuing with some speculation. The reader is encour-
aged to go no further (if he has gotten this far).
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Figure 9.23 Temperature and velocity microstructure in the
Atlantic Equatorial Undercurrent at 0°18'S, 28°01' W. (Craw-
ford and Osbomn, 1980.) The large scale-current profile was
measured by J. Bruce. The region between 65 and 82 m is
shown on an enlarged scale in figure 9.24.
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Figure 9.24 An enlarged section of the microstructure profile
shown in figure 9.23. The encircled features have been attrib-
uted to various sources of instrumental noise.
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Figure 9.25 Active and fossil turbulence from towed body
measurements during the mixed-layer experiment (MILE} in
September 1977 near ocean station PAPA. The body was
towed in the seasonal thermocline at a depth of 33 m; note
the horizontal temperature change by about 0.3°C across the
patches. The 1°C scale (left) refers to frequencies f < 1 H,; the
0.17°C scale is for 1-12 H,.

(I am indebted to C. Gibson, J. Schedvin, and L. Washburn for
permission to show these measurements. See also Gibson,
1980.)
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We shall need some quantitative guidance for inter-
nal wave intensities. For that purpose I shall use the
model spectrum of Garrett and Munk (1972b, 1975,
1979), with slight modifications. The model fails near
the ocean boundaries!? {Pinkel, 1975). The spectrum
was developed on the basis of rank empiricism, with
no trace of underlying theory. But it has since gained
some respectability by the theoretical findings of Wat-
son and collaborators that the shape of the GM spec-
trum is stable to nonlinear interactions, except for the
lowest modes and near-inertial frequencies [Meiss,
Pomphrey, and Watson (1979); Pomphrey, Meiss, and
Watson (1980); see also McComas (1977]].

9.9.1 Model Spectrum GM79

The internal wave energy is assumed to be equally
distributed in all horizontal directions, so that only a
single horizontal wavenumber, k = (k? + k3)'?, is used.
Upward and downward energy flux are taken as equal.
The spectra of vertical displacement, horizontal veloc-
ity, and energy per unit mass are?!?

Fjwj) = b*N,N7'(e® - f*lo~Elw,), (9.19)
Fyw,j) = Fy, + F,, = b*N,N(o? + f*lo?E(w,j), (9.20)
Fe(wri) = 'HFM + NZFK] = b2NDNE(w;i); (921)

where j is the vertical mode number, b = 1.3 km the
e-folding scale of N(z), with N, = 5.2 x 10~*s7! (3 cph)
the surface-extrapolated buoyancy frequency and f =
7.3 x 108s7! the Coriolis frequency at lat. 30°. We can
ignore F,, compared to F,. At high frequencies, o > f,
kinetic and potential energy densities are equal: §F, =
iN?F,. E(w,j) is a dimensionless energy density that is
factored as follows:

Elw;) = Blw)-H{j)
Blo) = 2o ot ~ 1%, [ Bloldo = 1,

LR a
B =3 eiere BT
The factor (w? — f2)~'2 in the expression for Blw) is a
crude attempt to allow for the peak at the inertial
turning frequency (see figure 9.11); j, = 3 is a mode
scale number, and E is the internal wave “energy pa-
rameter.” We set

E=63x10° (dimensionless). {9.22)

There is a surprising universality!¢ to the value of E
(mostly within a factor of two).

The transfer into (w,k)- or (@, m)-space is accom-
plished by setting F(w,j)8j = Flw,k)dk = Flo,m)dm,
with

—_ 2 2 1/2
m =k ()" s (=)

P NI = o (9.23a)

for a slowly varying Niz), in accord with the WKB
approximation [equations (9.4) and (9.7]]. For most pur-
poses we can ignore the situation near the buoyancy
turning frequency,1s so that

m ~ kN[w® — 212 ~ zb=1{N/No}. (9.23b)

For the sake of simplicity, the energy spectrum has
been factored into B{w)- H(j). But there is evidence from
Pinkel (1975) and from the IWEX measurements
(Miiller, Olbers, and Willebrand, 1978} that there is
relatively more energy in the low modes at high fre-
quency, and this could account for the astounding ver-
tical coherences found by Pinkel in the upper 400 m at
high frequencies.

I have no doubt that further discrepancies will be
found; still, I believe that the model can now give
useful quantitative estimates. For example, according
to ‘“Fofonoff’s rule” (he disclaims ownership), the
mean-square current within a 1-cph band centered at
lcph is 1cm?s?; this compares to F,l cph) =
0.8 cm?s~2 (cph) from (9.20). This agreement is not
an accident, of course, the GM model having been
based, in part, on the site D measurements (Fofonoff,
1969).

The mean-square quantitites are likewise in accord
with the usual experience. From (9.19), (9.20), and
(9.21),

() = f dwd Fjw,})
= 3b2EN,N~! = 53(N/N,)~! m?,
() = (u2) + (us3) = f dw SF.o/)
(9.24)
= 3b%EN,N = 44{N|N,) cm?s2,
Blz) = f do SF o]
= b%EN,N = 30|{N/N,) cm?s72,

giving 7m for the rms vertical displacement and
7 cms™! for the rms current in the upper oceans be-
neath the mixed layer. The energy can be written al-
ternatively E(z) = 4(u?) + N%({)] so that the total
kinetic energy is three times the total potential energy
in the GM model. p£(z) is the energy per unit volume;
the energy per unit area is

ek = f pk(z)dz =pb’EN.,dez = pb”ENof bdN
~ PN
=3.8 X 10 ergcm2 = 3800 Jm2,
using b~! = N-1-dN/dz as definition for the e-folding

scale b.

9.9.2 Universality
It has turned out, quite unexpectedly, that the intens-
ities are remarkably uniform in space and time.
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Wunsch (1976) has made a deliberate attempt to find
systematic deviations for a variety of deep water loca-
tions in the North Atlantic, with the purpose of iden-
tifying sources and sinks of internal wave energy. Us-
ing the frequency band % to % cph as a standard, the
only clear deviations he could find were associated
with topographic features, particularly Muir Seamount,
and even these were inconspicuous at short distance.
In a further study (Wunsch and Webb, 1979) some evi-
dence is presented for deviations on the equator and in
regions of high mean shear.

Figure 9.26 shows a continuing spectral display over
an 18-day period, and this is found consistent with a
stationary Gaussian process (Caims and Williams,
1976). [The mean distribution is in accord with the
equation (9.19) for Fj{w) = ZFjw,j), setting ZH(j) = 1.]
These observations were taken during 21 days of mild
to moderate winds. Davis (personal communication)
has recorded currents in the seasonal thermocline over
a 19-day interval with two periods of heavy winds (fig-
ure 9.27). The first event is followed in about 2 days
by an increase in mean-square currents, the second
event in somewhat less time. Energy enhancement is
by a factor of three or less. Johnson, Cox, and Gallagher
(1978) found a temporarily elevated spectral level on a
windy day. Following these events, the intensities rap-
idly relax to their normal state.

9.9.3 Generation

The observed growth times are consistent with a the-
ory for the generation of internal waves by resonant
interaction with surface waves (Brekhovskikh, Gon-
charov Kurtepov, and Naugol’nykh, 1972; Watson,
West, and Cohen, 1976).

But there are other means of generating internal
waves. Garrett (1979) has reviewed a variety of con-
tenders, all of which fall (surprisingly) into the right
order of magnitude. For reference, he takes 7 X
10*Wm~2 for the internal wave dissipation (corre-
sponding to a relaxation time of one week). Globally,
this amounts to 2 TW (terawatts: tera = 10'2). The total
loss of energy of the earth-moon system is known from
the moon’s orbit to be 4 TW, mostly by tidal dissipa-
tion in the oceans. It is not impossible that surface
tides pump significant amounts of energy into internal
wave motions via internal tides (cf. chapter 10). Other
contenders are surface forcing by traveling fluctuations
of wind stress and buoyancy flux, currents over bottom
topography, and extraction from the mean current
shear. There is no problem with supplying internal
waves with 2 TW of power; the problem is rather to
eliminate some of the potential donors.

9.9.4 Instability
We can now derive some numerical estimates for a
variety of instability parameters. The spectrum F,.,y of

spectrum of vertical displacement o5
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Figure 9.26 Time-frequency display of Fj{w) from MISERY 1
and MISERY 3. {Cairns and Williams, 1976.) {(t) is the depth
of the 6.60° isotherm (at a mean depth of 350 m) in a location
800 km offshore of San Diego, California, measured with a
yo-yoing midwater capsule. The squared wind (bottom) shows
light winds at the start and end of the experiments.
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Figure 9.27 Kinetic energy (u?) = (u3) + (u) during the
mixed-layer experiment (MILE] on station PAPA (50°N,
145°W) at 42 and 54 m depths. The upper two plots refer to
a frequency band of 0.3 to 1.0 cph, the next two plots to a
band 1.0 to 2.5 cph. The squared wind (bottom) shows two
episodes of large wind stress. The GM model levels are indi-
cated [using N = 0.023, 0.0096 s~* (13, 5.5 cph) at 42, 54 m),
though the model is not really applicable to such shallow
depths and sharp N-gradients. (I am indebted to R. Davis for
permission to use his measurements.)
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the reciprocal Richardson number is defined by
Ri—l = ([U’)2>/N2 = f dw 2 Fu’/N(w/i)l

where ([u'?) = ((9.u,)?) + ((8.u,)?) = m*(u?). But
m = b Y{N/N,)j (9.23b} and so

Fuy = 27E(NINolf(@® + flo™*(w® — £]722H ). (9.25)

The principal contribution comes from the inertial fre-
quencies. Performing the w-integration,

Ri™' = $m°E(N/N,J S i*H(j). (9.26)

We now perform the mode summations (subscript u
for upper)

Ju
DRAEES ARy
i=1

Ju
2P AR =Yt e - 1) =] =047
J=1 |

for j, > j, = 3. The spectrum F,, 4j} is white (except
for the lowest few mode numbers) and Ri~! depends on
the choice of the upper cutoff j,. In terms of the lim-
iting vertical wavenumber m, = wb~N/N,jj, we have,
finally,

Ri~! = $aJEm,b. (9.27)

If we identify m, with the kink (figure 9.22) at 0.6m™!
(0.1 cpm), then Ri~! = 0.52. If the spectrum is extended
beyond the break, with a slope m~! to some new upper
limit m,, = 10m, (say), then Ri~* = 0.52(1 + Inm,/m,)
= 1.72. Hogg, Katz, and Sanford {1978) find Ri~! near
0.5 in the open ocean near Bermuda, including m up to
0.2 cpm. An interesting scatter plot has been produced
by Eriksen (1978) and is shown in figure 9.28. The
conclusion is that the internal-wave shear field is as-
sociated with Richardson numbers of order 1:

Ri™! = order(1). (9.28)

We can proceed in a similar manner with regard to
advective instability. The simplest generalization of
the earlier discussion (section 9.7) is to derive the spec-
tral decomposition of (u*c?), ¢ = w/k. (Would
(u?)/(c?) be better?) The equations of continuity and
of dispersion (away from the turning frequencies} can
be written

k¢+mi=0, ¢c=wk=N/m,

so that
u_mu _u
¢ mc N’

Similarly, for horizontal and vertical strain,

a¢lox = —aL/8z = ik¢ = (klwlu = u/c.

0.5x107*
(s72)

T T
0.5x107" 107%(s-2)

U

Figure 9.28 A scatter plot of squared shear (over 6.3 m vertical
separation) versus N? (over 7.1 m) of estimates made every
40 s for 78 hours. (Eriksen, 1978.} Eriksen finds that Ri rarely
falls below the critical value 4, and that ¢ = tan™! Ri is
uniformly distributed for ¢ greater than tan—(}).

Thus shear, advection, and longitudinal strains all have
similar conditions for instability, and we can write

(¢*) = CEmb (9.29)

for any of these, without having to go into gruesome
details. [Integrations yield C = 2.5, 5.8, 3.3, 3.3 for
u'/2N, ufc, 8.£, 8,{, respectively; this is a spectrally
weighted version of the Orlanski and Bryan argument
[equation (9.16)] that advective instability is the most
likely to occur.]

9.9.5 Compliant Wave Cutoff
The instability condition {¢?) = order(1) is an argu-
ment for a universal value of the product Em,. To
account for a universal E we need some additional
condition.

I propose that the upper cutoff m, is related to the
transition at ¢, = N/m, = rmsu from the intrinsic to
the compliant parts of the internal wave spectrum:

m, = C'm, = C'N/rmsu, {9.30)

where C’ is a constant of order (1). It stands to reason
that the strongly interacting high wavenumbers have
a different spectral form from the intrinsic waves. If
we identify m, with the kink (figure 9.22} at 0.6 m™!
(0.1 cpm), then for N = 0.01 s ! and rmsu = 10 cms™?!
this gives C' = 6 (somewhat large for comfort).

There is an equivalent way of postulating the upper
cutoff. The ¢-spectrum is white up to some limit
which is the reciprocal of the vertical extent A of the
smallest ¢-features. One might suppose this vertical
extent to be some given fraction of the rms amplitude
of the internal waves. (White caps occupy some frac-
tion of the surface wave crests; the distance between
crests is not a critical factor.) Using the foregoing num-
bers, we can write

A=mi'=137(C')'rms{

9.31
=0.23rms¢{ = 1.7 m. ( !
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From the expressions (9.24) for (£2) and (u?), either
condition (9.30) or condition {9.31) leads to an energy
parameter

E = [(¢*)/CC"*N,IN. (9.32)

For C = 5,C' = 6, E = 1073(¢?)*N,/N. Then with (¢?)
a moderate fraction of its critical value 1, we can re-
cover the numerical value E = 6 x 107%. This is not to
say that E has been calculated from first principles; it
is only to say that acceptable values for the various
coefficients lead to a small numerical value of the di-
mensionless energy parameter, as observed.

9.9.6 Dissipation

For small numerical values of the instability parameter
(¢?) we are in a regime of sparse instabilities in space
and time (such as incipient whitecaps in light winds).
When (¢?) is near 1 the probability for instabilities is
high. For an a priori estimate of ($?) we require (1) a
model to relate (¢?) to the internal wave energy dis-
sipation, and (2) an estimate of the rate of dissipation
(or generation for a given steady state). This is essen-
tially the procedure followed by Longuet-Higgins
{1969a) in his stimulating attempt to interpret the Phil-
lips saturation constant for surface waves.

Perhaps the simplest scheme is to relate the dissi-
pation to the probability for ¢ > 1.16¢ The variance of
¢ associated with ¢ > 1 is (&) p (¢ > 1) for uncorre-
lated ¢ and ¢ (as when ¢ = 9§,{). Potential energy is
proportional to {{?); accordingly the rate of fractional
energy dissipation can be written

1 dE
T = ople>1)

(9.33)
where ¢! is the characteristic interval during which
the energy associated with ¢ > 1 is lost to the organized
wave field and renewed by generation processes. For a
rough estimate (Garrett and Munk, 1972a),

o = w—sz ) w2F¢(w)dw/ fr "Floldo

~ 7 %N (9.34)

for any of the ¢-spectra [such as (9.25)]. A Gaussian ¢-
distribution p{¢) = 7?8 exp(—B¢?) leads to

1
= pli2p-l2 _ =
pip>1)=a""2pg "exp(-B), B W) (9.35)
provided B is large. In the upper ocean o = 20 per day,
and 8 = 2.1, 3.7, for relaxation times of 1 day, 1 week,
respectively. The foregoing numerical values are not
important; what is significant is that a tenfold increase
in the rate of dissipation (and generation) is accom-
panied by only a threefold increase in 82 (and hence in
wave energy). Thus the energy level stays within rather
narrow limits even though generation and dissipation

processes may vary widely, particularly for large 8. We
propose for a ““universality hypothesis’’ that the energy
level responds only logarithmically to variable forcing.
We shall examine this situation in more detail.

9.9.7 The Energy Balance
The differential equation of wave energy can be written

dE[/dt = G(t) — DIt),

where G|t} and D{t) are the rates of energy generation
and dissipation. We use the notation E, G, D to repre-
sent the “normal” state of internal wave statistics.
From (9.32) and {9.35)

E ~B#NyN), D~ p'%e?
with D = G. We define the relaxation time
t =E/G;

accordingly 77! is the initial rate of decay for a wave
field in equilibrium with G if the generation is sud-
denly turned off. The differential energy equation can
now be written

22+ e exlBll - ) - g

dr

~ (9.36})
B = EXN/NoJ™'?,

where

&r)=EE, glrl=GIG, t=th,

with

(=1 (=1

For large &, the dissipation is € exp 8 and thus large;
for small &, it is " exp —(8% 2] and thus very small.

The problem is to derive properties of the energy
statistics for given generation statistics. (This is related
to the fluctuation-dissipation theorem in the study of
Brownian motion.) Two special solutions are easily
found. For an equilibrium situation, (9.36} with
d&/ dv = 0 gives the values €|g;8) in table 9.2. Depar-
tures from the normal state in E are much smaller than
those in g, particularly at large 8 and for small g’s.

To obtain some feeling for the nonlinear response
time, let g{7) go abruptly from 1 to g at time 0, and set
&(7) = 1 + €(7), with € << 1 (but not €8 << 1). Equation
(9.36) becomes

dzldt +z* =gz, z =explife), 1 =1fr,
with the solution
g2 IHM )
Bg g-z
For the caseg —» 0, 7 — z' — 1, and

de/dr = 23 'dInz/dr —> -z, (9.37)
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Table 9.2 Energy Equilibrium &(g;B8) from (9.36) for d&/dr =
0 (top), Dimensionless Response Time 7y, (9.38) for an
Abrupt Change in Generation from 1 to g {center),
Relaxation Time 7,5 (9.39} for a Change fromg to 1
{bottom)?

& (dB)
-10 -5 0 5 10
Energy levels in dB
2 -6.0 -3.4 0 49 13.0
B 5 -3.0 -1.7 0 2.0 4.6
10 -1.7 -0.9 0 1.0 2.1
Response time (dimensionless)
2 2.75 141 0.69 0.32 0.14
B 5 1.10 0.56 0.28 0.13 0.06
10 0.55 0.28 0.14 0.06 0.03
Relaxation time {dimensionless)
2 1.43 1.02 0.69 0.45 0.27
B 5 0.57 0.41 0.28 0.18 0.11
10 0.29 0.20 0.14 0.09 0.05

a. Generation g and energy € are in decibels relative to
normal levels.

in accord with de/dr = —1 for the initial rate of decay.
As 7 goes from 0 to », z goes from 1 to g, and € from
0 to 23'Ing. Half energy response is for € = 8'Ing,
z =g, and

Tie = Zﬁlg_l ].n.(l + gll2’. ‘9.38,

For energy relaxation, going abruptly from g to 1 at
time 0, the solution is

T=2/§“ln(g — 1z

ng _ 1) ' Tz = 23_1111(1 +g_”2)'

(9.39)

Half-times 7, are given in table 9.2. For a linear
system these would all be the same. Here the times are
shorter for internal wave storms (g > 1) and longer for
calms (g < 1}, and this variation is more pronounced
in response to a change in generation from a normal to
a perturbed level than for relaxation back to normal
generation. (The assumption of weak nonlinearity for
computing 7 is violated in the columns forg = +10 dB.)

The imperceptible decay of internal wave intensities
during relatively low winds (figure 9.26) is consistent
with half the normal energy, and the rapid decay fol-
lowing a blow (figure 9.27) requires perhaps three times
normal energy. If we can count on a storm or some
other generation event to ““top up” the internal wave
energy once every hundred days, then we may expect
the wave energies to remain generally within a factor
of two.

I have paid no attention to depth dependence. The
dissipation can be written

D = ofmp)™* exp|{-BIE,

where pD(z), pE(z) are the dissipation and energy per
unit volume, respectively. The dependence on depth is
through )

E~n,

with n(z) = N{z)/N,; hence

D =Dy exp(g — B), E=Ep™

Writing dz = bdn/n = —2bdg/B,

f Ddz = ZbDof B2 exp|B, — BIdB,

f Bdz = 28, f gda.

Integrating from the surface (8 = B,) to the bottom
(B = =), the integrals for large B, (as previously as-
sumed) give

f Dz = 2Dy, f Edz = bES7
with an ““integral relaxation time”
18PEIDs = B lenos

Suppose the generation takes place in the upper few
hundred meters, so that the dissipation in the interior
ocean is compensated by downward radiation of inter-
nal wave energy. From a rotary decomposition of cur-
rent profiles, Leaman {1976) estimates a downward flux
of order 10 Wm=2. We compare this with the inte-
grated dissipation beneath a scale depth z = —b =
—1.3 km (wheren = e! and B8 = B,Ve):

o ~n, B~n2

(9.40)

p D(z)dz = 2z~12%~114858~Pog N3pbE,
BiVee

where E is the “normal” dimensionless energy param-

eter. The result is 8, = 2.1. The corresponding integral

relaxation time fequation (9.40)] is 7 days. The normal

surface relaxation time is

t = EofDy = (mBo/2eP0y! = 1.1 days.

The dimensionless times in table 9.2 can be interpreted
as shallow response times in days.

The strong dependence of dissipation on depth is an
inherent feature of the proposed phenomenology.

9.9.8 Mixing
The balance between production and dissipation of tur-
bulent energy can be represented by

L =€=¢€ + €. {9.41)

pe, is the rate of production of potential energy, e.g.,
the buoyancy flux g(w'p’}), with the primes designat-
ing the fluctuating components; pe; is the dissipation
of kinetic energy into heat. The fraction of work going
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into potential energy is the flux Richardson number
Rf:

Rf = €,/ = €,/e. (9.42)

Rf <1 in order for ¢, > 0. We have previously discussed
the evidence that something less than 1 of the kinetic
energy dissipated appears as potential energy. Taking
a typical value €,/e, = § (Thorpe, 1973b, p. 749) gives
Rf = %. The eddy flux of density can be written in terms
of the eddy diffusivity A: (w'p’) = A-dp/dz =
ANZ(g/p)™! = pe,lg, and so

& _Rf
N*1—-Rf’

€, €
A=_"=N_2Rf=

N (9.43)

Our procedure is to estimate ¢, from internal wave
breaking, and to compute A and e from (9.43}, using
Rf = % There are, of course, other sources of turbu-
lence; Osborn (1980) stresses the work done by the
ambient turbulence in a mean shear: p = (u'w’) du/dz.
His procedure is to estimate € from the measured
mean-square shear, and to compute A from (9.43).

The random superposition of internal waves leads to
the intermittent occurrence of ““traumata’’ 17 associated
with ¢ > 1. The traumata are the locus of incipient
turbulence, and quickly spread to some thickness A
within which the average ¢ is reduced from 1 to about
0.9 (Thorpe, 1973b). Subsequently the patch continues
to grow to some maximum thickness Ay, at the time
the surrounding ¢ is largest, always keeping ¢ within
the patch to 0.9.

The change of potential energy per unit surface
area associated with perfect mixing over a depth A
in a density gradient dp/dz is {1/12)g(dp/dz)A® =
(1/12)pN2A3, (Imperfect mixing just reduces the factor
1/12.) The average change of potential energy per unit
time per unit volume is then

1
P& =75 pNZ A3y,

where v is the number of traumata per unit {t, z}-space.
pe, equals the buoyancy flux pN2A by definition of the
eddy diffusivity A; hence

p— 1 3.
A= 1 Ay,
I have previously identified A with mg! [equation
(9.31])]. For v we write

v =m'op(d > 1), m' =0.2m,, o = 7 YfN'2,

where m’ is the rms spacial frequency derived from an
equation analogous to (9.34). Putting all this together,

A=~10AT, T=o"'p"%"5, (9.44)

where T is the expected time interval between events
over a distance 1/m’. This is of similar form as the
result of Stommel and Fedorov {1967), as is inevitable
for what is, after all, a mixing-length theory.

The principal conclusion is a strong dependence of
A on depth, and on any departures from normal gen-
eration. The numerical value for the normal state is
A =102 cm?s7?, much lower than the global 1 cm?s~.

9.9.9 Saturation Spectra

There is an essential distinction between the usual
formulation of turbulence and the saturation processes
as here envisioned. We consider the regime of sparse
instabilities in space and time (such as incipient white-
caps in light winds). Then the ¢-field consists of scat-
tered and uncorrelated spikes, and the ¢-spectrum is
accordingly white up to some limit that is the recip-
rocal of the vertical extent of the spikes. The dissipa-
tion is localized in physical space, and therefore
broadly distributed in wavenumber space. In the usual
turbulent situation, the dissipation is confined to a
narrow (dissipation) region in wavenumber space, and
spread in physical space.

A white spectrum in any of the ¢-spectra, whether
shear, advection or strain, implies an m~2 energy spec-
trum. The energy spectrum steepens {perhaps to m~?)
in the transition from the intrinsic to the compliant
waves. Presumably the m~3 energy spectrum extends
to the Ozmidov (or Richardson or Monin-Obukov)
scale m, = (N®/e}''? ~ 4 m~! (about 0.6 cpm), which is
conveniently close to the definition of the microstruc-
ture boundary, then flattens out to the Kolmogorov
dissipation scale m; = (¢/1+*)* = 3 cm™ (0.5 cpcm), and
finally cuts off exponentially (Gregg, Cox, and Hacker,
1973, figure 11). But such a description of “in-the-
mean” scales may not be appropriate to a patchy en-
vironment, and is anyway beyond the scope of this
survey.

9.10 Conclusion

I shall end as I started: the connection between internal
waves and small scale processes—that is where the key
is. I feel that we are close to having these pieces fall
into place, and I am uncomfortable with having at-
tempted a survey at this time.

Notes

1. They were found at Loch Ness at about the same time
(Watson, 1904; Wedderburn, 1907).

2. The temperature measurements were made using a sub-
marine cable from a recording Wheatstone bridge on the shore
at Bermuda to two resistance thermometers offshore: both lay
on the bottom, one at a depth of 50 m and the other at 500 m
(Haurwitz, Stommel, and Munk, 1959).
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3. Salinity is not directly measured, but has to be inferred
from conductivity or sound speed, which are primarily re-
sponsive to temperature. This large temperature “correction’”
has been a source of some difficulty.

4. The notation U’ = 8,U refers to the ambient shear, and
u' = d,u to the shear induced by the orbital wave motion. The
distinction is not always so clear.

5. In general, forward flow refers to positive c*(g X curlU),
where g and U are the vectors of gravity and ambient velocity,
respectively.

6. I am indebted to D. Broutman for very considerable im-
provements of this section, and for the preparation of figure
9.14.

7. The linearized calculations indicated that they are in fact
not small.

8. Backward breaking occurs for negative shear; this can be
visualized by turning the figure upside down.

9. Frankignoul’s (1972) treatment of finite amplitude waves
[his equations {24) and (28] lead to precisely the same result.

10. Garrett points out that a lot of laboratory experiments
have been sweet-and-sour rather than spicy.

11. It has been suggested that vibration and temperature con-
tamination contributes to the high values from the towed
devices; it has also been suggested that the dropped devices
have inadequate dynamic range to measure € in the highly
active patches where most of the dissipation takes place.

12. A normal-mode formulation is applicable near the bound-
aries (Watson, Siegmann, and Jacobson, 1977).

13. Frequencies are in rads™!, wavenumbers in rad m~. For
comparison with computed spectra we sometimes include (in
parenthesis) the values in cycles per hour (cph) and cycles per
meter (cpm).

14. We note that F (o >> f) « E|w,j) « o *fE. There is some
evidence that the spectral energy density. is independent of
latitude (Wunsch and Webb, 1979; Eriksen, 1980), and we
should probably replace fE by NoE’, with E' = (f3:/No)E =
8.8 x 1077 the appropriate f-scaled energy parameter.

15. Desaubies (1973, 1975) explains the observed N-peak in
the spectrum and the vertical coherence of vertical displace-
ment.

16. This is related to the “intermittency index” evaluated by
Thorpe (1977} from temperature inversions in Loch Ness.

17. ““A disorderly state resulting from stress.” This descrip-
tive terminology is due to McEwan (1973).
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