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Long Waves and
Ocean Tides

Myrl C. Hendershott

10.1 Introduction

The main purpose of this chapter is to summarize what
was generally known to oceanographers about long
waves and ocean tides around 1940, and then to indi-
cate how the subject has developed since then, with
particular emphasis upon those aspects that have had
significance for oceanography beyond their importance
in understanding tides themselves. I have begun with
a description of astronomical and radiational tide-gen-
erating potentials (section 10.2), but say no more than
is necessary to make this chapter self-contained. Cart-
wright (1977) summarizes and documents recent de-
velopments, and I have followed his discussion closely.

The fundamental dynamic equations governing tides
and long waves, Laplace’s tidal equations (LTE), re-
mained unchanged and unchallenged from Laplace’s
formulation of them in 1776 up to the early twentieth
century. By 1940 they had been extended to allow for
density stratification (in the absence of bottom relief)
and criticized for their exclusion of half of the Coriolis
forces. Without bottom relief this exclusion has re-
cently been shown to be a good approximation; the
demonstration unexpectedly requires the strong strat-
ification of the ocean. Bottom relief appears able to
make long waves in stratified oceans very different
from their flat-bottom counterparts (section 10.4); a
definitive discussion has not yet been provided. Finally,
LTE have had to be extended to allow for the gravita-
tional self-attraction of the oceans and for effects due
to the tidal yielding of the solid earth. I review these
matters in section 10.3.

Laplace’s study of the free oscillations of a global
ocean governed by LTE was the first study of oceanic
long waves. Subsequent nineteenth- and twentieth-
century explorations of the many free waves allowed
by these equations, extended to include stratification,
have evolved into an indispensible part of geophysical
fluid dynamics. By 1940, most of the flat-bottom so-
lutions now known had, at least in principle, been
constructed. But Rossby’s rediscovery and physical in-
terpretation, in 1939, of Hough’s oscillations of the
second class began the modern period of studying so-
lutions of the long-wave equations by inspired or sys-
tematic approximation and of seeking to relate the
results to nontidal as well as tidal motions. Since then,
flat-bottom barotropic and baroclinic solutions of LTE
have been obtained in mid-latitude and in equatorial
approximation, and Laplace’s original global problem
has been completely solved. The effects of bottom re-
lief on barotropic motion are well understood. Signifi-
cant progress has been made in understanding the ef-
fects of bottom relief on baroclinic motions. I have
attempted to review all those developments in a self-
contained manner in section 10.4. In order to treat this

292
Myrl C. Hendershott



vast subject coherently, I have had to impose my own
view of its development upon the discussion. I have
cited observations when they appear to illustrate some
property of the less familiar solutions, but the central
theme is a description of the properties of theoretically
possible waves of long period (greater than the buoy-
ancy period) and, consequently, of length greater than
the ocean’s mean depth.

Although the study of ocean surface tides was the
original study of oceanic response to time-dependent
forcing, tidal studies have largely proceeded in isolation
from modermn developments in oceanography on ac-
count of the strength of the tide-generating forces, their
well-defined discrete frequencies, and the proximity of
these to the angular frequency of the earth’s rotation.
A proper historical discussion of the subject, although
of great intellectual interest, is beyond the scope of
this chapter. To my mind the elements of such a dis-
cussion, probably reasonably complete through the
first decade of this century, are given in Darwin’s 1911
Encyclopedia Britannica article “Tides.” Thereafter,
with a few notable exceptions, real progress had to
await modern computational techniques both for solv-
ing LTE and for making more complete use of tide
gauge observations. Cartwright (1977) has recently re-
viewed the entire subject, and therefore I have given a
discussion in section 10.5 that, although self-con-
tained, emphasizes primarily changes of motivation
and viewpoint in tidal studies rather than recapitulates
Cartwright’s or other recent reviews.

This discussion of tides as long waves continuously
forced by lunar and solar gravitation logically could be
followed by a discussion of tsunamis impulsively
forced by submarine earthquakes. But lack of both
space and time has forced omission of this topic.

Internal tides were first reported at the beginning of
this century. By 1940 a theoretical framework for their
discussion had been supplied by the extension of LTE
to include stratification, and their generation was
(probably properly) ascribed to scattering of barotropic
tidal energy from bottom relief. The important devel-
opments since then are recognition of the intermittent
narrow-band nature of internal tides (as opposed to the
near-line spectrum of surface tides) plus the beginnings
of a statistically reliable characterization of the inter-
nal tidal spectrum and its variation in space and time.
The subject has recently been reviewed by Wunsch
(1975). Motivation for studying internal tides has
shifted from the need for an adequate description of
them through exploration of their role in global tidal
dissipation (now believed to be under 10%) to specu-
lation about their importance as energy sources for
oceanic mixing. In section 10.6 I have summarized
modern observational studies and their implications
for tidal mixing of the oceans.

Many features of the presentday view of ocean cir-
culation have some precedent in tidal and long-wave
studies, although often unacknowledged and appar-
ently not always recognized. The question of which
parts of the study of tides have in fact influenced the
subsequent development of studies of ocean circulation
is a question for the history of science. In some cases,
developments in the study of ocean circulation subse-
quently have been applied to ocean tides. In section
10.7 I have pointed out some of the connections of
which I am aware.

10.2 Astronomical Tide-Generating Forces

Although correlations between ocean tides and the po-
sition and phase of the moon have been recognized and
utilized since ancient times, the astronomical tide-gen-
erating force (ATGF) was first explained by Newton in
the Principia in 1687. Viewed in an accelerated coor-
dinate frame that moves with the center of the earth
but that does not rotate with respect to the fixed stars,
the lunar (solar) ATGF at any point on the earth’s
surface is the difference between lunar (solar) gravita-
tional attraction at that point and at the earth’s center.
The daily rotation of the earth about its axis carries a
terrestrial observer successively through the longitude
of the sublunar or subsolar point [at which the lunar
(solar) ATGF is toward the moon (sun)] and then half
a day later through the longitude of the antipodal point
[at which the ATGF is away from the moon (sun|]. In
Newton’s words, /It appears that the waters of the sea
ought twice to rise and twice to fall every day, as well
lunar or solar’” [Newton, 1687, proposition 24, theorem
19].

The ATGF is thus predominantly semidiurnal with
respect to both the solar and the lunar day. But it is
not entirely so. Because the tide-generating bodies are
not always in the earth’s equatorial plane, the terres-
trial observer [who does not change latitude while
being carried through the longitude of the sublunar
(solar) point or its antipode] sees a difference in ampli-
tude between the successive semidiurnal maxima of
the ATGF at his location. This difference or “daily
inequality”’ means that the ATGF must be thought of
as having diurnal as well as semidiurnal time variation.

Longer-period variations are associated with period-
icities in the orbital motion of earth and moon. The
astronomical variables displaying these long-period
variations appear nonlinearly in the ATGF. The long-
period orbital variations thus interact nonlinearly both
with themselves and with the short-period diurnal and
semidiurnal variation of the ATGF to make the local
ATGF a sum of three narrow-band processes centered
about 0, 1, and 2 cycles per day {cpd), each process
being a sum of motions harmonic at multiples 0,1,2 of
the frequencies corresponding to a lunar or a solar day
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plus sums of multiples of the frequencies of long-period
orbital variations.

A complete derivation of the ATGF is beyond the
scope of this discussion. Cartwright (1977) reviews the
subject and supplies references documenting its mod-
ern development. For a discussion that concentrates
upon ocean dynamics (but not necessarily for a prac-
tical tide prediction), the most convenient representa-
tion of the ATGF is as a harmonic decomposition of
the tide-generating potential whose spatial gradient is
the ATGF. Because only the horizontal components of
the ATGF are of dynamic importance, it is convenient
to represent the tide-generating potential by its hori-
zontal and time variation U over some near-sea-level
equipotential (the geoid) of the gravitational potential
due to the earth’s shape, internal mass distribution,
and rotation. To derive the dynamically significant part
of the ATGF it suffices to assume this surface spheri-
cal. U/g (where g is the local gravitational constant,
unchanging over the geoid) has the units of sea-surface
elevation and is called the equilibrium tide {. Its prin-
ciple term is (Cartwright, 1977)

Ua,6,t) = Uld,o,tlig

S (A cosmé + BFsinmo)PF, (10.1)

m=0,1,2

in which ¢,0 are longitude and latitude, the Py(f) are
associated Legendre functions

Py = }{3cos?d — 1),
P} = 3sinfcosé,

P} = 3sin?d

(10.2)

of colatitude § = (7/2) — 6, and A7,
time having the form

» are functions of

(10.3)

cos[ & .0
ape) = s [ 3 s

The M; are amplitudes obtained from Fourier analysis
of the astronomically derived time series Uld,6,t)/s;

the N§? are sets of small integers (effectively the Dood-
son numbers}; and the S;(t) are secular arguments that
increase almost linearly in time with the associated
periodicity of a lunar day, a sidereal month, a tropical
year, 8.847 yr (period of lunar perigee), 18.61 yr (period
of lunar node), 2.1 x 10*yr (period of perihelion), re-
spectively.

The frequencies of the arguments EN§S,(t) fall into
the three “species”’—long period, diurnal, and semidi-
umal—which are centered, respectively, about 0, 1, and
2 cpd (N; = 0,1,2). Each species is split into “groups”
separated by about 1 cycle per month, groups are split
into “‘constituents’’ separated by one cyle per year, etc.
Table 10.1 lists selected constituents. In the following
discussion they are referred to by their Darwin symbol
(see table 10.1).

An important development in modern tidal theory
has been the recognition that the ATGF is not the only
important tide-generating force. Relative to the ampli-
tudes and phases of corresponding constituents of the
equilibrium tide, solar semidiurnal, diurnal, and an-
nual ocean tides usually have amplitudes and phases
quite different from the amplitudes and phases of other
nearby constituents. Munk and Cartwright (1966) at-
tributed these anomalies in a general way to solar heat-
ing and included them in a generalized equilibrium
tide by defining an ad hoc radiational potential (Cart-
wright, 1977)

S(¢/€) cosa, 0<a<mu/2:

0, T<a<m:

Usrld,0,t) = l (10.4)

which is zero at night, which varies as the cosine of
the sun’s zenith angle « during the day, and which is
proportional to the solar constant S and the sun’s par-
allax £ (mean £). Cartwright {1977) suggests that for the
oceanic S, (principal solar) tide, whose anomalous por-
tion is about 17% of the gravitational tide (Zetler,
1971), the dominant nongravitational driving is by the
atmospheric S, tide. Without entering further into the
discussion, I want to point out that the global form of

Table 10.1 Charactenstics of Selected Constituents of the Equilibrium Tide

Period
Darwin (solar days Amplitude M Spatial
symbol N, N;, N;, N, or hours) (m) variation
S 0O 0 2 0 182.621 d 0.02936
My, 0 1 0-1 27.55d 0.03227 43 cos?6 — 1)
M; 0 2 0 o0 13.661 d 0.0630
0, 1-1 0 O 25.82h 0.06752
P, 1 1-2 0 24.07 h 0.03142 3sinfcosf X sin(w,t + ¢}
K, 1 1 0 0 2393 h 0.09497
N, 2-1 0 1 12.66 h 0.01558
M, 2 0 0 0O 1242 h 0.08136 3sin?8 X cos(wst + 2¢)
S, 2 2-2 0 12.00 h 0.03785
K, 2 2 0 0 1197 h 0.01030
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the atmospheric S, tide is well known (Chapman and
Lindzen, 1970), so that the same numerical programs
that have been used to solve for global gravitationally
driven ocean tides could easily be extended to allow
for atmospheric-pressure driving of the 'oceanic S, tide.

Ocean gravitational self-attraction and tidal solid-
earth deformation are quantitatively even more impor-
tant in formulating the total tide-generating force than
are thermal and atmospheric effects. They are dis-
cussed in the following section, since they bring about
a change in the form of the dynamic equations govern-
ing ocean tides.

10.3 Laplace’s Tidal Equations (LTE) and the Long-
Wave Equations

Laplace (1775, 1776; Lamb, 1932, §213-221) cast the
dynamic theory of tides essentially in its modern form.
His tidal equations (LTE) are usually formally obtained
from the continuum equations of momentum and mass
conservation (written in rotating coordinates for a fluid
shell surrounding a nearly spherical planet and having
a gravitationally stabilized free surface) by assuming
(Miles, 1974a)

(1) a perfect homogeneous fluid,

(2) small disturbances relative to a state of uniform
rotation,

(3) a spherical earth,

(4) a geocentric gravitational field uniform horizon-
tally and in time,

(5) a rigid ocean bottom,

{6) a shallow ocean in which both the Coriolis accel-
eration associated with the horizontal component of
the earth’s rotation and the vertical component of the
particle acceleration are neglected.

The resulting equations are

ou ) 0

i 2Qsin v = —w(c — T'/g)la cos 8, (10.5a)
ov . __9 .

i 20 sinfu = 36 {¢ - Tlg)la, {(10.5b)
9 1 |9 9 _

P +acos()[6¢ ({ubD) + Y (VDCOS())] =0. (10.5¢)

In these, (¢, 6) are longitude and latitude with corre-
sponding velocity components (u,v), { the ocean sur-
face elevation, I the tide-generating potential, D{¢, 6)
the variable depth of the ocean, a the earth’s spherical
radius, g the constant gravitational attraction at the
earth’s surface, and Q the earth’s angular rate of rota-
tion.

Two modern developments deserve discussion. They
are a quanitative formulation and study of the mathe-
matical limit process implicit in assumptions (1)
through (6), and the realization that assumptions (4)

and (5) are quantitatively inadequate for a dynamic
discussion of ocean tides.

It has evidently been recognized since the work of
Bjerknes, Bjerknes, Solberg, and Bergeron (1933) that
assumption {6) (especially the neglect of Coriolis forces
due to the horizontal component of the earth’s rota-
tion) amounts to more than a minor perturbation of
the spectrum of free oscillations that may occur in a
thin homogeneous ocean. Thus Stern (1963) and Israeli
(1972} found axisymmetric equatorially trapped normal
modes of a rotating spherical shell of homogeneous
fluid that are extinguished by the hydrostatic approx-
imation. Indeed, Stewartson and Rickard (1969) point
out that the limiting case of a vanishingly thin ho-
mogeneous ocean is a nonuniform limit: the solutions
obtained by solving the equations and then taking the
limit may be very different from those obtained by first
taking the limit and then solving the resulting approx-
imate (LTE) equations. Quite remarkably, it is the rein-
statement of realistically large stratification, i.e., the
relaxation of assumption (1), that saves LTE as an ap-
proximate set of equations whose solutions are uni-
formly valid approximations to some of the solutions
of the full equations when the ocean is very thin.

The parodoxical importance of stratification for the
validity of the ostensibly unstratified LTE appears to
have been recognized by Proudman (1948) and by
Bretherton (1964). Phillips (1968} pointed out its im-
portance at the conclusion of a correspondence with
Veronis (1968b) concerning the effects of the “‘tradi-
tional” approximation (Eckart, 1960; N. A. Phillips,
1966b), i.e. the omission of the Coriolis terms
20 cos w and —2Q cosfu, in (10.6)-{10.8) below. But
it was first explicitly incorporated into the limit proc-
ess producing LTE by Miles (1974a) who addressed all
of assumptions (1) through (6) by defining appropriate
small parameters and examining the properties of ex-
pansions in them. He found that the simplest set of
uniformly valid equations for what I regard as long
waves in this review are

du : _op_ 1
o 2Qsin8v + 2Q cosfw = 36 Feacosd’ (10.6a)
v o ap 1
p” +2Qsin fu = 90 5o’ (10.6b)
ou Pp 1

2 — _ = — _—
N2w — 2Qcos ¥ ot 3z 0t By’ (10.6¢)
du  d(vcosb) ow
——— _— = 10.6d
6¢+ 3 +“C05062 0, ( }
with boundary conditions
w =0 at z=-D,
(for uniform depth D), (10.7)
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D = —pogls at z=0. {10.8)

In these, z is the upward local vertical with associated
velocity component w, p the deviation of the pressure
from a resting hydrostatic state characterized by the
stable density distribution py(z), p, a constant charac-
terizing the mean density of the fluid (the Boussinesq
approximation has been made in its introduction); the
buoyancy frequency

Niz) =(—§% _g)llz

g (10.9)

is the only term in which allowance for compressi-
bility (c is the local sound speed) is important in the
ocean.

Miles {1974a) further found that when N?%z) > 4Q?,
free solutions of LTE for a uniform-depth (D,) ocean
covering the globe also solve (10.6)-(10.8) with an error
which is of order (¢/29)(4Q%/g) << 1, where o is the
frequency of oscillation of the free solutions. LTE sur-
face elevations { are consequently in error by order
(D,/a)(D.N?*/g)=34, while LTE velocities u,v may be in
error by (D./a){D.N*/g)~"4. Miles (1974a) obtained this
result by taking the (necessarily barotropic) solutions
of LTE as the first term of an expansion of the solutions
of (10.6)-({10.8) in the parameter (¢/2Q)(4Q%a/g), which
turns out to characterize the relative importance of
terms neglected and terms retained in making assump-
tion (6). The next term in the expansion consists of
internal wave modes (see section 10.4.3). Because their
free surface displacements are very small relative to
intemal displacements, the overall free surface dis-
placement remains as in LTE although in the interior
of the ocean, internal wave displacements and currents
may well dominate the motion.

The analysis is inconclusive at frequencies or depths
at which the terms assumed to be correction pertur-
bations are resonant. Finding expressions for all the
free oscillations allowed by Miles’s simplest uniformly
valid system (10.6)-(10.8) involves as yet unresolved
mathematical difficulties associated with the fact that
these equations are hyperbolic over part of the spatial
domain when the motion is harmonic in time (Miles,
1974a).

Application of this analysis to ocean tides is further
circumscribed by its necessary restriction to a global
ocean of constant depth. I speculate that if oceanic
internal modes are sufficiently inefficient as energy
transporters that they cannot greatly alter the energet-
ics of the barotropic solution unless their amplitudes
are resonantly increased beyond observed levels {sec-
tion 10.6), and if they are sufficiently dissipative that
they effectively never are resonant, then an extension
of this analysis to realistic basins and relief would
probably confirm LTE as adequate governors of the
surface elevation. The ideas, necessary for such an

extension, that is, how variable relief and stratification
influence barotropic and baroclinic modes, are begin-
ning to be developed (see section 10.4.7).

Miles {1974a) discusses assumptions (3}-(5) with ex-
plicit omission of ocean gravitational self-attraction
and solid-earth deformation. Self-attraction was in-
cluded in Hough’s (1897, 1898; Lamb, 1932, §222-223)
global solutions of LTE. Thomson (1863) evidently first
pointed out the necessity of allowing for solid-earth
deformation. Both are quantitatively important. The
latter manifests itself in a geocentric solid-earth tide &
plus various perturbations of the total tide-generating
potential I'. Horizontal pressure gradients in LTE {10.5)
are associated with gradients of the geocentric ocean
tide ¢, but it is the observed ocean tide

L=(-9

that must appear in the continuity equation of (10.5c).

All these effects are most easily discussed (although
not optimally computed) when the astronomical po-
tential U, the observed ocean tide ¢, the solid earth
tide 8, and the total tide-generating potential I' are all
decomposed into spherical harmonic components U,
Lon, 8y, and I',. The Love numbers k,, h,, k;, h;, which
carry with them information about the radial structure
of the solid earth (Munk and McDonald, 1960), and the
parameter a, = (3/2n + 1)Pycean/Peartn) then appear nat-
urally in the development. The total tide-generating
potential I', contains an astronomical contribution U,
(primarily of order n = 2), an augmentation k,U, of
this due to solid earth yielding to —VU,, an ocean
self-attraction contribution ga,ls, and a contribution
k) ganlen due to solid-earth deformation by ocean self-
attraction and tidal column weight. Thus

(10.10)

T, = (1 + KU, + (1 + kLJgctalon. (10.11)

There is simultaneously a geocentric solid-earth tide
& made up of the direct yielding h,U,g of the solid
earth to —VU, plus the deformation h,ga,{, of the
solid earth by ocean attraction and tidal column
weight. Thus

8, = h,U,/g + haganlen. (1012)

For computation, Farrell (1972a] has constructed a
Green’s function such that

2 (1 + k; — Balandon

n

- f f d6r dg’ cos 0’ G6', 0|, 610l ). (10.13)

ocean

With U, = U, and with (10.13) abbreviated as [fG{,,
LTE with assumptions (4) and {5) appropriately relaxed
become
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du . _ g o
o~ sinbv = acos 8 d¢

-[[ em

ov . 0
o + 2Qsinfu = —%-a—e [Zo — (1 + ko — h,)U,fg

[&o — {1 + ky — hy)UIg

(10.14a)

- f f G, (10.14b)
3, , 1 [8uD) 8D coso)] _
ot + acos@ [ 0 + 30 =0. {10.14c)

The factor 1 + k, — h, = 0.69 is clearly necessary for
a quantitatively correct solution. The term [[G{, was
first evaluated by Farrell {1972b). I wrote down (10.14)
and attempted to estimate the effect of [JG{, on a
global numerical solution of (10.14} for the M, tide by
an iterative procedure which, however, failed to con-
verge (Hendershott, 1972). Subsequent computations
by Gordeev, Kagan, and Polyakov (1977) and by Accad
and Pekeris (1978) provide improved estimates of the
effects (see section 10.5.3).

With appropriate allowance for various dissipative
processes (including all mechanisms that put energy
into internal tides), I regard (10.14) as an adequate ap-
proximation for studying the ocean surface tide.
Oceanic long waves should really be discussed using
{10.6) but allowing for depth variations by putting

w=uVD at z=-D|¢,0) (10.15)

in place of (10.7). Miles (1974a| derives an orthogonality
relationship that could be specialized to (10.6)-(10.8)
in the case of constant depth, but even then the non-
separability of the eigenfunctions into functions of (¢, 6)
times functions of z has prevented systematic study of
the problem. Variable relief compounds the difficulty.
Most studies either deal with surface waves over bot-
tom relief, and thus start with LTE (10.5}, or else with
surface and internal waves over a flat bottom. In the
latter case, (10.6)-(10.8) are solved but with the Coriolis
terms 2{dcos#w and —2Q cosfu arbitrarily neglected
(the “traditional” approximation). Miles’ {1974a) re-
sults appear to justify this procedure for the former
case, but Munk and Phillips (1968) show that the ne-
glected terms are proportional to (mode number)'? for
internal modes so that the traditional approximation
may be untenable for high-mode internal waves. The
following discussion (section 10.4} of oceanic long
waves relies heavily upon the traditional approxima-
tion, but it is important to note that its domain of
validity has not yet been entirely delineated.

10.4 Long Waves in the Ocean

10.4.1 Introduction

The first theoretical study of oceanic long waves is due
to Laplace (1775, 1776; Lamb, 1932, §213-221}, who
solved LTE for an appropriately shallow ocean covering
a rotating rigid spherical earth by expanding the solu-
tion in powers of sin 6. For a global ocean of constant
depth D, Hough (1897, 1898; Lamb, 1932, §222-223)
obtained solutions converging rapidly for small

A =40%2/gD, (10.16)

(sometimes called Lamb’s parameter) by expanding the
solution in spherical harmonics P} {sin 8) explil¢). He
found the natural oscillations to be divided into first-
and second-class modes whose frequencies o are given,
respectively, by

o = x[n(n + 1)gD,/a®]"?,

o=-20]/lnn + 1)1 {10.17)

as A—0. But A = 20 for D, = 4000 m, and is very
much larger for internal waves (see section 10.4.3). A
correspondingly complete solution of Laplace’s prob-
lem, valid for large as well as small A, was given only
recently (Flattery, 1967; Longuet-Higgins, 1968a).
Physical understanding of the solutions has historically
been developed by studying simplified models of LTE.

10.4.2 Long Waves in Uniformly Rotating Flat-
Bottomed Oceans

Lord Kelvin (Thomson, 1879; Lamb, 1932, §207) intro-
duced the idealization of uniform rotation, at Q, of a
sheet of fluid about the vertical (z-axis). LTE become

8¢

ou
L=, (10.18a)
i __ N

ot = — g, (10.18b)
¢ duD) &wD) _ . {10.18¢)

ot ox oy

fo, here equal to 20, is the Coriolis parameter. Lord
Kelvin’s plane model {10.18} is often called the f-plane.

The solid earth is nearly a spheroid of equilibrium
under the combined influence of gravity g and centrif-
ugal acceleration 02a; the earth’s equatorial radius is
about 20 km greater than its polar radius. Without
water motion, the sea surface would have a congruent
spheroidal shape. Taking the depth constant in LTE
models this similarity; the remaining error incurred by
working in spherical rather than spheroidal coordinates
is {Miles, 1974a) of order Q%a/g = 1072, It is correspond-
ingly appropriate to take the depth constant in Lord
Kelvin’s plane model (10.18) in order to obtain planar

297
Long Waves and Ocean Tides




solutions locally modeling those of LTE with constant
depth. But the laboratory configuration corresponding
to constant depth in (10.18c) is a container with a
paraboloidal bottom #02%x2 + y2)/g rather than a flat
bottom [see Miles (1964) for a more detailed analysis].

Without rotation (f, = 0] and with constant depth
(D = D,} Lord Kelvin’s plane model reduces to the
linearized shallow-water equations (LSWE). For an
unbounded fluid sheet, they have plane gravity-wave
solutions

{ = aexp|—iot + ilx + iky), (10.19a}
u = (gl/o)g, (10.19b)
v = (gk/a]i, (10.19c¢]
w = —ia(z/D, + 1), (10.19d)
o? =gD,[I? + k¥, (10.19¢)

which are dispersionless [all travel at (gD,)"?] and are
longitudinal [{u, v) parallel to {I, k). Horizontal particle
accelerations are exactly balanced by horizontal pres-
sure-gradient forces while vertical accelerations are
negligible. Such waves reflect specularly at a straight
coast with no phase shift; thus

{ = aexp(—iot + ilx + iky)

+ a exp|—iot — ilx + iky) (10.20)

satisfies u = 0 at the coast x = 0, the angle tan~!(k/l)
of incidence equals the angle of reflection, and the
(complex) reflected amplitude equals the incident am-
plitude a. The normal modes of a closed basin with
perimeter P are the eigensolutions Z,(x,y)exp|—io,t),
o, of

V3Z, + (0%/gD4)Z, =0 (10.21)
with
8Z,/8(normal) =0 on P. {(10.22}

If P is a constant surface in one of the coordinate sys-
tems in which V3 separates, then the normal modes are
mathematically separable functions of the two hori-
zontal space coordinates and so are readily discussed
in terms of appropriate special functions. Even in gen-
eral basin shapes, the existence and completeness of
the normal modes are assured (Morse and Feshbach,
1953),

With rotation, plane wave solutions of (10.18) with
constant depth D, are

{ = aexp(—iat + ilx + iky), (10.23a)
u = gl(lo + ikf,)l(o* — fE]IE, (10.23b)
v = gllko — ilfo)lla® — f3)IL, (10.23c)
w = —ioiz/D. + 1, {10.23d)

o = gD, [ + k%) + . (10.23¢)

These are often called Sverdrup waves (apparently after
Sverdrup, 1926). Rotation has made them dispersive
and they propagate only when o > f3. The group ve-
locity ¢; = (0a/8], dc/dk) is parallel to the wavenumber
and rises from zero at o = f, toward (gD, }'? as o2 >
f3. Dynamically these waves are LSW waves perturbed
by rotation. Particle paths are ellipses with ratio f/o of
minor to major axis and with major axis oriented along
(I, k). Particles traverse these paths in the clockwise
direction (viewed from above) when f > 0 (northern
hemisphere). Sverdrup waves are reflected specularly
at a straight coast but with a phase shift; the sum

{ = aexpliot + ilx + iky)
+alllo + ikfy)l{lo — ikfo)]

X exp (—iot — ilx + iky) (10.24)

of two Sverdrup waves satisfies u = 0O at the coast
x = 0, the angle tan~'(k/I) of incidence equals the angle
of reflection, and the reflected amplitude differs from
the incident amplitude by the multiplicative constant
(lo + ikf,)/(lo — ikf,), which is complex but of modulus
unity. The sum (10.24) is often called a Poincaré wave.
The normal modes of a closed basin with perimeter P
are the eigensolutions Z,(x,y}exp|—ia,t), o, of

ViZ. + [lo} — fi)igD1Z, = 0 (10.25)
with

—io,8Z,/8(normal)

+ fo0Z,/0(tangent) =0  at P. (10.26)

On account of the boundary condition (10.26), they are
not usually separable functions of the two horizontal
space coordinates. The circular basin (Lamb, 1932,
§209-210) is an exception. Rao (1966) discusses the
rectangular basin, but the results are not easily sum-
marized. A salient feature, the existence of free oscil-
lations with o* < f3, is rationalized below.

With rotation, Lord Kelvin (Thomson, 1879; Lamb,
1932, §208) showed that a coast not only reflects Sver-
drup waves for which o® > f3, but makes possible a
new kind of coastally trapped motion for which o2 =
f3. This Kelvin wave has the form

{ = a exp[~iot + iky + k(folo)x], (10.27a)
u=0 (10.27b)
v = (gkla), (10.27c)
w = —iofz/D, + 1)¢, (10.27d)
o? = gD k? {10.27¢)

along the straight coast x = 0. The velocity normal to
the coast vanishes everywhere in the fluid and not only
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at the coast. The wave is dispersionless and propagates
parallel to the shore with speed (gD, )"? for o = f3 just
like a longitudinal gravity wave but with an offshore
profile explk(f,/o)x] that decays or grows exponentially
seaward depending upon whether the wave propagates
with the coast to its right or to its left (in the northern
hemisphere, f, > 0). For vanishing rotation, the offshore
decay or growth scale becomes infinite and the Kelvin
wave reduces to an ordinary gravity wave propagating
parallel to the coast. The Kelvin wave is dynamically
exactly a LSW gravity wave in the longshore direction
and is exactly geostrophic in the cross-shore direction.

A pair of Kelvin waves propagating in opposite di-
rections along the two coasts of an infinite canal (at,
say, x = 0 and x = W) gives rise to a pattern of sea-
level variation in which the nodal lines that would
occur without rotation shrink to amphidromic points,
at which the surface neither rises nor falls and about
which crests and troughs rotate counterclockwise (in
the northern hemisphere) as time progresses. For equal-
amplitude oppositely propagating Kelvin waves, the
amphidromic points fall on the central axis of the canal
and are separated by a half-wavelength (7k~!). When
the amplitudes are unequal, the line of amphidromes
moves away from the coast along which the highest-
amplitude Kelvin wave propagates. For a sufficiently
great difference in amplitudes, the amphidromes may
occur beyond one of the coasts, i.e., outside of the
canal.

Such a pair of Kelvin waves cannot by themselves
satisfy the condition of zero normal fluid velocity in a
closed canal {say at y = 0). Taylor (1921) showed how
this condition could be satisfied by adjoining to the
pair of Kelvin waves an infinite sum of channel Poin-
caré modes

{ = [cosimmx|W) — (fo/o)lkW/mr)
X sinfmnx (W)l expl[—iat + iky],
o = (m*=*W* + k*gD, +f§,

(10.28)
m=12,...,

each of which separately has vanishing normal fluid
velocity at the channel walls (x = O, W). These are just
the waveguide modes of the canal. Mode m decays
exponentially away from the closure (is evanescent) if

02 < 3 + (m2m/W2gD,. (10.29)

If o is so low, W so small, or D so great that all modes
m =1, 2, ... are evanescent, then the Kelvin wave
incident on the closure has to be perfectly reflected
with at most a shift of phase. When (10.29) is violated
for the one or more lowest modes, then some of the
energy of the incident Kelvin wave is scattered into
traveling Poincaré modes.

If (10.29) is satisfied for all m and if the decay scale
(gD« )"?/fy of the Kelvin waves is a good deal smaller

than the channel width W, then the Poincaré modes
sum to an appreciable contribution only near the cor-
ners of the closure. The Kelvin wave then proceeds up
the channel effectively hugging one coast, tumms the
corners of the closure with a phase shift [evaluated by
Buchwald (1968) for a single corner], and returns back
along the channel hugging the opposite coast. Now it
becomes apparent that, with allowance for comner
phase shifts, closed rotating basins have a class of free
oscillation whose natural frequencies are effectively
determined by fitting an integral number of Kelvin
waves along the basin perimeter. Such free oscillations
may have ¢? S f2. They are readily identified in Lamb’s
{1932, §209-210) normal modes of a uniform-depth cir-
cular basin.

10.4.3 The Effect of Density Stratification on Long
Waves

All of the foregoing solutions are barotropic surface
waves. Stokes (1847; Lamb, 1932, §231) pointed out
that surface waves are dynamically very much like
waves at the interfaces between fluid layers of differing
densities. Allowance for continuous vertical variation
of density was made by Rayleigh (1883). Lord Kelvin’s
plane model {10.18) must be extended to read

ou __19p
o fov = 7o 0% (10.30a}
v _1lop
pv + fou = 5.3y {10.30Db)
1 &%

27 — — e 2
Nw 5. 9z 0t (10.30c}
ou 0ov Oow
& +3_y +E =0, (1030(1]
with
w=20 at z=-D, (10.31)
and
pP=peg¢ at z=0. (10.32)

Notation is as in {10.6).

For the case of constant depth D, the principal result
is that the dependent variables have the separable form
(wv,w.p) ={Ulxyt), Vix,y,t), Wix.y,t), Z(xy,t]}

X {Fy(z}, Fulz), Fulz), Fplz ]} (10.33)
where
W = aZ/at,
(10.34)
Fu = Fp/ﬁﬁg = DnaFw/azr

and
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ouU 0Z

i foV =~ e (10.35a)
(i)' 0Z

S thU =25 (10.35b)
0z auU o

%, p, (& +5) =0 (10.35¢)
with

F, N3z} . _

5 +_gD,, F,=0, (10.36)
F,=0 at z=-D,, {10.37)
Fy,— DuOF,/0z =0 at z=0. (10.38)

According to (10.35), the horizontal variations of all
quantities are exactly as in the homogeneous flat bot-
tom case except that now the apparent depth D, is
obtained by solving the eigenvalue problem (10.36) for
the vertical structure. Typically (10.36) yields a baro-
tropic mode F,, = z + D,, D, = D, plus an infinite
sequence of baroclinic modes F,, characterized by n
zero crossings {excluding the one at z = ~D,) and by
very small equivalent depths D,. Baroclinic WKB ap-
proximate solutions (10.36)-(10.38) are

Funlz) = NV%iz) sin [ (/gD f_;N(z' )dz'],

D, = [ fm N(z’)dz’]2/ (gn*).

These are exact for constant buoyancy frequency N,.
For D, = 4000 m and N, = 10Q, D,, = (0.1/n% m. When
N(z) = N,, it is easy to show that

(10.39)

[w at the free surface/interior maximum value

of wl = N#D, /nmg < 1. (10.40)

Free surface variation is thus qualitatively and quan-
titatively unimportant for baroclinic modes. They are
therefore usually called internal modes.

In a flat-bottomed ocean, stratification is thus seen
to make possible an infinite sequence of internal rep-
licas of the barotropic LSW gravity waves, Sverdrup
waves, Poincaré waves, Kelvin waves, and basin nor-
mal modes discussed above. All these except the Kelvin
waves have o? > ff. They must also have o2 < N?%z|
over part of the water column, although the present
treatment does not make this obvious because 02 <«
N2?is always assumed. The horizontal variation of these
replicas is governed by the equations describing the
barotropic mode, except that the depth D, is a small
fraction of the actual (constant) depth D,. Without
rotation, the speed of barotropic long gravity waves is
(gD .V = 200 m s~ in the deep sea. Long internal grav-
ity waves move at the much slower (gD,)'? =

(1/n) ms~'. For comparable frequencies, the internal
waves thus have much shorter wavelength than the
surface wave.

An important point is that the separation of variables
(10.33) works in spherical coordinates as well as in
Cartesian coordinates, provided only that the depth is
constant. The horizontal variation of flow variables is
then governed by LTE with appropriate equivalent
depth D, given by (10.36)-(10.38).

For plane waves of frequency o, relaxation of N2 >>
o? leads to the replacement of (10.36) by

d%F,, + [N%z) — o?]
az? gD,

F,=0. (10.41)
High-frequency waves, for which [N?z) — o?] changes
sign over the water column, are discussed in chapter
9.

The simplicity of these flat-bottom results is decep-
tive, because they are very difficult to generalize to
include bottom relief. The reason for this is most easily
seen by eliminating (u,v) from (10.30) for harmonic
motion [exp{—iot]] to obtain a single equation in w:

ﬁ_w_( Ng )(ﬂuﬂ')_o
az2 \o*-fi/)\ax* ~ oy*)

This equation is hyperbolic in space for internal waves
(for which f3 < o® < NZ). Its characteristic surfaces are

z = i‘x2 + y2)112(o.2 _ fg)“lem (10.43)

(10.42)

Solutions of (10.42) may be discontinuous across char-
acteristic surfaces, and they depend very strongly upon
the relative slope of characteristics and bounding sur-
faces. Without rotation, internal waves of frequency o
are solutions of the hyperbolic equation

¥p _ (Nt - ¥ (6_”P ﬁ’) -
o 7 (s +3) =0 (10.44)

with the simple condition

»_,

~ (10.45)

at solid boundaries.
For closed boundaries (i.e., a container filled with strat-
ified fluid) this is an ill-posed problem in the sense that
tiny perturbations of the boundaries may greatly alter

the structure of the solutions. Horizontal boundaries,
although analytically tractable, are a very special case.

10.4.4 Rossby and Planetary Waves

In an influential study whose emphasis upon physical
processes marks the beginning of the modern period,
Rossby and collaborators (1939) rediscovered Hough'’s
second-class oscillations and suggested that they might
be of great importance in atmospheric dynamics (see
also chapters 11 and 18).
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Perhaps of even greater influence than this discovery
was Rossby’s creation of a new plane model. It amounts
to LTE written in the Cartesian coordinates

x = (a cos o) — o),

tangent to the sphere at (¢,, 6,). Rossby’s creative sim-
plification was to ignore the variation of all metric
coefficients (cos@ = cos6,) and to retain the latitude
variation of

y =al6 — 6, (10.46)

f =20sin6 = 2Qsin 6, + y(2Q/a)cos b,
=fo + By

only when f is explicitly differentiated with respect to
y. Rossby’s notation

B = ofldy

has since become almost universal. Such Boussinesq-
like approximations to the spherical equations are usu-
ally called B-plane equations.

Rossby’s original approximation, which I shall call
Rossby’s B8-plane, further suppressed horizontal diver-
gence ({ = 0}. It yields rational approximations (Miles,
1974b) for second-class solutions of LTE whose hori-
zontal scale is much smaller than the earth’s radius. A
quite different approximation yielding rational-approx-
imations for both first- and second-class solutions of
LTE when they are equatorially trapped is the equa-
torial B-plane (see section 10.4.5). Both Rossby’s 8-
plane equations and the equatorial 8-plane equations
differ from those obtained by the often encountered
procedure of making Rossby’s simplification but re-
taining divergence. This results in what I shall call
simply the B-plane equations, in conformity with com-
mon usage. It is a rational approximation to LTE only
at low (0? << f3) frequencies and is otherwise best re-
garded as a model of LTE.

Without divergence, the homogeneous LTE (10.30)
may be cross-differentiated to yield a vorticity equation

(10.47)

(10.48)

Vi % _
% +ZQa¢—0

(10.49)
__l'__iz + 1 _( os_)]
a’cos?0 d¢* a?cos0 00 %50

[V%s -

here written in terms of a streamfunction ¢ defined by

vcosd = dy/dd, u = —ay/ae. (10.50)

Rossby’s B-plane approximation to this, obtained by
locally approximating the spherical Laplacian V%, as
the plane Laplacian and going to the locally tangent
coordinates (10.46), is
aviy

)

= (10.51)

where

v = 0Plox, u = —ay/oy.

The spherical vorticity equation (10.49) has as every-
where bounded solutions

¥ = Sale",0),

where (¢’, @) are spherical coordinates relative to a pole
P’ displaced an arbitrary angle from the earth’s pole P
of rotation and rotating about P with angular velocity

¢ =—-20/n(n + 1) {10.54)

(10.52)

Sa(®,0) = Pi(sin 6) explild), (10.53)

(Longuet-Higgins, 1964). When P’ = P, (10.54) is exactly
the second part of (10.17); these are Hough'’s second-
class oscillations. Rossby’s 8-plane equivalents are

v=Zx —ct y), ViZ,+MZ,=0, (10.55)
where c = —g/A2.

Plane Rossby waves are the particular case
¢ = aexp(—iot + ilx + iky), (10.56)
o = =Bl + k). (10.57)

They- are transverse [(u, v) perpendicular to (I, k)] and
dispersive, with the propagation of phases always hav-
ing a westward component (o/I < 0). Their frequencies
are typically low relative to f,. Since o depends both
on wavelength and wave direction, these waves do not
reflect specularly at a straight coast. Longuet-Higgins
(1964) gives an elegant geometrical interpretation (fig-
ure 10.1) of their dispersion relation (10.57) and shows
that it is the group velocity (8c/8], do/8k) that reflects
specularly in this case (figure 10.2).

Rossby-wave normal modes of a closed basin of pe-
rimeter P have the form (Longuet-Higgins, 1964)

¥ = Z,(x,y)exp[~io,t — i(B/20,)x], (10.58)
o, = B2\, {10.59)
where

ViZ,+ \Z, =0, Z,=0 on P. {10.60)

These Rossby-wave normal modes are in remarkable
contrast with the gravity-wave normal modes of the
same basin without rotation:

(10.61)
(10.62)

b= Zr_l(X'Yl exP( —ioyt),
o, = A\gD, )2 [8Z,/d(normal) = 0 onP].

The gravity-wave modes have a lowest-frequency (n
= 1) grave mode and the spatial scales of higher-fre-
quency modes are smaller. The Rossby-wave modes
have a highest frequency [n = 1) mode and the spatial
scales of lower frequency modes are smaller.

The physical mechanism that makes Rossby waves
possible is most easily seen for nearly zonal waves
(8/8y < 8/0x). Then Rossby’s vorticity equation (10.51)
becomes
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s~

c%k

A\ 4

Figure 10.1 The locus of wavenumbers k = (k1) allowed by
the Rossby dispersion relation (10.57)

(I + Bl2o)? + k* = (B/20)

is a circle of radius B/20 centered at (—B/20,0). The group
velocity vector ¢, =(80/0], dc/0k) points from the tip of the
wavenumber vector toward the center of the circle and has
magnitude |c,| = B/(I? + k3.

Figure 10.2 A Rossby wave with wavenumber k; is incident
on a straight coast inclined at an angle a to the east-west
direction. The wavenumber k, of the reflected wave is fixed
by the necessity that k; and k, have equal projection along the
coast. The group velocity reflects specularly in the coast.

v(x,0) ) LN\ «

v T T
av(x,t)/atit:() = fev dx[ToTay ezt TRTTES 4 ; X
v(x,at) = v(x,0) + at av/st \/ ' t < t X

Figure 10.3 The flow v(x,t) evolving from the initial flow
v(x, o) ~ sin(Ix) as fluid columns migrate north-south (and so
exchange' planetary|andirelative vorticity) is a westward dis-
placement of the initial flow. Notice that although parcels
take on clockwise-counterclockwise relative vorticity as they
are moved north-south, the westward displacement is not the
result of advection of vorticity of one sign by the flow asso-
ciated with the other as is the case in a vortex street.

(10.63)

North-south motions v result in changes in the local
vorticity dv/0x. When the initial north-south motion
is periodic inx, then examination (figure 10.3) of (10.63)
shows that the additional north-south motion gener-
ated by the vorticity resulting from the initial pattern
of north-south motion combines with that pattern to
shift it westward, in accordance with (10.57).

Rossby’s vorticity equation (10.51) corresponds to
the plane equations

ou_ . _1op
a fv = o 0% (10.64a)
ov 1 op

— =—-—-—= .64
m +fu oDy (10.64b)
ou ov

ey 0, (10.64c)
f="fo  ofldy =B, (10.64d)

so that Rossby’s solutions are almost geostrophic
(0 << f,) and perfectly nondivergent. The absence of
divergence and vertical velocity is an extreme of the
tend=ncy, in quasigeostrophic flow, for the vertical ve-
locity to be order Rossby number (<1} smaller than a
scale analysis of the continuity equation would indi-
cate (Burger, 1958). This tendency is absent at planetary
length scales, and Rossby’s 8-plane (10.64) correspond-
ingly requires modification.

Remarkably, Rossby and collaborators (1939) pre-
faced their analysis with a resumé of a different phys-
ical mechanism due to J. Bjerknes {1937), a mechanism
that also results in westward-propagating waves but for
a different reason, and that supplies the modification
of Rossby’s B-plane required at planetary scales. The
plane equations corresponding to Rossby’s summary of
Bjerknes’ arguments are

¢
~fv = g, (10.65a)
-
fu= gf)y’ (10.65b)
A, (o)
5t + D*(GX + ay) =0, {10.65¢)
f=f, ofloy =8 (10.65d)

By physical arguments (figure 10.4}, Bjerknes deduced
that an initial pressure perturbation would always
propagate westward. The corresponding analysis of
(10.65) is to form an elevation equation

9

i (10.66)

L
D,BIf3) == =0
B3
and to note that it has the dispersionless solutions
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{ = Flx + (gD.BIfE)t, v,

where Flx,y) is the initial pressure perturbation. In
particular,

{ = aexp—iot +ilx + iky),
g = _(gD*B/f%)I

All solutions travel westward at (gD,B/f3}'2. These
motions, according to (10.65), are perfectly geostrophic
but divergent.

More complete analysis (Longuet-Higgins, 1964)
shows that the two dispersion relations (10.57) of
Rossby and (10.68) of Bjerknes are limiting cases of the
B-plane dispersion relation

o= -8l + k* + fi/gD,)

for second-class waves .displayed in figure 10.5. It
would be appropriate to call the two kinds of second-
class waves Rossby and Bjerknes waves, respectively,
but in practice both are commonly called Rossby
waves. I shall distinguish them as short, nondivergent
and long, divergent Rossby waves.

When divergence is allowed, the (constant) depth D,
enters the dispersion relation (10.69) in the length scale

ar = (gD .If3)"",

usually called the Rossby radius. There is not one
Rossby radius, but rather there are many, since the
constant-depth barotropic second-class waves so far
discussed have an infinite sequence of baroclinic coun-
terparts with D, = D,, n = 1, .. ., given by (10.36}-
(10.39). Waves longer than the Rossby radius are long,
divergent Rossby waves; those shorter than the Rossby
radius are short, nondivergent Rossby waves.

The barotropic Rossby radius ag, = (gD,/f3]'? has
D, = D, and is thus the order of the earth’s radius.
Barotropic Rossby waves are consequently relatively
high-frequency (typically a few cycles per month)
waves and they are able to traverse major ocean basins
in days to weeks. Baroclinic Rossby radii ag, =
(sD./f3)"2 are the order of 10* km or less in mid-lati-
tudes. Baroclinic mid-latitude Rossby waves are con-
sequently relatively low-frequency waves and would
take years to traverse major mid-latitude basins. In the
tropics, f, becomes small and baroclinic Rossby waves
speed up to the point where they could traverse major
basins in less than a season. But a different discussion
is really necessary for the tropics (see chapter 6).

Rossby advanced his arguments to rationalize the
motion of mid-latitude atmospheric pressure patterns.
In both atmosphere and ocean, the slowness and rela-
tively small scale of most second-class waves must
make their occurrence in ‘‘pure” form very rare.
Oceanic measurements from the MODE experiment

(10.67)
(10.68)

(10.69)

(10.70)

Figure 10.4 If the flow is totally geostrophic but the Coriolis
parameter increases with latitude, then the flow at A con-
verges because the geostrophic transport between a pair of
isobars south of H is greater than that between the same pair
north of H. By {10.65c¢), pressure thus rises at A. Similarly, the
flow at B diverges and pressure there drops. The initial pattern
of isobars is then shifted westward.

R

(8/20,0)

Figure 10.5 The locus of wavenumbers (I, k) allowed by the
B-plane dispersion relation (10.69) for second-class waves

(I + Bi2ol* + k* = |B/20¥ — (f3/gDa)

is a circle| ) whose radius is [(8/20)® — (f3/gD,)I'* cen-
tered at (—B/20, 0). Dotted circle (- - -] is the Rossby dispersion
relation {10.57) for short waves. Dashed line (---) is the
Bjerknes dispersion relation (10.68) appropriate for long waves.
The scale ap dividing short and long waves is

ay = [2(B/20)(of§/BgD A1
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do show, however, characteristics of both short baro-
clinic (figure 10.6) and long barotropic (figure 10.7)
Rossby waves.

The oscillations having the two dispersion relations
(10.23¢) with D, = D, for first-class waves and {10.69)
for second-class waves are mid-latitude plane-wave ap-
proximations of solutions of LTE. Figure 10.8 plots
the two dispersion relations together. A noteworthy
feature is the frequency interval between f, and
(B/2f,gD,)** within which no plane waves propagate.
Taken at face value, this gap suggests that velocity
spectra should show a valley between these two fre-
quencies with a steep high-frequency [f,] wall and a
rather more gentle low-frequency [{8/2f,)igD,)"? n =
0,1,2, . . .] wall Such a gap is indeed commonly ob-
served; but the dynamics of the low frequencies are
almost surely more complex than those of the linear
B-plane. The latitude dependence implicit in the defi-
nition of f, and 8 is consistent with equatorial trapping
of low-frequency first-class waves and high-frequency
second-class waves. This is more easily seen in ap-
proximations, such as the following, which better ac-
knowledge the earth’s sphericity.

_¢

] N

- Y

1 s

4 N

1 ]

ﬂ S

1 <

~ N

E L Q

4 213

- I-225

E -237

1 249

X - 261
-300 -150 (0] 150 300km

Distance East of Central Site Mooring

Figure 10.6A Time-longitude plot of streamfunction inferred
from objective maps of 1500-m currents along 28°N (centered
at 69°49' W) by Freeland, Rhines and Rossby (1975). There is
evidence of westward propagation of phases. Currents at this
depth are not dominated by “thermocline eddies” {section
10.4.7) but are representative of the deep ocean.

10.4.5 The Equatorial B-Plane

For constant depth D,, the homogeneous LTE (10.5)
may be equatorially approximated by expanding all var-
iable coefficients in 8 and then neglecting 6,6, . . . .
The resulting equatorial 8-plane equations are

du .4

o =85 {10.71a)
ov - g%

o T AU =28 3y (10.71b)
¢ du  adv\ .
™ +D*(6x + 6y> =0, (10.71c)

wherex =a¢, y =a6, and 8 = 2Q/a. They govern both
barotropic and baroclinic motions provided that D, is
interpreted as the appropriate equivalent depth D, de-
fined by (10.36)-(10.38). Moore and Philander (1977)
and Philander {1978) give modern reviews.

Solutions of these equations can be good approxi-
mations to solutions of LTE only when they decay very
rapidly away from the equator. But the qualitative na-
ture of their solutions, bounded as y — *x, closely
resembles solutions of LTE bounded at the poles, even

8
-
F93
105
Fi7
H129

141

r 201

®
(o]
Day Number of 1973

P13
225
F237

249

- 261
300 km

T 150

"800
Distance North of Central Site Mooring

-300

Figure 10.6B As figure 10.6A but in time-latitude plot along
69°40'W. There is no evidence for a preferred direction of
latitudinal phase propagation. (Rhines, 1977.)
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Figure 10.7 Time series of bottom pressure in MODE (Brown
et al., 1975). The cluster of named gauges centered at 28°N,
69°40'W show remarkable coherence despite 0 (180-km) sep-
aration, and all are coherent with the (atmospheric pressure
corrected) sea level at Bermuda (650 km distant, labeled Ber-
muda bottom). (Brown et al., 1975.)

G=fo

o = (8/2f,)(gbp) /2

/TB/ZG)_.

-k
Figure 10.8 The f-plane dispersion relation
ot = f3 + gDyl + k)

for first-class waves allows no waves with o? < f3. The 8-
plane dispersion relation

o= -2 + k* + filgD,]

for second-class waves allows no waves with o >

(B12foliD u ).

when the equatorial approximation is transgressed.
Historically these approximate solutions provided a
great deal of insight into the latitudinal variation of
solutions of LTE.

Most of the solutions are obtainable from the single
equation that results when u,{ are eliminated from
(10.71). With

v = Vly|exp(—iot + ilx) (10.72)
that equation is

a4 a _1_/3) B 2] _

ay* +[(gD* L Pl V=0 (10.73)

It also occurs in the quantum-mechanical treatment of
the harmonic oscillator. Solutions are bounded as
y — = only if

(1) -

12/
lsD. ) (10.74)
m=0,12,...,
and they are then
Vly) = HalyB"?/lgD.)'"*] exp[-y*B/2(sD}*?], (10.75)

wherein the H,, are Hermite polynomials (Hz) = 1,
Hz) =z, ...).

The remaining solution may be taken to be v =0
withm = —1in (10.74). It is obtained by solving {10.71)
with v = 0. The solution bounded as y — * is

¢ = expl—iot + ilx — (Blloly?/2] (10.76)
with
1 =o/(gD = (10.77)

[(10.77) is (10.74) with m = —1].

The very important dispersion relation (10.74) with
m = -1,0,1, ... thus governs all the equatorially
trapped solutions of (10.71). Introducing the dimen-
sionless variables o, A, {,  defined by

1= Na—'A™,
t = (20 A

o = w|2QA1),
b, y) = (€, nllaA ),

{A = 4Q%?/gD,) allows us to rewrite (10.73} and its
solutions (10.72), (10.75}, (10.76) as

(10.78)

ia%

a7t [(w? ~ A2 = Mw) = 92V =0, (10.79)
v = Hp(n) expl—ior + IN§ — 7?[2),

(10.80)
m=0,1,...,
L = exp—iwr + N — Mwp?2], m=-1, (10.81)

while the dispersion relation {10.74) becomes
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@?-N-MNo=2m+1, m=-1,01,....(10.82)

These forms allow easy visualization of the solutions
and permit a concise graphical presentation of the dis-
persion relation (figure 10.9).

The dispersion relation is cubic in o (or w) for given
values of 1 (or A) and m. For m > 1 the three roots
correspond precisely to two oppositely traveling waves
of the first class plus a single westward-traveling wave
of the second class. The case m = 0 |Yanai, or Rossby-
gravity, wave) is of first class when traveling eastward
but of second class when traveling westward. The case
—1 is an equatorially trapped Kelvin wave, dy-
namically identical to the coastally trapped Kelvin
wave (10.27) in a uniformly rotating ocean.

The most useful aspect of these exact solutions is
their provision of a readily understandable dispersion
relation [(10.74) or (10.82]]. The latitudinal variation of
flow variables is more readily discussed in terms of
WKB solutions of {10.73). One can easily see the salient
feature of the solutions, a transition from oscillatory
to exponentially decaying latitudinal variation as the
turning latitudes yr of {10.73) (at which the coefficient
[] of that equation vanishes), are crossed poleward. For
waves of the first class, the term I8/ is small relative
to the other terms in the dispersion relation and in the
coefficient []. The corresponding turning latitudes y{"
are therefore approximately given by

m =

AP = (o/BF[1 — I*(gD.)0”] < (a/B). (10.83)
baroclinic barotropic
wavelength wavelength

maf30 wa/15 T2 Tay2

o
~n
Ee)

by ey
= [~
Q U
=] =]
g &
& &
o 0.130 20 o
L L
= a
- e
8 °
~ ~
2 0.672 2 8

Figure 10.9 The equatorial 8-plane dispersion relation {10.82)
w? — A2 — AMew =2m + 1.

Dimensional wavelengths and frequencies are obtained from
the scaling {10.78) and are given for the barotropic mode (D, =
4000 m, A = 20} and for the first baroclinic mode (D, = 0.1
m, A = 10%). For all curves but m = 0, intersections with
dotted curve are zeros of group velocity.

For waves of the second class, the term o?/gD, is small
relative to the other terms in the dispersion relation
and in the coefficient []. The corresponding turning
latitudes y®’ are therefore approximately given by

312 = D, /B)-I* - IBlo) < gD, /40> (10.84)

Increasingly low-frequency waves of the first class and
increasingly high-frequency waves of the second class
are thus trapped increasingly close to the equator.
Only first-class waves having frequency greater than
the inertial frequency By penetrate poleward of latitude
y [by (10.83)]. Only second-class waves having fre-
quency below the cutoff frequency (gD ./4y?)"? pene-
trate poleward of latitude y [by (10.84)]. This frequency-
dependent latitudinal trapping corresponds to the mid-
latitude frequency gap between first- and second-class
waves discussed in the previous section and illustrated
in figure 10.8. The correspondence correctly suggests
that trapping and associated behavior characterize
slowly varying (in the WKB sense) packets of waves
propagating over the sphere as well as the globally
standing patterns corresponding to the Hermite solu-
tions (10.75). Waves thus need not be globally coherent
to exhibit trapping and the features associated with it.
Near the trapping latitudes, (10.73) becomes

v

oy + (—2B% /gD )ly — y1)V = 0. (10.85)

The change of variable n = (28%+/gD )3y — y1) re-

duces this to Airy’s equation
2

L nV =0,

(10.86)
whose solution Ai(n) bounded as n — « is plotted in
figure 10.10. This solution has two important features:
(1) gentle amplification (like "4 of the solution as
the turning latitude {n = 0} is approached from the
equator; and (2) transition from oscillatory to exponen-
tially decaying behavior in a region A» of order roughly
unit width surrounding the turning latitude. Conse-
quently the interval Ay over which the solution of
(10.85) changes from oscillatory to exponential behav-
ior is Ay = [2B8%+/gD 173 An or, since 8 = 2Q/a and
An =1,

Ay = a(Ac/2Q) 18 (10.87)

= a(2712A12g[2Q |13 (10.88)

for maximally penetrating first- and second-class
waves. For diurnal (o = Q) first-class barotropic (A =
20) waves, Ay = 0.5a; for diurnal first-class baroclinic
{A = 10%) waves, Ay = 0.013a. For 10-day (o = 0.1Q)
second-class barotropic waves, Ay = 0.254. For 1-month
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Figure 10.10 The Airy function Ai.

(o = .03Q) second-class baroclinic waves, Ay = 0.03a.
We thus obtain the important result that barotropic
modes are not noticeably trapped (Ay is a fair fraction
of the earth’s radius and the Airy solution is only qual-
itatively correct anyway) but baroclinic modes are
abruptly trapped (Ay is a few percentage points of the
earth’s radius).

The abrupt trapping of baroclinic waves at their in-
ertial latitudes means that the Airy functions may de-
scribe quite accurately the latitude variation of near-
inertial motions. Munk and Phillips (1968) and Munk
(chapter 9} discuss the structure.

The clearest observations of equatorial trapping are
by Wunsch and Gill (1976), from whose paper figure
10.11 is taken. Longer-period fluctuations at and near
the equator have been observed, but their relation to
the trapped solutions is not yet clear.

When an equatorially trapped westward-propagating
wave meets a north-south western boundary (at, say,
x = 0) it is reflected as a superposition of finite numbers
of eastward-propagating waves including the Kelvin
{m = —1) and Yanai (m = 0} waves (Moore and Philan-
der, 1977). But when an equatorially trapped eastward-
propagating wave meets a north-south eastern bound-
ary, some of the incident energy is scattered into a pole-
ward-propagating coastal Kelvin wave (10.29) and thus
escapes the equatorial region (Moore, 1968). In latitu-
dinally bounded basins, the requirement that solutions
decay exponentially away from the equator is replaced
by the vanishing of normal velocity at the boundaries.
Modes closely confined to the equator will not be
greatly altered by such boundaries; modes that have
appreciable extraequatorial amplitude will behave like
the 8-plane solutions of sections 10.4.1-10.4.4 near the
boundaries. A theory of free oscillations in idealized
basins on the equatorial 8-plane could be constructed
on the basis of such observations, but powerful tech-

niques for dealing with the spherical problem now exist
{section 10.4.8).

10.4.6 Barotropic Waves over Bottom Relief
Stokes (1846; Lamb, 1932, §260) had shown that shoal-
ing relief results in the trapping of an edge wave whose
amplitude decays exponentially away from the coast,
but the motion was not thought to be important.
Eckart (1951) solved the shallow-water equations
[(10.18) with f, = 0] with the relief D = ax. Solutions
of the form

{ = h(x)exp|—iot + iky) (10.89)
are governed by

x 98 1+ 3 ) (o%liag) — xk1h = 0, 10.90)
Solutions of this are bounded as x — = only if

o® =k(2n + 1)ag, n=01,..., {10.91}
and they are then

hix) = L,(2kx) exp(—kx), (10.92)

where the L, are Laguerre polynomials [Loz) = 1,
Liz) =z — 1, ...]. The n = 0 mode corresponds to
Stokes’s (1846) edge wave.

Eckart’s solutions are LSW gravity waves refractively
trapped near the coast by the offshore increase in shal-
low water wave speed (gax)'?. The Laguerre solutions
(10.92) are correspondingly trigonometric shoreward of
the turning points xy at which the coefficient [] of
{10.90) vanishes, and decay exponentially seaward.

Eckart’s use of the LSW equations is not entirely
self-consistent, since D = ax increases without limit.
Ursell (1952} removed the shallow-water approxima-
tion by completely solving

oo,

9P _ pe2g =
it k=0 (10.93)
subject to
9 _(otglp  at z=0 (10.94)
0z
and
0 _ __
e 0 at z=-ax (10.95)

plus boundedness of the velocity field (0¢/dx, ik¢,
d¢4/8z) as x — . He found (1) a finite number of coast-
ally trapped modes with dispersion relation

o? = kgsin[(2n + 1)tan™14],

(10.96)
n=01...< [17'/(4 tan-la)—llz:l
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representing the background continuum has been subtracted

The solid curves are the theoretical latitudinal structure from
the equatorial 8-plane. (Wunsch and Gill, 1976.}
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corresponding, for low n, to Eckart’s results, plus (2) a
continuum of solutions corresponding to the coastal
reflection of deep-water waves incident from x = « and
correspondingly not coastally trapped. Far from the
coast, the continuum solutions have the form ¢ =
cos{lx + phase)exp[—iot + iky + (I2 + k?)'%z] and their
dispersion relation must require o* = gk. They are
filtered out by the shallow-water approximation. Figure
10.12 compares Eckart’s (1951) and Ursell’s {1952) dis-
persion relations.

With rotation f, restored to {10.18), (10.90) becomes
(Reid, 1958)

X%bi +%’: . [(_"ia;_f% -’%k) —xkz]b -0, (10.97)

Solutions still have the form (10.89), {10.92) but now
the dispersion relation is

o? - f2 — fokaglo = k(2n + 1)ag, (10.98)

which is cubic in o, whereas with f, = 0 it was quad-
ratic. Rotation has evidently introduced a new class of
motion.

That this should be so is clear from the g-plane
vorticity equation [obtained by cross-differentiating
(10.30a,b) and with 8f,/dy = BI:

O (v _du\_ fedt fodD _( . fodD
a:(ax 8y) Dot YD ax "( ﬁ+Day)

=0. {10.99)

We have already seen (section 10.4.4) that the term Bv
gives rise to short and long Rossby waves (with the
vortex-stretching term f,/D /6t important only for the
latter) when the depth is constant. But in (10.99}, the
topographic vortex-stretching term ufy/D+VD plays a
role entirely equivalent to that of 8v = u-Vf,. Hence,
we expect it to give rise to second-class waves, both
short and long, even if B8 = 0. Such waves are called
topographic Rossby waves. Over the linear beach

D = -—ax they are all refractively trapped near the
coast.

The nondimensionalization
s =alf, K =kaglf (10.100)

casts the dispersion relation into the form

s3—s[1 +(2n + 1)K =K =0, (10.101)

which is remarkably similar to (10.82) and plotted in
figure 10.13.

The linear beach D = ax is most unreal in that there
is no deep sea of finite depth in which LSW plane
waves can propagate. When the relief is modified to

ax, (shelf)
Dix) =

Dy, Dy tl<x<w

0<x<Du™!
(10.102}
{sea),

i) 3 0 ] 2
Figure 10.12A Eckart’s (1951) dispersion relation {10.91)
2 =K(2n + 1)

for the shallow-water waves over a semi-infinite uniformly
sloping, nonrotating beach. For convenience in plotting, s =
of/f and K = gak/f even though problem is not rotating.

—t + + K
-2 -1 0 1 2

Figure 10.12B Ursell’s {1952) dispersion relation (10.96})
s? = Ka7'sin[(2n + 1)tan'qa]

for edge waves, and the cohtinuum

§?>Ka™

of deep-water reflected waves. For convenience in plotting, s
and K are defined as above. Plot is fora = 0.2.
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Figure 10.13 The dispersion relation {10.91) for edge and
quasi-geostrophic shallow-water waves over a semi-infinite
uniformly sloping beach. The dashed curves are the Stokes
solution without rotation [(10.91) with n = 0]. Axes are as in
figure 10.12. (LeBlond and Mysak, 1977.)

the most important alteration of the dispersion relation
is an “opening up”’ of the long-wavelength part of the
dispersion relation to include a continuum analogous
to that of Ursell (1952} but now consisting of LSW first-
class waves incident from the deep sea and reflected
back into it by the coast and shelf. These waves are
not coastally trapped. They are often called leaky
modes because they can radiate energy that is initially
on the shelf out into the deep sea. There are no second-
class counterparts because the deep sea with constant
depth and 8 = 0 cannot support second-class waves.

The dispersion relation corresponding to (10.102) is
plotted in figure 10.14. All of Eckart’s modes are mod-
ified so that o > f3 save one (n = 0, traveling with the
coast to its right), which persists as o —» 0 and is a
Kelvin-like mode. The others cease to be refractively
trapped at superinertial (>f,) individual cutoff frequen-
cies bordering the continuum of leaky modes. At sub-
inertial frequencies there is an infinite family of re-
fractively trapped topographic Rossby waves, all
traveling with the coast to their right (like the Kelvin
mode) and all tending toward the constant frequency
s = —~1/(2n + 1) at small wavelengths. This dispersion
relation is qualitatively correct for most other shelf

shapes. It differs from its equatorial 8-plane counter-
part (10.82) only in the absence of a mixed Rossby-
gravity (Yanai} mode and in the tendency of short sec-
ond-class modes to approach constant frequencies.

Topographic vortex stretching plus refraction of both
first- and second-class waves are effective over any
relief. Thus islands with beaches, submerged plateaus,
and seamounts can in principal trap both first- and
second-class barotropic waves {although these topo-
graphic features may have to be unrealistically large
for their circumference to span one or more wave-
lengths of a trapped first-class wave). A submarine es-
carpment can trap second-class waves (then called dou-
ble Kelvin waves; Longuet-Higgins, 1968b). Examples
of such solutions are summarized by Longuet-Higgins
(1969b) and by Rhines {1969b).

First-class waves trapped over the Southern Califor-
nia continental shelf have been clearly observed by
Munk, Snodgrass, and Gilbert (1964}, who computed
the dispersion relation for the actual shelf profile and
found (figure 10.15) sea-level variation to be closely
confined to the dispersion curves thus predicted for
periods of order of an hour or less. Both first- and
second-class coastally trapped waves may be variously
significant in coastal tides [Munk, Snodgrass, and
Wimbush (1970) and section 10.5.2]. At longer periods,
a number of observers claim to have detected coastally
trapped second-class modes (Leblond and Mysak, 1977).
A typical set of observations is shown in figure 10.16,
after R. L. Smith (1978).

10.4.7 Long Waves over Relief with Rotation and
Stratification

The two mechanisms of refraction and vortex stretch-
ing that govern the behavior of long waves propagating
in homogeneous rotating fluid over bottom relief are
sufficiently well understood that qualitatively correct
dispersion relations may be found intuitively for quite
complex relief even though their quantitative con-
struction might be very involved. Stratification com-
plicates the picture greatly. In this section, emphasis
is upon problems with stratification that may be solved
with sufficient completeness that they augment our
intuition.

By appealing to the quasi-geostrophic approximation,
Rhines {1975; 1977) has given a far-reaching treatment
of the interplay between beta, weak bottom slope, and
stratification for second-class waves. If equations
{10.30a} and {10.30b) are cross-differentiated to elimi-
nate pressure, and continuity (10.30d) is then invoked,
the result is

0 (dv du ow

at(ax ‘a—y) T fogg =0

in the B-plane approximation (section 10.4.4) f = f,,
B = 8f/dy. Now this equation is recast as an approxi-
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Figure 10.14 The dispersion relation (solid lines} for edge and
quasi-geostrophic shallow-water waves over a uniformly slop-
ing beach (slopea =2 X 107%) terminating in a flat ocean floor
at a depth of D = 5000 m. The dotted lines are for the semi-
infinite uniformly sloping beach. The shaded region is the
continuum of leaky modes. Axes are as in figure 10.12. (Le-
blond and Mysak, 1977.)

mate equation in p by using {10.30c) plus the
geostrophic approximation to obtain

(% &b ﬁﬁ’_zz) p _
at('ax2+ay2+Ngaz2 Bk =

This result emerges from a more systematic treatment
(Pedlosky, 1964a) as the linearized quasi-geostrophic
approximation. It is here specialized to the case of
constant buoyancy frequency N,. The free surface may
be idealized as rigid without loss of generality; the
corresponding condition on p is

(10.103)

—a£=0

7 at z=0.

{10.104)
The inviscid bottom boundary condition w = av at the
north-south sloping bottom z = —D, + ay becomes,
in quasi-geostrophic approximation,

2
o’ Nidp _

i T (10.105)

at z = —-D,,

and is linearized about z = —D, for sufficiently small
a.

With no bottom slope, solutions of (10.103)-(10.105)
are

P = cos(Az)exp(—iot + ilx + iky), (10.106)
o = —Bl/{I* + k* + Nf3/Nj), (10.107)
with A given by (10.105) as a solution of

sin(ADg) = 0 (10.108)
ie.,

A=nmD,, n=012,.... (10.109)

These correspond to the barotropic (n = 0) and baro-
clinic (n = 1, 2, . ..) Rossby waves of section 10.4.4.

With no beta but with bottom slope, solutions of
(10.103)-(10.105) are

P = cosh(\z) exp|—iot + ilx + iky), (10.110)
A = [Nofoll® + k)2, (10.111)
o = 2N3coth (AD} (10.112)

Mo

If AD, << 1, p is virtually depth independent and the
dispersion relation {10.112) becomes

o = Dy'af I /{I? + k?). (10.113)

This is a barotropic topographic Rossby wave with vor-
tex stretching over the relief playing the role of beta.
If \AD, > 1, p decays rapidly away from the bottom
and the dispersion relation (10.112) becomes

o = Nol/(I® + k*)r2, {10.114)
Such bottom-trapped motions are of theoretical im-
portance because they allow mid-latitude quasi-geo-
strophic vertical shear and density perturbations at pe-
riods much shorter than the very long ones predicted
by the flat-bottom baroclinic solutions (10.106)-
{10.109). Rhines (1970) generalizes this bottom-trapped
solution to relief of finite slope and points out that it
reduces to the usual baroclinic Kelvin wave at a ver-
tical boundary. Figure 10.17 shows what appear to be
motions of this type.

With both beta and bottom slope, solutions of
(10.103) and (10.104) are

_ cos

pP= cosh {A\z)exp(—iot + ilx + iky) {10.1158)
= —BI/{I* + k? = N*fZIN3), (10.1168)
with A given by {10.105) as
Atan(AD) = — alg 1 (10.117a)
fo o
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Figure 10.15 Comparison of theoretical and observed disper-
sion for the California continental shelf. Heavy lines 0-IV
correspond to theoretical dispersion relations for the first five
trapped first-class modes. The dashed line bounds the contin-
uum of leaky modes. The observed normalized two-dimen-
sional cospectrum of bottom pressure is contoured for values
of 0.03, 0.05, 0.10, 0.25, 0.50, 0.75, and 0.90 with the area
above 0.05 shaded. (Munk, Snodgrass, and Gilbert, 1964.)
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Figure 10.16 Low-passed wind vectors and sea-level records
from Callao (12°04’S) and San Juan (15°20’S), Peru, and current
vectors from Y (80 m below surface off Callao) and from M

for case (a) and

aN., 1

0 ag

Atanh(AD,) = {10.117b)
for case (b). Equation (10.117b) has one root A corre-
sponding to a bottom-trapped wave for large a and to
a barotropic 8-wave for vanishing a. For vanishing a,
(10.117a) reproduces the familiar flat-bottom baro-
tropic and low-frequency baroclinic modes A = nw/D,,
n=0,1,....Whena is large the baroclinic roots are
shifted toward A = (w/2 + nw)/D,, so that the pressure
{10.115a) and hence the horizontal velocity have a node
at the bottom. There is thus a tendency for relief to
result in the concentration of low-frequency baroclinic
energy away from the bottom. With more realistic
stratification this concentration is increasingly in the
upper ocean. Rhines (1977) therefore calls such mo-
tions ‘‘thermocline eddies” and suggests that they are
relevant to the interpretation of the observations of
figure 10.18. It is straightforward to allow for an arbi-

N\\ LU

V\W\\\\w Ui

(84 m below surface off San Juan). Sea level and currents show
propagation of events along the coast; wind records do not.
(R. L. Smith, 1978.)

trary direction of the bottom slope, but the results are
not easy to summarize. Rhines (1970) gives a complete
discussion.

A powerful treatment of second-class motion in a
rotating stratified fluid over the linear beach D = ax
has been provided by Ou (1979}, Ou {1980}, and Ou
and Beardsley (1980). They have generously permit-
ted me to make use of their results in this discussion.
Neglecting free surface displacement (so that w = 0 at
z = 0) and eliminating u,v,w from (10.30) in favor of p
yields

p N (azp sz)
ai o e T oy 0, (10.118)
%2_0 az-0 {10.119)
oz ! )

dp Bp) }—o*dp
a(lo-— —fonin) +io —==0

ox 0y Ny & (10.120)
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Figure 10.17A Currents at 39°10'N, 70°W (site D} at 205,
1019, 2030, and 2550 m. The total depth is 2650 m. A “‘ther-
mocline” eddy initially dominates the upper flow.
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Figure 10.17B A high-passed version of figure 10.17A. The
lower layers are now dominated by fast-bottom intensified
oscillations. (Rhines, 1977.)
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Figure 10.18 Time-longitude plot of 501-1500-db dynamic
height along 28’'N from MODE showing westward propaga-
tion of “thermocline eddies” but at a rate significantly slower
than that observed in 1500-m currents {figure 10.6). (Rhines,
1977.)

as the boundary-value problem governing periodic
[exp{—iat)] second-class (and low-frequency first-class
internal) waves over the linear beach. Ou (1979) saw

that the affine transformation
z = 2{f3 — d*)'2|N, {10.121)

followed by a rotation of coordinates from (x,y,2) to

(x’, v, z') such that the beach z = —ax now becomes
" =0 leads to

gg’z +gX’_{’.2 ~ k% =0, (10.122)

%:%Hf%mp at z' =0, (10.123)

gﬁ =0 at z'=a'x (10.124)

for motions periodic in y[exp{iky)], and furthermore
that this is exactly Ursell’s (1952) problem just turned
upside down; (10.122), (10.123), and {10.124) correspond
to (10.93), (10.94), and (10.97). The transformed beach
slope a’ is given by

a' = aN|f} — %2 {10.125)
For second-class waves
a2 < f3, (10.126)

a’ is real and all of Ursell’s (1952) results are immedi-
ately available. There are thus coastally trapped waves
whose dispersion relation is

o =fa'f{{1 + a2 sin[2n + 1)jtan~'a’}} (10.127)

as well as a continuum of bottom-trapped waves that
have the form

P = cos|Ix’ + phase)exp[—iat + iky — (I + k?|'?z’]
as x’ —  and that have their dispersion relation in-
cluded in

= —N sintan™q) [ (10.128)

k
!
The latter are just the bottom-trapped waves (10.110)-
{10.112] of Rhines (1970).

Equation (10.128) is their dispersion relation in a
half-plane bounded by the sloping bottom ({Rhines,
1970). The frequency may be either sub- or super-
inertial. The coastally trapped waves have o >
N sin{tan™"a) [by analogy with the fact that for Ursell’s
(1952) edge waves o < gk] and there are a finite num-
ber of them:

n=12,...<[n/(4tan'a’) — 1/2]. (10.129)

Note that n = 0 would imply o = £, but this does not
solve the full equations (10.30) and associated boundary
conditions.

In the limit of decreasing slope a’, (10.129) allows
ever more modes, and the dispersion relation {10.127)
for coastally trapped waves simplifies to

o = —fo(2n + 1). (10.130)

This is the low-frequency, short-wavelength second-
class limit of the barotropic dispersion relation (10.98).
We thus identify Ou’s coastally trapped modes as the
stratified analog of the already familiar refractively
trapped second-class topographic Rossby waves.

Over the linear beach, then, stratification limits the
number of second-class refractively trapped topo-
graphic waves and opens up a new continuum of bot-
tom-trapped waves. Figure 10.19 compares barotropic
and baroclinic dispersion relations when the ocean sur-
face is rigid. Further results are given by Ou (1979).

Suppose now that the linear beach terminates in a
flat bottom of depth D,, as in (10.102). Ou’s (1979)
transformation allows us to deal efficiently with the
stratified problem. Figure 10.20 summarizes the
boundary-value problem and its alteration by Ou’s
transformation into an equivalent problem in deep-
water waves (figure 10.20D). In this latter problem, the
deep-water continuum that existed for the linear beach
must now be quantized into an infinite family of modes
by repeated reflection between the shoaling and the
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Figure 10.19A The dispersion relation (10.130), viz.,, s =
—1/(2n + 1) for topographic Rossby waves refractively trapped
over the linear beach D = —ax beneath rotating homogeneous
fluid. There are an infinite number n = 1,2,... of trapped
modes.
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Figure 10.19B The dispersion relation (10.127)
s = a'{{1 + a"?}?sin[(2n + 1)tan~'a’}},

where a’ = aN,/[f,(1—s%)"2], for topographic Rossby waves
refractively trapped over the linear beach D = —ax beneath
uniformly stratified (buoyancy frequency N,) rotating fluid.
There are a finite number n = 1,2,... < [w/{4tan"'a’) — 4] of
trapped modes all with frequencies s > Nof;! sin[tan™"a]. At
lower frequencies a continuum of bottom-trapped modes re-
flected from x = « exists. Sketch is for N, = 10fy, a = 1072,

Figure 10.19C Sketch of dispersion relation for topographic
Rossby waves in rotating stratified fluid over a linear beach
that terminates in a uniform-depth ocean. The continuum of
bottom-trapped modes that existed over the semi-infinite
beach is quantized. All dispersion curves pass through s =0
ask — 0.

overhanging coasts. Low-mode edge waves have small
amplitude at the overhanging coast and are not much
affected by it. But higher-mode edge waves have appre-
ciable amplitude at the overhanging coast and they
blend smoothly into the infinite family of modes made
up of waves repeatedly reflected between beach and
the overhanging coast. All these results have direct
analogs in the original stratified problem (figure
10.20A). There are a number of second-class topo-
graphic waves that are refractively trapped near the
coast and that have decayed to very small amplitudes
at the seaward termination of the beach. The contin-
uum of bottom-trapped waves present over the unend-
ing linear beach is replaced by an infinite family of
bottom-trapped waves reflected repeatedly between the
coast and the seaward termination of the beach. In the
special case a = » of a perpendicular coast, their dis-
persion relations are easily seen to be

o = NDk/nw (10.131)

and they then correspond to ordinary internal Kelvin
waves (in this case there are no refractively trapped
modes). Other shelf geometries invite similar treat-
ment. Figures 10.20E and 10.20F show the equivalent
deep-water wave problem for a step shelf. Deep-water
waves on surface 1 of figure 10.20F that are short
enough that their particle displacements at the level of
surface 2 are negligible correspond in the stratified
problem (figure 10.20E) to internal Kelvin waves
trapped against the coast. Deep-water waves on surface
2 of figure 10.20F correspond to baroclinic counterparts
of the double Kelvin wave that, in homogeneous fluid,
may be trapped along a discontinuity in depth {Lon-
guet-Higgins, 1968b; see also section 10.4.6).

In general, if the equivalent deep-water wave prob-
lem has the waveguide-like dispersion relations
o?lg = FH,yk),n = 1,2, ..., with H,y as defined in
figure 10.20D, then the corresponding stratified shelf
problem must have the dispersion relation

kf a’

e (_I'Tz,uz = F,l({Doa’lal + Doa™%)"?,

tan~'a’, k] (10.132)

so that for all the dispersion curves o — 0 as k — 0.
The dispersion relation must thus qualitatively look
like figure 10.19C. Wang and Mooers (1976) have gen-
eralized the problem numerically to more complex
shelf profiles with nonuniform stratification N{z).
Ou’s (1979) transformation is most useful for second-
class motions (10.125) because for them the trans-
formed coordinates are real. For first-class motions
with o2 > f2 it still produces Laplace’s equation but
now z' is imaginary. Wunsch (1969) has nonetheless
been able to use it to discuss first-class internal waves
obliquely incident on the linear beach without rota-
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Figure 10.20 The deep-water surface-wave analog (d,f) of two
shelf problems involving topographic Rossby waves in uni-
formly stratified rotating fluid: (a) stratified problem; (b) result
of affine transformation; (c) result of rotation; (d) equivalent
deep-water problem (velocity potential ¢); (e) stratified prob-
lem; (f) equivalent deep-water problem (atmospheric pressure
. P, must be maintained lower than P, for physical realizabil-
ity).

tion. This is the stratified analog of Eckart’s {1951)
nonrotating LSW study of waves over a sloping beach
(section 10.4.6).

For beach slopes much smaller than the slope (o/N)
of (low-frequency) internal wave characteristics (10.43),
Wunsch thus found that internal waves are refracted
just like surface gravity waves by the shoaling relief
and that refractively trapped edge modes occur. From
the dispersion relation

H_‘ITZ_Nz—a‘zz .
(Do)— pr (2 + k?)

for plane internal waves of the form

nnz
D,

w = sin( ) exp(—iot + ilx + iky)

over a uniform bottom D,, I must ultimately become
imaginary if D, is allowed to grow parametrically off-
shore while n and k are held fixed. One would therefore
expect a WKB treatment of internal waves over gently
shoaling relief to result in refraction and refractive
trapping provided that the mode number n does not

change, i.e., provided that the relief does not scatter
energy from one mode into others. Constancy of n is
indeed a feature of Wunsch’s solutions but it cannot
be expected to hold for more abrupt relief, especially
if the relief slope exceeds the characteristic slope. If
the relief couples modes efficiently, then scattering
into higher modes allows I to remain real even in deep
water far from shore so that energy is not refractively
trapped near the coast. In principle, scattering into in-
ternal modes thus even destroys the perfect trapping of
long surface gravity waves predicted by LSW theory
over a step shelf, but in practice appreciable trapping
is often observed. The efficiency of mode coupling de-
pends both on the relief and on the vertical profile N{z)
of the buoyancy frequency, so that a general result for
internal waves is difficult to formulate.

10.4.8 Free Oscillations of Ocean Basins

Finding the free oscillations allowed by LTE in rotating
ocean basins is difficult even in the f-plane (section
10.4.2). Platzman (1975, 1978) has developed powerful
numerical techniques for finding the natural frequen-
cies and associated flow fields of free oscillations al-
lowed by LTE in basins of realistic shape and bottom
relief. The general classification of free oscillations into
first- and second-class modes characteristic of the
idealized cases discussed in sections 10.4.2 and 10.4.5
{effectively for a global basin) persists in Platzman'’s
(1975) calculations. For a basin composed of Atlantic
and Indian Oceans, there are 14 free oscillations with
periods between 10 and 25 hours. Some of these are
very close to the diurnal and semidiurnal tidal periods,
and all of them, being within a few percentage points
of equipartition of kinetic and potential energies, are
first-class modes. There are also free oscillations of
much longer period, for which potential energy is only
about 10% or even less of kinetic energy; they are
second-class modes.

I know of no extratidal peaks in open-ocean sea-level
records that correspond to these free oscillations. There
is some evidence in tidal admittances for the excitation
of free modes but the resonances are evidently not very
sharp (see section 10.5.1). Munk, Bryan, and Zetler
{private communication) have searched without suc-
cess for the intertidal coherence of sea level across the
Atlantic that the broad spatial scale of these modes
implies. The modes are evidently very highly damped.

10.5 The Ocean Surface Tide

10.5.1 Why Ocean Tides Are of Scientific Interest

The physical motivation for studying and augmenting
the global ensemble of ocean-tide records has expanded
enormously since Laplace’s time. In this section I have
tried to sketch the motivating ideas without getting
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involved in the details of theoretical models; some of
these receive attention in subsequent sections.

Certain of the ancients knew a great deal about tides
[see, e.g., Darwin’s (1911a) summary of classical ref-
erences], but the first extant reduction of observations
made explicitly for predictive purposes may be the ta-
ble of “flod at london brigge” due to Wallingford who
died as Abbot of St. Alban’s in 1213 {Sager, 1955). Mak-
ing practical tide predictions was probably the preoc-
cupation of observers for the next 500 years.

In 1683, Flamsteed (Sager, 1955) produced a table of
high waters for London Bridge as well as, in the follow-
ing year, corrections making it applicable to other Eng-
lish ports. Darwin (1911a} quotes Whewell’s descrip-
tion, written in 1837, of how successors to Flamsteed’s
tables were produced:

The course . . . would have been to ascertain by an
analysis of long series of observations, the effects of
changes in the time of transit, parallax, and the decli-
nation of the moon and thus to obtain the laws of
phenomena.

. . . Though this was not the course followed by
mathematical theorists, it was really pursued by those
who practically calculated tide tables. . . . Liverpool
London, and other places had their tables, constructed
by undivulged methods . . . handed down from father
to son.

... The Liverpool tide tables . . . were deduced by a
clergyman named Holden, from observations made at
that port . . . for above twenty years, day and night.
Holden’s tables, founded on four years of these obser-
vations, were remarkably accurate.

At length men of science began to perceive that such
calculations were part of their business. . . . Mr. Lub-
bock . . ., finding that regular tide observations had
been made at the London docks from 1795, . . . took
nineteen years of these . . . and caused them to be
analyzed. . . . In a very few years the tables thus pro-
duced by an open and scientific process were more
exact than those which resulted from any of the se-
crets.

Quite aside from its proprietary aspects, Darwin
(1911b) explicitly notes the synthetic nature of this
process; it at least conceptually represents “the oscil-
lation of the sea by a single mathematical expression”’
provided by Bernoulli in 1738 for an inertialess ocean
(the equilibrium tide), by Laplace for a global ocean
obeying Newton’s laws of motion, and assumed to ex-
ist for actual oceans even if too complex to represent
in simple form.

Kelvin, in about 1870 {Darwin, 1911b) introduced
the harmonic method, which Darwin (1911b) calls “an-
alytic” because synthesis of the entire tide into one
dynamically derived form is abandoned and instead the
tide at any given place is regarded as a sum of harmonic
oscillations whose frequencies are determined from as-
tronomy (section 10.2) but whose amplitudes and
phases must be determined from analysis of in situ sea-

level observations. Prediction is then carried out by
recombining the harmonic oscillations at future times.

Kelvin’s suggested procedure was made feasible by
the introduction of recording tide gauges in which the
motion of a float in a well, insulated from short-period
waves but otherwise freely connected with the sea,
drives a pencil up and down a paper wrapped on a drum
rotated by clockwork, thus producing a continuous plot
of sea level versus time. [Darwin {1911a) describes con-
temporary instruments.] Harmonic analysis of this rec-
ord at relatively few astronomically determined fre-
quencies was feasible by judicious sampling and
manual calculation. The recombination of harmonics
at future times was then carried out mechanically by
means of a series of pulleys, movable at frequencies
corresponding to the astronomical ones, that drove a
pencil over a paper wrapped on a drum rotated by
clockwork, thus ultimately providing a plot of pre-
dicted sea level versus time. The design of such a ma-
chine was due to Kelvin, and elaborations were in reg-
ular use until the mid-1960s (Zetler, 1978).

Even before Kelvin’s introduction of the harmonic
method, Lubbock and Whewell (Darwin, 1911b) had
begun to combine observations at different ports into
cotidal maps showing the geographical variation of sea
level associated with tides. Thus Airy in 1845 gave a
chart (modified by Berghaus in 1891) of locations of
high water at different times of day in the North Sea
{(figure 10.21). Concerning this, Darwin (1911b) re-
marks, “It will be noticed that between Yarmouth and
Holland the cotidal lines cross one another. Such an
intersection of lines is in general impossible; it is in-
deed only possible if there is a region in which the
water neither rises nor falls. . . . A set of observations
by Captain Hewitt, R.N. made in 1840 appears to prove
the existence of a region of this kind.”” This is probably
the first recorded observation of an amphidromic point.

But hourly maps of high-water locations change
throughout the month. Kelvin’s harmonic analysis de-
composed the tide into harmonic components for
which a single cotidal map, with cotidal lines drawn
at fractions of the period of the component, can rep-
resent the entire spatial variation of that component
forever. Time series at thousands of ports may thus be
reduced to a handful of global maps that are ideal sum-
maries of observations for comparison with solutions
of LTE forced by the different harmonic components
of the ATGF. Kelvin’s abandonment of the “synthetic”’
viewpoint thus in effect provided the means for its
reinstatement.

Of the handful of such maps constructed empirically
for global tides, Dietrich’s (1944) are perhaps the most
widely quoted. Villain (1952) gives an extensive dis-
cussion of the observations leading to his global M,
cotidal map (figure 10.22). Much modern tidal research
has consisted of attempts to apply the principles of
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Figure 10.21 Airy’s chart of cotidal lines in British seas. (Dar-
win, 1911b.)
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dynamics to reproduce and hence to “explain” the
global distribution of tides as suggested by such em-
pirical maps. But the degree of success achieved to
date, as well as insight into the variation of the dynam-
ics of tides over the globe, has required thinking about
how the response of the ocean would change if tidal
frequencies could be varied. Since they cannot be, this
implies comparing global tidal maps at different tidal
periods. The origins of this viewpoint are found in the
work of Munk and Cartwright (1966), who were ena-
bled by the advent of modern computers to analyze 19
years of hourly tide readings at Honolulu and Newlyn
“without astronomical prejudice as to what frequen-
cies are present and what are not, thus allowing for
background noise.”

Their work has been influential in two very general
ways quite apart from the improvement in tide predic-
tion that it introduced. First, it provided a clear dis-
tinction between sea-level fluctuations due to TGF and
those of similar period due to nontidal agents, a dis-
tinction crucial in establishing the significance of any
geophysical interpretation of all but the strongest con-
stituents of ocean or solid-earth tides. Second, it intro-
duced the idea of oceanic admittance, the (possibly
complex) ratio between ocean response and forcing, as
a continuous function of frequency that can be esti-
mated from tidal observations and that summarizes

Figure 10.22 Cotidal lines for M, (in lunar hours relative to
moon’s transit over Greenwich). (Villain, 1952.)

the dynamic response of the ocean to time-variable
forcing in a manner easily related to the properties of
free solutions of LTE by an expansion in eigenfunc-
tions.

If the ocean had many sharp resonances within the
frequency bands spanning the three species, the tidal
admittance would have amplitude peaks and rapid
phase shifts. Typical deep-sea admittances tend to be
smooth across a species but are far from constant. Ad-
mittance curves for the Coral Sea (Webb, 1974) and at
Bermuda (Wunsch, 1972c¢) are shown in figures 10.23A
and 10.23B, respectively. The Coral Sea admittance is
unusual in its very sharp sudden variation between M,
and S,, apparently showing the existence of a sharp
local resonance. The amplitude of the Bermuda admit-
tance rises smoothly, by 400% toward lower frequen-
cies over the semidiurnal band; Wunsch’s result is con-
sistent with Platzman’s (1975) prediction of an Atlantic
resonance of roughly 14-hour period, but one appreci-
ably broadened by dissipation.

Smoothness of the admittance across tidal bands was
anticipated by Munk and Cartwright (1966) in their
“‘credo of smoothness’’: “We do not believe, nor will
we tolerate, the existence of very sharp resonance
peaks.”” In part, this credo had its origin in the prevail-
ing beliefs, since then largely confirmed, that ocean
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tides must be of rather low Q. Evaluation of Q requires
knowledge of the total energy E stored in the tide as
well as the rate £ at which it is dissipated; then

_ 27E

= -

Estimation of the stored energy E was difficult before
modemn numerical solutions of LTE because of the
open-ocean detail required. Earliest estimates assumed
the tide to be in equilibrium; allowance for {likely)
equipartition between potential and kinetic energy and
for the area of the oceans led to an estimate of 5.6 X
10 ] for M, {Garrett and Munk, 1971). I interpolated
coastal M, harmonic constants over the globe by solv-
ing LTE with these as boundary values and thus ob-
tained (Hendershott, 1972} an estimate of 7.29 x 10'7].
But my kinetic energy was over twice my potential
energy and I now believe this to have been a numerical
artifact, especially since Platzman’s {1975) near-tidal
normal modes are within a few percentage points of
equipartition. My estimate should thus be revised to
5.14 x 10']. Parke and Hendershott (1980) improved
the interpolation by taking island data into account
and found 2.68 x 10'"] (assuming equipartition).

The estimation of £ historically has been of impor-
tance in cosmology. Halley in 1695 first discovered
that the apparent position of the moon is not that
predicted by (frictionless) Newtonian mechanics. The
discrepancy is real;, Munk (1968) outlines ultimately
unsuccessful attempts to resolve it by appealing to
perturbation of the moon’s orbit by changes in the
earth’s orbit around the sun. Much of the discrepancy
is now believed to be due to tidal friction. As Immanuel
Kant noted in 1754, tidal friction must slow the earth’s
daily rate of rotation; this alone gives rise to an appar-
ent perturbation of the moon’s mean longitude. By the
conservation of angular momentum, the moon’s an-
gular velocity about the earth-moon center of mass is
also altered and (for the present prograde rotation of
the moon about the earth) the moon recedes from the
earth (by about 6 cmyr~!; Cartwright, 1977). Miiller
(1976) reviews astronomical data both ancient {eclipse
observations) and modern, and analyzes them simul-
taneously to estimate n, (the tidal acceleration of the
moon’s longitude n), /Q (the observed apparent ac-
celeration of the earth’s rotation frequency Q), Q/Qqyy
{the nontidal part of /), and G/G (the possible rate
of change of the gravitational constant G). He finds

ng=~-272 = 1.7 cy 2,
Q/Q=-226=1.1x 10" yr?,

the latter corresponding to a lengthening of day of 2.0 X
103 scy . If he assumes G/G = 0, then Q/Qmnr be-
comes 9.2 = 2.5 X 107 yr™!, a sizable portion of {}/Q
that demands geophysical explanation. Various cos-

mological theories have G/G of order 5 x 1071 yrJ;
Q/Qnr then becomes zero with an uncertainty of order
5 x 107" yr', “It appears that either we really have a
(non zero) cosmological constant G/G consistent with
the Hubble constant, or we have a significant Q/Qqy;"
[Miiller (1976}].

Lambeck {1975) gives expressions for the tidally in-
duced rates of change of the semimajor axis a of the
moon'’s orbit, of its eccentricity e, and of its orbital
inclination 7 in terms of a spherical harmonic decom-
position of the ocean tide £,. For semidiurnal tides only
the second harmonic is important. Once these rates of
change have been estimated, then 1, and (Q/Q), [i.e.,
the tidal part of /Q) may be estimated from, respec-
tively, Kepler's law (Cartwright, 1977, equation 8.3)
and from the conservation of angular momentum
(Lambeck, 1977, equations 2). i, and (Q/Q), imply a rate
E, of tidal energy dissipation in the earth-moon system
(Lambeck, 1977, equations 3). Using global calculations
of ¢, for the M, ocean tide by Bogdanov and Magarik
(1967), by Pekeris and Accad (1969) and by myself (Hen-
dershott, 1972), Lambeck (1977) thus estimates for M,

ne=—27.8 +3"cy"
(Q/Q), = ~25.8 x 107" yr!
E, =3.35 x 10" ergs™!

(his table 7),
(his table 8,
(his equation 3b).

Since his work, new M, calculations by Accad and
Pekeris (1978) and by Parke and Hendershott (1980)
have appeared. These calculations include ocean self-
attraction and loading (section 10.5.3) and are not un-
realistically resonant. Accad and Pekeris (1978) directly
evaluate the flow of M, energy out of the numerical
ocean and obtain 2.44-2.79 x 10" ergs~'. Parke and
Hendershott (1980) evaluate the rate (W) at which the
M, tide generating forces (potential I') and ocean floor
(solid earth M, tide 8) do work on the ocean averaged
({ })) over a tidal period

=[] (135 (20

ocean

(Hendershott, 1972) and obtain 2.22 x 10" ergs™. All
this work is lost in tidal friction. If these results are
taken as an improved estimate E| of E, for the M, tide

E; =2.2-2.8 x 10® ergs™,

then Lambeck’s (1975) procedure would yield
n{ = —{18.3-23.2)" cy?,

(Q/Q) = —(16.9-21.6) x 1071 yr!

for M,. If we retain unaltered Lambeck’s (1977} esti-
mate of the contribution Az and A(Q/Q) of all remain-
ing tides to n, and ((}/Q),
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An = -3.1"cy2,

A(Q/Q) = —6.9 x 107 yrt,

then we obtain the revised estimates for all tides:
n, = (21.4-26.3)" cy2,

(Q/Q) = —(23.8-28.5) x 10~ yr1.

These are to be compared with Miiller’s (1976) esti-
mates from astronomical data:

f, = —27.2" cy™*
and

(QIQ) = —(13.4-22.6) x 10~ yr!
for

GIG = —(0-6.9) x 1071 yr1.

The comparison is worst if G/G is taken zero and be-
comes rather good if G/G is allowed to differ from zero.

There is thus some interest in estimating E for ocean
tides but, as indicated above, results differ significantly
depending on details of the estimation procedure. The
estimates referred to above (except for that of Accad
and Pekeris, 1978) essentially use global cotidal maps
to find the part of the ocean tide in phase with the tide
generating forces. The resulting rate of working W is
then attributed to friction without having to localize
it anywhere. Indeed, the long waves making up the tide
transmit energy over the globe so readily that we may
expect no correlation between where the moon and
sun work hardest on the sea and where the energy thus
put into the sea is dissipated.

It may be that little of that dissipation occurs in the
open ocean. Taylor (1920) estimated tidal friction in
the Irish Sea and showed that most of the energy thus
lost comes from the adjacent deep ocean with little
direct input due to local working by moon and sun.
His methods were extended to the world’s coasts and
marginal seas by Jeffreys (1921), Heiskanen (1921}, and
Miller (1966). Miller finds £ = 0.7-2.5 X 10® ergs,
two-thirds of which occurs in the Bering Sea, the Sea
of Okhotsk, the seas north of Australia, the seas sur-
rounding the British Isles, the Patagonian shelf, and
Hudson Bay. This is below all but the most recent
estimates of (W). It should be, by perhaps 10%, be-
cause of open-ocean internal tidal dissipation not con-
sistently or completely taken into account {section
10.6). It is now difficult to say whether or not the
difference indicates an important omission of some
dissipative mechanism.

Additional information about tidal dissipation is
contained in the width of conjectured or observed
peaks in the admittance amplitude and in shifts in
phase of the admittance from one constituent to an-
other. Thus the width of the amplitude-response curve

at Bermuda (figure 10.23B; Wunsch, 1972c) suggests a
local Q exceeding about 5. Garrett and Munk (1971)
surveyed the difference in admittance phase between
M, and S, (the age of the tide) and concluded that
worldwide semidiurnal tides had a Q of order 25. Webb
{1974) argued that such age-derived estimates of Q pri-
marily reflect localized resonances. It is thus difficult
to compare such results with the global Q, for M;, with
a Q of 17 emerging from the most recent cotidal chart
of Parke and Hendershott (1980).

Astronomical and oceanographic interest in the
amount and geographical distribution of tidal friction
constitutes one of the principle modern motivations
for studying ocean tides. The other principle motiva-
tion is the need, by solid-earth tidalists (Farrell, 1979)
and satellite geodesists (Marsh, Martin, McCarthy, and
Chovitz, 1980) for a very accurate map of the global
distribution of ocean tides. Significant improvement of
the most recent numerical maps is going to require
extensive new observations.

The technology of deep-ocean pressure sensors suit-
able for gathering pelagic tide records was pioneered by
Eyriés (1968), F. E. Snodgrass (1968) and Filloux
(1969). The latest compilation of such results (Cart-
wright, Zetler, and Hamon, 1979) summarizes har-
monic constants for 108 sites irregularly distributed
around the world. Cartwright (1977) reviews the his-
tory and considerable accomplishments of pelagic tide
recording but concludes that economic and political
difficulties as well as rapidly evolving research priori-
ties make it an unlikely method for detailed global tide
mapping.

Several alternative methods are beginning to be stud-
ied. Given a sufficient number of measurements of the
solid-earth tide, it is possible to construct estimates of
the ocean tide that (in part] generated the solid-earth
tide. But high precision earth-tide measurements are
needed, and ocean tides in the vicinity of coastal earth-
tide stations must be accurately known in order to
perceive global ocean tide contributions {Farrell, 1979).
Kuo and Jachens (1977) document attempts along these
lines.

Satellites may be employed to study ocean tides in
two ways. First, the periodic tidal deformation of earth
and ocean results in significant perturbation in the
orbits of close satellites [Cazenave, Daillet, and Lam-
beck, 1977). The lowest-order spherical-harmonic com-
ponents of the tide are the most accessible by this
method. It therefore complements the second possibil-
ity, direct measurement of satellite-to-sea-surface al-
titude. The greatest obstacle to extraction of ocean
tides from such altimetry is not the error in the altitude
measurement but rather the error in our knowledge of
where the satellite is relative to the center of the earth.
This “tracking” or “orbit” error is greatest at a spatial
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scale corresponding to the earth’s circumference but
decreases rapidly at smaller spatial scales. It probably
makes the large-scale features of ocean tides inacces-
sible from the GEOS-3 altimetry-data set. But smaller-
scale tidal systems appear to be directly observable
from the later SEASAT-1 altimetry. Parke has permit-
ted me to reproduce (figure 10.24) his recovery of tides
along the Patagonian shelf from SEASAT-1 altimetry
(Parke, 1980) as an example.

Determining the combination of ocean-tide gauge
data (coastal, island, and pelagic), of earth-tide data, of
satellite-orbit perturbations, and of satellite altimetry
optimal for mapping ocean tides and localizing their
dissipation is now perhaps the outstanding theoretical
problem in ocean tides.

10.5.2 Partial Models of Ocean Tides

Introduction In his George Darwin lecture “The Tides
of the Atlantic Ocean,” Proudman (1944} stated, “I
shall mainly be concerned with the discovery of the
distribution of tides over the open Atlantic Ocean, by
the application of the principles of dynamics.”

This was, of course, Laplace’s goal for global tides.
From Laplace’s time until now, many researchers have
pursued this goal with dogged persistence by solving
LTE with astronomical forcing for oceans having shape
and relief sufficiently idealized that existing methods
of solution could produce an evaluable answer. With
hindsight, the properties of these solutions may be
appreciated by regarding the solution as eigenfunction
expansions in which the various eigenfunctions
Z.|®,0) expl—io,t] or free oscillations allowed by LTE
have the properties summarized in section 10.4. The
frequency o, of oscillation is the most natural eigen-
parameter, but the eigenfunction expansion {(¢,0t) =
3.a,Z,expl—ort] for a tide forced at frequency o is
not of the usual form in which (in the absence of dis-
sipation) a, ~ (0% — o2)~\. If however, for a given fre-
quency o of forcing, the inverse A~! of the mean depth

A= (47) [[ D(¢,6) cos 0dodd

[D($,6) = 0 on land] is regarded as the eigenparameter
with “resonant” depths A,, then a, ~ (A™1 — A;Y)~.
Nothing restricts A, to positive values. Indeed, nega-
tive-depth modes having A, < 0 often exist and may
be important in the eignefunction expansion of forced
solutions. This evidently was pointed out first by Lind-
zen (1967) for atmospheric tides.

Direct numerical solution of LTE in realistically
shaped basins may be viewed as summation of this
eigenfunction expansion, and has gone some distance
toward attaining Proudman’s stated goal. But Proud-
man’s George Darwin lecture marked an important
break with the sequence of dynamic studies that have
since culminated in modern numerical solutions.

SURFACE HEIGHT (m)
ESTIMATED TIDAL ELEVATION (m)

1 1 i 1 1
0 24 48 T2 2% 120 144

TIME AFTER DAY 213, 2ih, 58min, [0s(s)

Figure 10.24 SEASAT altimeter record (wiggly line) and a
reconstruction (smooth lines) from coastal harmonic con-
stants of nearshore Patagonian shelf tides at the subsatellite
point for the SEASAT pass whose path is shown in the upper
panel. (Parke, 1980.)

Rather than solving LTE for Atlantic tides, Proudman
computed free and forced M, solutions of LTE for a
portion of the Atlantic and fitted their sum to obser-
vations. Subsequent studies carried out in the same
spirit but for more simple continental-shelf and mar-
ginal-sea geometries have provided dynamically under-
standable rationalizations for the distribution of tides
in these regions and have led to a reappraisal of both
observations and of global solutions of LTE. Discussion
of these matters occupies the remainder of this section.

Tides in the Gulf of California Godin (1965) and Hen-
dershott and Speranza {1971) noted that (10.29} is sat-
isfied for all the Poincaré channel modesn =1,2,. ..
in many of the world’s long and narrow marginal seas.
In these, then, all Poincaré modes are evanescent so
that the tide away from the ends of the basin must be
mainly a sum of two oppositely traveling Kelvin waves,
usually of unequal amplitude. Friction in the basin {or
a net rate of working on the tide-generating body by
tides in the basin) will make the outgoing Kelvin wave
of lower amplitude than the incoming one and will
shift amphidromic points (at which the two Kelvin
waves interfere destructively) toward the “outgoing’”’
coast.
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Figure 10.25 illustrates application of these ideas to
the M, tide in the Gulf of California. The westward
displacement of the amphidromes points to substantial
dissipation in the upper reaches of the Gulf. But this
Kelvin wave fit does not well represent the tide there.
On the basis of his extensive network of tide-gauge
observations, Filloux (1973a) was able to estimate the
tidal prism and mass transport for six sections along
the length of the Gulf and could thus directly evaluate
stored energy and energy flux along the Gulf, and en-
ergy flux from the moon into dissipation. About 10%
of the energy entering the mouth from the Pacific
(4.7 x 10" ergs™) is lost as the Gulf M, tide works on
the moon; the remainder is dissipated frictionally (over
80% northward of the islands in figure 10.25).

Elementary considerations suggest that the Gulf of
California has a resonance fairly close to the semidi-
urnal tidal frequency. Filloux (1973a) estimates a Q of
about 13 for the thus nearly resonant M, tide. Stock
{1976} constructed a finite-difference model of Gulf
tides using a very fine (10-km) mesh. His solutions
effectively sum both of the Kelvin waves and all the
evanescent Poincaré modes as well as allowing for their

distortion by the irregular shape of the basin. He in-
cluded dissipative effects and specified the elevation
across the mouth of the Gulf in accordance with ob-
servations. His model is resonant at about 1.8 cpd with
a Q sufficiently high that different discretizations of
the problem, all a priori equally reasonable, can give
very different Gulf tides. He found it necessary to force
his model to have a realistic resonant frequency—fixed
by arbitrarily varying the mean depth—before it would
produce realistic cotidal maps {figure 10.26). Once this
had been done, he found small but nevertheless signif-
icant sensitivity of the solution to the localization of
dissipation; the solution agreeing best with Filloux’s
data was that in which most of the dissipation took
place around the islands in the upper portion of the
Gulf.

The Boundary-Value Problem for Marginal Sea
Tides The Gulf of California is one of many marginal
seas that connect with the global ocean across a rela-
tively small mouth. Dynamic models of tides in such
regions have generally been constructed by solving LTE
in the region subject to the condition that the elevation
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a rectangular gulf with little (left panel) and much (right panel)

absorption at upper boundary. Center panel is a Kelvin wave
fit to M, as observed in the Gulf of California.
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Figure 10.26 A comparison of the tidal response at Punta
Penasco (solid squares) with the tide at the mouth of the Gulf
of California for two numerical models with different mean
depths.

across the open mouth is equal to that actually ob-
served. This is disadvantageous for two reasons. First
of all, it eliminates damping of the marginal sea tide
by radiation into the deep sea; second, it results in
solutions that cannot predict the effects of changes in
basin geometry (i.e., installation of causeways, etc.) on
the tides because the tide across the open mouth is not
allowed to respond to them.

Garrett (1974) pointed out that in many cases these
difficulties may be resolved partially by allowing the
marginal sea to radiate into an idealized deep sea. For
a given constituent, suppose that, with forcing in-
cluded and all other boundary conditions (i.e., no mass
flux through coasts) satisfied, the mass flux ad(S — S’)
normal to the mouth (across which distance is meas-
ured by S) would result in the tide {(S) + aKg(S,S’)
across the mouth when the marginal-sea problem is
solved and would result in {(S) + aKp(S,S’) when the
deep-sea problem is solved. The tides {(S) and &S} are
thus those that would result just inside and just outside
across the mouth if it were closed by an imaginary
impermeable barrier. In the real world, the mass flux
U(S) across the mouth is fixed by the necessity that its
incorporation into either the marginal-sea or the deep-
sea problem give the same tide £{(S) across the mouth:

LulS) = LelS) + J U(S')Kg(S,S")dS’

= {plS) + [ U{S')Kpl(S,S'}dS. (10.133)

The latter half of this relation is an integral equation
to be solved for U(S). Once U(S) has been found, the
problem for the marginal-sea tide is well posed. If the
deep sea is, for example, idealized as an infinite half-
plane ocean, then Ky(S,S') can be constructed by im-
posing the radiation condition far from the mouth. The
boundary condition across the mouth for marginal sea
tides, the specified mass flux U(S), will thus incorpo-
rate radiative damping into the solution for marginal-
sea tides. Garrett (1974} has discussed limiting cases of
(10.133). Garrett and Greenberg (1977) have used the
method to discuss possible perturbations of tides by
construction of a tidal power station in the Bay of
Fundy.

U(S) as given by (10.133) is also the correct marginal-
sea boundary condition for models of deep-ocean tides.
Its application could allow optimal coupling of finely
resolved marginal-sea models to more coarsely resolved
global ones, but the methodology requires further de-
velopment.

Continental Shelf Tides When the tide progresses par-
allel to a fairly long, straight continental shelf, then
the free waves of section 10.4.6 are natural ones in
terms of which to expect an economical representation
of the tide. Munk, Snodgrass, and Wimbush (1970) ana-
lyzed California coastal tides in this way. In addition
to the free waves capable of propagating energy at tidal
frequencies, they introduced a forced wave to take local
working by TGF into account. For the M, tide, the
Kelvin wave, the single representative member of the
Poincaré continuum, and the forced wave have coastal
amplitudes of 54, 16, and 4 cm, respectively. The
coastal tide is dominated by the northward-propagating
Kelvin mode, but further at sea the modes unexpect-
edly combine to yield an amphidrome (figure 10.27)
whose existence was subsequently confirmed by Irish,
Munk, and Snodgrass (1971). For the K, California tide,
the corresponding amplitudes are 21, 24, and 9 cm; the
Kelvin wave is not nearly as important. Platzman
(1979) has shown how this local representation is re-
lated to the properties of eigensolutions of LTE for the
world ocean.

The California coast is too low in latitude for second-
class shelf modes (section 10.4.6) to propagate energy
at tidal frequencies. At higher latitudes, however, Cart-
wright {1969} has found evidence of their excitation;
strong diurnal tidal currents without correspondingly
great diurnal surface tides. At very low latitudes, low-
mode edge waves could be resonant at tidal frequen-
cies. Stock (private communication) has applied these
ideas to the west coast of South America and to the
Patagonian shelf. Geometrical difficulties prevent
quantitative results in the latter case but the qualita-
tive prediction that the coastally dominant Kelvin
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Figure 10.27 M, cotidal chart from Munk, Snodgrass, and
Wimbush (1970) (amplitudes in cm, phases relative to moon’s
transit over Greenwich). Ellipses show computed currents at
ellipse center (ticks on ellipse axis correspond to 1 cms™).

mode decays by e~! across the broad and shallow Pa-
tagonian shelf and that the low speed of long-wave
propagation over the shallow shelf so compresses the
length scale of the tides that a complex system of
several amphidromes fits over the shelf are nonetheless
important.

On all the shelves so far mentioned, the tide ad-
vances parallel to the shelf so that decomposition into
modes traveling parallel to the coast is natural. But not
all shelf tides are of this nature. Redfield (1958) has
summarized observations of United States east coast
continental shelf tides (figure 10.28). There the salient
features are a very close correspondence between local
shelf width and the coastal amplitude and phase of the
tide. Tides are nearly coincident over the entire length
and width (Beardsley et al, 1977) of the shelf, in
marked contrast with the California case.

Island Modification of Tides Island tide records have
been prized in working out the distribution of open-

Modal fit was to coastal stations plus Josie I, Kathy, and
Filloux. Subsequent observations at Josie II confirmed phase
shift across predicted amphidrome (Irish, Munk, and Snod-
grass, 1971.)

ocean tides not only because of their open-ocean lo-
cation but also because they have been supposed more
representative of adjacent open-ocean tides than are
coastal records.

Nevertheless, they are not entirely so. Tsunami
travel-time charts suggest that tides in island lagoons
may be delayed by as much as 20 minutes; harmonic
constants for open-ocean tide charts correspondingly
may need revision {Parke and Hendershott, 1980). Pe-
lagic records (section 10.5.1) do not, of course, present
this problem.

Diffractive effects near island chains may result in
appreciable local modification of the tides. Larsen
(1977) has studied the diffraction of an open-ocean
plane wave of tidal frequency by an elliptical island
{intended to model the Hawaiian Island plateau). A
typical cotidal chart is shown in figure 10.29. Diffrac-
tion alters the time of high water by as much as an
hour.
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Figure 10.29 Theoretical cotidal chart for an M, plane wave
in a uniformly rotating ocean of 5000 m depth incident from
the northeast on an elliptical island modeling the Hawaiian
Chain. (Larsen, 1977.)

10.5.3 Global Tidal Models

The shape of the world’s oceans is so complicated that
realistic solutions of LTE must be numerical. Pioneer-
ing studies were made by Hansen (1949) and by Ros-
siter (1958). The first global solution was presented by
Pekeris and Dishon at the 1961 IUGG Assembly in
Helsinki. I have reviewed subsequent developments
elsewhere (Hendershott and Munk, 1970; Hendershott,
1973, 1977) and so will not attempt a comprehensive
discussion.

Generally, numerical tidalists have solved (often by
time-stepping) the forced LTE (10.5) with adjoined dis-
sipative terms, and taking the numerical coasts as im-
permeable, or else they have solved the elliptic eleva-
tion equation [obtained by eliminating the velocities
from LTE (10.5) without dissipative terms] for individ-
ual constituents (most often M,) with elevation at the
numerical coast somehow specified from actual coastal
observations. Combinations of these approaches have
also been employed.

The first procedure yields solutions that may be
thought of as a weighted sum of the dissipative analogs
of Platzman’s (1975) normal modes [section 10.4.8).
Neither mass nor energy flows across the numerical
coast. If the dissipation is modeled accurately (a matter
of real concern since the smallest feasible global mesh
spacing of about 1° cannot adequately resolve many
marginal-sea and shelf tides), then such models should
have fairly realistic admittances.

The second procedure attempts to circumvent this
difficulty by allowing most or all dissipation to occur
beyond the numerical coasts in regions that thus do
not have to be resolved. It yields solutions that may be
thought of as a tide reproducing the prescribed coastal
tide plus a superposition of eigensolutions [of LTE
{10.5) or of the elevation equation] that have vanishing
elevation at the numerical coast. These eigensolutions
have no simple oceanic counterparts since their coastal
boundary condition does not require vanishing coastal
normal velocity. The full solution satisfies the forced
LTE and reproduces the prescribed coastal tide but also
generally does not have vanishing normal velocity at
the numerical coasts. Consequently there may be at
any instant a net flow of water through the numerical
coastline, and the flux of energy {averaged over a tidal
period] through the numerical coastline need not be
zero.

This flux of energy through the numerical coast is a
realistic feature since the numerical coast is not in-
tended to model the actual coast but, instead, crudely
models the seaward edges of the world’s marginal seas
and shelves. The same is true of the mass flux, al-
though, in using the solution to estimate ocean-tide
perturbations of gravity, etc., the water that thus flows
through the numerical coast must somehow be taken
into account (Farrell, 1972b). Perhaps the greatest
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drawback of the second procedure is the possibly res-
onant forcing of the unphysical zero-coastal-elevation
eigensolutions. This can cause the model to have a
very unrealistic admittance even though it is in prin-
ciple capable of correctly reproducing all constituents.
In practice, it often causes the model to be unrealisti-
cally sensitive to the way in which discretization of
the equations or of the basin has been carried out. Thus
Parke and Hendershott {1980) encountered resonances
in solving for semidiurnal constituents by the second
procedure and were forced to appeal to island obser-
vations in the manner described below in order to ob-
tain realistic results. They encountered no similar res-
onances when solving for the diumnal K, constituent,
perhaps because the artificial coastal condition filters
out the Kelvin-like modes that could be resonant at
subinertial frequencies in the f-plane (section 10.4.2).
All these remarks also apply to marginal-sea-tide
models (section 10.5.2): when the elevation at the con-
nection to the open ocean is specified ab initio.

These two procedures and variants of them have
resulted in global solutions (most for M,) that show
good qualitative agreement (Hendershott, 1973, 1977).
The most recent published global models are by Zahel
(1970), Parke and Hendershott (1980), and Accad and
Pekeris (1978). I know of new calculations by Zahel,
by Estes, and by Schwiderski (Parke, 1979) as well, but
have not been able to examine them in detail. When
all have been published, a careful comparison of these
models with one another, with island and pelagic tidal
data, with gravity data, and with tidal perturbations of
satellite orbits ought to be carried out.

All the most recent solutions include effects of ocean
loading and self-attraction (section 10.3). Many of them
have been published since Cartwright (1977) and I
(Hendershott, 1977) reviewed the tidal problem. The
varying methods of solution may be summarized by
abbreviating LTE (10.5) or the elevation equation as in
Hendershott (1977):

Ll = L'[IGL] + L1 + ke — hy)U,/g]. (10.134)

Here U, is the tide-generating potential (a second-order
spherical harmonic) for a given constituent, (k,, h,) are
Love numbers {section 10.3), £ and &’ are operators
elliptic in space with £ representing LTE (10.5) or the
elevation equation, and [{G{, abbreviates the global
convolution expressing effects of loading and self-at-
traction as in (10.14).

I attempted to solve (10.134) for M, using the second
procedure iteratively,

L] = L'UIGLM + L'[(1 + ke — hy)Us/g], {10.135)

(Hendershott, 1972} but the iteration did not look as
though it would converge. Gordeev, Kagan, and Pol-

yakov {1977) found that inclusion of dissipation could
result in convergence. Parke (1978) used the iterates
{® as a basis set for a least-squares solution ¢, of
(10.134) of the form

{o =3 AL (10.136)
in which the A; are found by solving
) .
E{E = Ice {L-T(fo) - 2'lJJ Gl
~- 2'[{1 +k; — hy)U./g]1% = 0. (10.137)

He obtained solutions that evidently were quite accu-
rate [E as defined in (10.137) was small], but their
realism was marred by the unphysical resonances of
the second procedure. Parke and Hendershott (1980)
therefore effectively adjusted the locations of these res-
onances to yield realistic global results by getting the
A; from a least-squares fit of (10.136) to island and
pelagic observations.

Accad and Pekeris (1978) noticed that [[G{§ was
very similar to {{*V. They therefore put

II GTY = KL® + [ ALY,

where K is a constant evaluated empirically at each
iteration by

(10.138)

K = JJIE IS G S TE6™¢6” {10.139)
and then iterated not (10.135) but

ZILE1 — K L[]

= L'L[J ALPY + L'[(1+k, — ho)Us/g). (10.140)

This greatly accelerated the slow convergence of
{10.135), presumably already established by dissipation
in their calculations.

Figure 10.30 shows two M, global cotidal maps of
Accad and Pekeris (1978), which differ only in the in-
clusion of the convolution terms [fG{,. These terms
do not result in an order of magnitude alteration of the
computed tide but their effects are large enough that
they must be included in any dynamically consistent
model aiming at more than order-of-magnitude cor-
rectness. These solutions and others like them are ob-
tained solely from a knowledge of the tidal potential
and are, in that sense, as close as modern investigators
have come to attaining Laplace’s original goal.

10.6 Internal Tides

10.6.1 Introduction

Internal tides have long been recognized as internal
waves somehow excited at or near tidal periods. Their
potential as a source of error in hydrographic casts
seems to have been recognized since their earliest re-
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Figure 10.30 Two theoretical calculations of the global M,
tide obtained solely from a knowledge of the astronomical
tide-generating forces (A) and differing only in the inclusion
(B) of the effects of loading and self-attraction. (Accad and
Pekeris, 1978.)
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ported observation by Nansen (1902). Because con-
stant-depth internal-wave modes are almost orthogonal
to the ATGF (they would be completely so if the sea
surface were rigid and the ATGF exactly depth inde-
pendent) it has always been difficult to see why inter-
nal tides exist at all. The work of Zeilon (1911, 1912)
appears to be the precursor of the now generally ac-
cepted explanation—energy is scattered from surface
to internal tides by bottom roughness—but there has
been a history of controversy. The lack of correlation
between internal tides at points separated vertically by
O (100 m) or horizontally by O {100 km) puzzled early
observers. Subsequent observations showed semidi-
urnal and diurnal internal tides to be narrow-band proc-
esses each with a finite band width Ao of order several
cycles per month. This property manifests itself both
in a decay of spatial coherence of internal tides over a
length associated with the spread of spatial wavenum-
bers corresponding to A and in temporal intermit-
tency over times Ao~!, as well as in a corresponding
lack of coherence with either the surface tide or the
ATGEF. Typical observations are shown in figure 10.31.

10.6.2 Generation Mechanisms

Zeilon {1934) carried out laboratory experiments show-
ing that a step in bottom relief could excite internal
waves in a two-layer fluid when a surface tidal wave
passed overhead. Two-layer models are attractive ana-
lytically because each layer is governed by a well-posed
boundary-value problem; such experiments have been
studied theoretically by Rattray (1960) and many oth-
ers.

Haurwitz (1950) and Defant (1950) noticed that in
the f-plane both the horizontal wavelength and the
phase speed of plane internal waves grow very large as
o — f, [{10.23e) with D, = D,]. Resonance with the
ATGF might thus be possible near the inertial latitudes
corresponding to tidal frequencies. But the equatorial
B-plane solutions (section 10.4.5) (even though only
qualitatively applicable at tidal inertial latitudes) show
that this apparent possibility of resonance is an artifact
of the f-plane, which provides WKB solutions of LTE,
and so cannot be applied at the inertial latitudes.

Miles (1974a) has shown that the Coriolis terms cus-
tomarily neglected in the traditional approximation
scatter barotropic energy into baroclinic modes (section
10.3). Observations of internal tides {section 10.6.3)
appear to favor bottom relief as the primary scatterer,
but this may be because steep bottom relief is spatially
localized whereas the “extra” Coriolis terms are
smoothly distributed over the globe. Further theoreti-
cal work is needed to suggest more informative obser-
vations.

For a continuously stratified ocean, Cox and Sand-
strom (1962) calculated the rate of energy flow from

surface to internal tides due to single scattering from
small-amplitude, uniformly distributed, open-ocean-
bottom roughness eD,[x, y} [where ¢ << 1, D, is O(1]].
Their calculation is most succinctly summarized by
specializing to one-dimensional relief D,[x) and con-
stant buoyancy frequency N,. If the incident surface
tidal-velocity field is idealized as U exp{~io+t), with no
space dependence, then the singly scattered internal-
tide field u'¥ is obtained by solving (10.45)

o () 5 -0 (10.141)
and

a;: +%m =0 (10.142)
subject to

w=0 at z =0, (10.143)

w® =eUdD,/ox at z =—(D, +eD,) (10.144)

plus a radiation condition as |x| — .

Equation (10.143} idealizes the free surface as rigid
(adequate for internal waves); (10.144) is the Ofe) ex-
pansion about the mean reliefz = —D, of the condition
{10.15) of zero normal flow at the actual relief:

0
w = u&(D. + eD,) at z=-D, —eD,. (10.145)

The solution of (10.141}-(10.144) for w® is

w(x,z) = f " %, (L2) explilx)dl, (10.146)
where
#.llz) = (€U D o) —SnllzNo/loh — fAI"1 14 47

sin[—ID ,Nof(o% — f§]*?]

with (U dD,/8x) defined as the Fourier transform of
(eU 8D, /ax). The integrand of (10.14.6) has simple poles
at [-ID,Ny/(c% — f})*?] = nw, i.e., at horizontal wave-
numbers ] satisfying the internal wave dispersion re-
lation 0% — f3 = gD, I?, D,, = N3D3/gn*n*. Equatorward
of the tidal inertial latitude, o3 < f3, so that each pole
is real and corresponds to an internal wave traveling
away from the scattering relief. Poleward of the tidal
inertial latitude, 0% < f3, so that each pole is imaginary
and the corresponding internal mode decays exponen-
tially away from the scattering roughness without car-
rying energy away. The sum of all evanescent modes
also decays in the vertical away from the scattering
relief. Wunsch {1975} reports the existence of obser-
vations showing this evanescent behavior for diurnal
internal tides.

When o% > f3 (10.141) is hyperbolic in {x, t) with
characteristic slope (0% — f3}'2/N,. Baines (1971) solved
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(10.141} and (10.145) exactly, by the method of char-
acteristics, thus eliminating the restriction to weakly
sloping relief. The analytical novelty of his work was
the imposition of the radiation condition on the char-
acteristic form

Fix — Rz) + G{x + Rz), R = Nyl{g’ — f3)12

of the solutions of (10.141) by, for example, choosing
Fix) = [ el
0

so that Flx + Rz)exp|—ioqt) contains only outgoing
plane waves. Laboratory work (Sandstrom, 1969} and
analysis (Wunsch, 1969) showed that when bottom and
tidal characteristic slopes coincide, the near-bottom
motion is strongly intensified. Wunsch and Hendry
(1972) show evidence for such intensification over the
continental slope south of Cape Cod (figure 10.32).
The general possibility that diurnal tides enhance
diurnal inertial motion by some mechanism has been
suggested by Ekman (1931), Reid (1962} and Knauss
(1962b). I {Hendershott, 1973) estimated the amplitude
of motion if the mechanism is scattering of surface

Figure 10.31A Time series of temperature and velocity at the
IWEX mooring {Hatteras Abyssal Plain) at 640 m depth (Bris-
coe, 1975b).

tides into internal tides by open-ocean bottom rough-
ness, but obtained a result sufficiently small that it
would not stand out noticeably against the high level
of inertial motion found at all mid-latitudes (Munk and
Phillips, 1968).

Thus far, the discussion is in terms of linearly scat-
tered linear waves. Bell (1975) considers the formation
of internal lee waves on periodically varying barotropic
tidal currents. This process could generate a complex
spectrum of internal waves even with a monochro-
matic surface tide. What actually occurs when labora-
tory or ocean stratified flow passes over relief is com-
plicated. In Massachusetts Bay, Halpern (1971} has
observed that tidal flow over a ridge generates a ther-
mal front that propagates away as a highly nonlinear
internal wavetrain {Lee and Beardsley, 1974} or as an
internal bore. Such bores are commonly observed along
the Southern California coast (Winant, 1979).

Maxworthy (1979} emphasizes the importance of the
collapse of the stirred region that initially develops
over relief in the subsequent generation of laboratory
internal waves. The relative importance of all these
processes near the sea floor is unknown. If separation
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Figure 10.31B Observed (dotted} and predicted barotropic
(solid) longshore bottom velocity at Josie I (figure 10.27) off
the southern California coast. {Munk, Snodgrass, and Wim-
bush, 1970.)
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Figure 10.32A Current meter mooring positions and shelf to-
pography. (Wunsch and Hendry, 1972.)

over abyssal relief does occur in tidal currents, it could
contribute to abyssal mixing by helping to form the
near-bottom laminae observed by Armi and Millard
(1976). Wunsch {1970) made a somewhat similar sug-
gestion based on laboratory studies.

Besides this potential complexity of generation, the
medium through which the internal tide moves is
strongly inhomogeneous in space and time. The overall
result is the complicated and irregularly fluctuating
internal tide observed. Still, away from generation re-
gions, some features of the linear theory shine through.

10.6.3 Observations

In linear theory, breaks in the slope of the relief and
extended regions where that slope coincides with a
tidal characteristic slope make themselves felt in the
body of the ocean as narrow-beam disturbances con-
centrated along the characteristics (Rattray et al.,
1969). The beams are typically narrow (figure 10.33)
and their (characteristic) slope in the presence of mean
currents varies both with local stratification and shear.
This suggests that, especially near generation regions,
the internal tide will have a complex spatial structure
and that its amplitude at a given point may vary mark-
edly as nearby stratification and mean flow change.
Thus Hayes and Halpern (1976} document very large
variability of semidiurnal internal tidal currents during
a coastal upwelling event; they account for much of it
by appealing to the deformation of characteristics as
vertical and horizontal density gradients change during
the upwelling. Regal and Wunsch (1973) find internal
tidal currents at site D, over the continental slope
south of Cape Cod, to be concentrated near the surface
and there highly (and uncharacteristically} coherent
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Figure 10.32B Profile of topography through the array along
the dashed line of figure 10.32B with mooring positions in-
dicated. Several internal wave characteristics for the M, tide
are shown, and the critical period (at which internal-wave
characteristics are locally tangent to the relief) is plotted
across the profile. (Wunsch and Hendry, 1972.)
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Figure 10.32C Vertical profiles of kinetic energy density (ob-
served values are solid dots) for various periods over the slope
where the tidal characteristic is locally tangent to the relief
(moorings 347-350). (Wunsch and Hendry, 1972.)
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Figure 10.33 Depth distribution of horizontal intemal tidal
currents away from a step shelf (top) at two times (center and
bottom} separated by a quarter-wave period. Ratio of deep sea
to shelf depth is 12.5, characteristic slope is 1/715; current

with the surface tide. The result is consistent with
generation where tidal characteristics graze the slope
perhaps 60 km to the north followed by propagation
along characteristics that leave the region of tangency
and bounce once off the ocean floor before passing
through the near surface part of the water column at
site D (figure 10.34). Observations at site L, some
500 km to the south, show no evidence of propagation
along beams.

Beams are a coherent sum of many high internal
modes. We intuitively expect that high modes are more
rapidly degraded by whatever processes ultimately lead
to dissipation than are low modes, and that they are
more sensitive to medium motion and fluctuation than
are low modes because they propagate so slowly. We
thus do not expect beamlike features in the deep sea,
and they are not observed. Instead, we expect a few
low modes to dominate in a combination of arrivals
from distant steep relief. These will have made their
way through significant oceanic density fluctuations
and through fluctuations of mean flows often at an
appreciable fraction of internal-wave-phase speeds. The
line spectrum characteristic of the ATGF and the sur-
face tide will thus be so broadly smeared into semidi-
urnal and diurnal peaks that individual constituents or

profiles begin at shelf edge and are separated horizontally by
1.8 of the deep-sea (first-mode) internal-tide wavelength. (Rat-
tray et al., 1969.)

even the spring-neap cycle are at best very difficult
(Hecht and Hughes, 1971) to perceive.

The most complete description of open-ocean inter-
nal tides is due to Hendry (1977}, who used the western
central Atlantic Mid-Ocean Dynamics Experiment
(MODE] data. Figure 10.35 summarizes the results. M,
tends to dominate semidiurnal temperature variance
over the water column. Adjacent N, and S, variances
are nearly equal, and the vertical variation of N,, S,
variance generally follows M, (with qualifications near
the bottom). M, likewise dominates horizontal semi-
diurnal current variance over the water column. At
subthermocline depths M, variance approaches esti-
mates of the barotropic M, tidal current variance while
S, and N, variances exceed their barotropic counter-
parts by an order of magnitude. All this suggests that
much of what appears in the N, and S, bands has really
been smeared out of M,. The vertical distribution of
variance is broader than the two WKB profiles
(86/0z2N|(z)~! (6 is mean potential temperature) and
N(z), for temperature and horizontal current variance,
respectively. This indicates that the lowest vertical
modes dominate. M, temperature variance has a co-
herence of about 0.7 with the ATGF in the upper ther-
mocline while N, and S, are far less coherent with the
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istics passing near site D. (Regal and Wunsch, 1973.)
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Figure 10.34B Admittance amplitude x for semidiurnal tidal =~ Figure 10.34C A similar display at site L, 599 km south of
currents together with buoyancy frequency Nz} at site D. site D, shows no comparable surface intensification. {Regal
Near-surface admittances are strongly intensified; currents  and Wunsch, 1973.)

there are highly coherent with the surface tide. {Regal and

Waunsch, 1973.)
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ATGF but yet not totally incoherent. The M, first in-
ternal mode dominates and propagates to the south-
east; this plus the (significantly not random) phase lag
between M, and S, in the thermocline (the age of the
internal tide) point to the 700-km distant Blake escarp-
ment as a generating region. Other discussions of open-
ocean internal tides are consistent with the foregoing
picture although necessarily based upon less extensive
observations.

Wunsch (1975) reviews observations allowing esti-
mation of the energy density (in units of ergs per
squared centimeters) of internal tides and suggests that
it is from 10 to 50% of the corresponding energy den-
sity of the barotropic tide, albeit with wide and unsys-
tematic geographic variation.

10.6.4 Internal Tides and the Tidal Energy Budget

It thus appears that barotropic tides somehow give up
energy to internal tides. Return scattering is probably
unimportant. It is important to know the rate at which
this energy transfer occurs because (section 10.5) the
energy budget for global tides may not yet be closed.
Wunsch (1975) reviews estimates arising from the var-
ious scattering theories outlined above (section 10.6.2);
typical values are 0.5 x 10 ergs™ from deep-sea
roughness [using the theory of Cox and Sandstrom as
rediscussed by Munk (1966)], 6 x 107 ergcm s from
continental shelves [using the theory of Baines (1974)
and also from independent measurements by Wunsch
and Hendry (1972)]. The latter value extrapolates to
5.6 x 10" ergs™! over the globe.

A bound on this estimate independent of scattering
theories was pointed out by Wunsch ({1975). Internal-
tide energy densities E; are order 0.1 to 0.5 times sur-
face-tide energy densities Es. Group velocities ¢y of
internal waves are order (D,D,)'? = (N2D,/gn?m?)'"*
times group velocities ¢, of long-surface gravity waves.
If open-ocean tidal energy is radiated toward shallow
seas (or any other dissipation region) at rates cgE, and
¢y E), then internal tides can never account for more
than O{10%) of the total energy lost from surface tides.

Wunsch’s (1975) discussion of the caveats to this
result has not been substantially altered by subsequent
developments. Nonlinear interactions that drain inter-
nal energy from the tidal bands to other frequencies
and scales certainly do occur but their rates are not yet
accurately estimable. Such rates as have been calcu-
lated [Garrett and Munk (1972a) calculated the energy
loss due to internal wave breaking; McComas and
Bretherton (1977) the time scale for the low-frequency
part of the internal wave spectrum to evolve by reso-
nant interactions]; they are small, but the problem is
not closed.

10.6.5 Internal Tides and Ocean Stirring
Even if internal tides turn out to be 2 minor component
of the global tidal-energy budget, they could be an im-
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Figure 10.35A Vertical profile of squared temperature fluc-
tuations in the {a) S, band (°C), averaged at depth levels over
the entire array; the number of 15-day-piece lengths at each
level is indicated. Vertical profile of average squared temper-
ature fluctuations in the (b} M, band. Vertical profile of av-
erage squared temperature fluctuations in the (c) N, band.
{Hendry, 1977.)
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Figure 10.35B Vertical profile of squared horizontal current
(cms™) for U (east and V (north) in the (a) S, band, averaged
at depth levels over the entire array; estimates of squared
amplitude for the barotropic current components IJ and V are
given, showing that the currents are dominanted by internal
waves at all depths. Similar estimates for the (b) M, band
currents. Here the deep currents are greatly influenced by the
barotropic mode. Similar estimates are given for the {c} N,
band; internal waves appear to dominate at all depths. (Hen-
dry, 1977.)
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Figure 10.35C Vertical profile of average coherence amplitude
of temperature fluctuations and the equilibrium tide for three
semidiurnal frequency bands. The averages are taken over the
whole array at depth levels, and include individual cases with
both five and seven degrees of freedom. The expected values
of coherence amplitude for zero true coherence are shown for
each case, and while the central M, band shows a definite
determinism, the adjacent frequency bands are much more
dominated by randomly phased temperature fluctuations.
(Hendry, 1977.)
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Figure 10.35D Conventional wavenumber spectrum of first-
mode M, temperature fluctuations from MODE. The peak in
the southeast quadrant has wavenumber 1/163 cpkm and rep-
resents a wave propagating from northwest to southeast. A
secondary peak in the northwest quadrant is interpreted as an
alias of the main peak. (Hendry, 1977.)
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portant source of energy for ocean stirring and mixing.
About 10% of the total tidal dissipation would be en-
energetically adequate {Munk, 1966). The hypothesis is
that internal tides somehow (by bottom turbulence, by
nonlinear cascade) cause or enhance observed fine
structure and microstructure events in which mixing
is believed to be occurring. It thus is pertinent to ex-
amine observations for any correlation between tidal
phenomena and smaller-scale events. Such a correla-
tion could be temporal [with the intensity of small
structure modulated at semidiurnal, diurnal, fort-
nightly (i.e., the spring-spring interval) or even longer
tidal periods] or spatial (with small structure near gen-
erators different from that far away).

Although definitive studies have yet to be made,
preliminary indications are that little such correlation
exists. Cairns and Williams (1976} contour the spec-
trum of vertical displacement in a frequency-time
plane for 17 days over the frequency band 0.2-6.0 cpd
{figure 10.36) but see no modulation at tidal or fort-
nightly periods of any part of the spectrum. Wunsch
(1976) finds no correlation between the overall spectral
level of initernal waves (specifically, the spectral inten-
sity at 5-hour period of a model fitted to observed
spectra) and the intensity of the internal tidal peak for
observations from the western North Atlantic (figure
10.37).

The demonstration that tidal contributions to
ocean mixing are significant will thus involve subtle
measurements. Perhaps something may be learned by
comparing internal waves, fine structure, and micro-
structure in the open ocean with their counterparts in
the relatively tideless Mediterranean Sea or in the
Great Lakes {see chapters 8 and 9).

10.7 Tidal Studies and the Rest of Oceanography

Although tidal studies were the first dynamic investi-
gation of oceanic response to forcing, insight into wind-
and thermohaline-driven ocean circulation developed
largely independently of them. In the case of semidi-
urnal and diumal tides, the reason is primarily dy-
namic. But the dynamics of long-period tides are likely
to be much more like those of the wind-driven circu-
lation (both steady and transient} than like those of
semidiurnal and diurnal tides. It is possible that, if the
long-period components of the ATGF had been large
enough to make the long-period tides stand out recog-
nizably above the low-frequency noise continuum,
then the early tidalists might have recognized, in the
low-frequency tides, features such as westward inten-
sification also evident in the general circulation. They
might then have been forced into the recognition that
a linear superposition of (possibly damped) first-class
waves could not account for long-period tides, as it
seems able to do for semidiurnal and diurnal tides. As

things are, however, long-period tides are so near to
the noise level that their observation did not provide
a global picture clear enough to force tidalists out of
the semidiurnal-diurnal framework.

It was, in fact, insight into the problem of time-
dependent wind-driven ocean circulation that led
Wunsch {1967) to provide the modern view of long-
period tides: a superposition of damped second-class
waves (section 10.4.4) whose horizontal length scales
are only O(10° km) and whose amplitudes and phases
are likely to undergo substantial fluctuations in time
on account of the overall time variability of the ocean
currents through which they propagate. Laplace had
supposed that a small amount of dissipation would
bring the long-period tides into equilibrium, i.e., the
geocentric sea surface { would be an equipotential of
the total tide-generating potential I' (Lamb, 1932, §217).
The most recent elaboration of this view is by Agnew
and Farrell (1978}, who solved the integral equation

{=4L+8=Tlg

[with & (the solid-earth tide] and T given by (10.11) and
{10.12] as functions both of the observed tide ¢, and of
the long-period astronomical potential U,] for equilib-
rium global-ocean fortnightly and monthly tides &, sub-
ject to the conservation of mass. Wunsch’s (1967) anal-
ysis and dynamic model of the fortnightly tides suggest
that they are not in equilbrium with either the astro-
nomical potential U, or with the full potential I' of
Agnew and Farrell (1978). Their Pacific averaged ad-
mittance has magnitude 0.69 + 0.02 relative to I with
significant island-to-island variation. The Pacific av-
eraged monthly tide admittance has magnitude
0.90 = 0.05 relative to I, but island-to-island fluctua-
tions vanish only by pushing individual island admit-
tances to the very end of their error bands. Whether
the kinds of dissipation and of nonlinear interaction
between low-frequency motions that occur in the real
ocean favor an equilibrium tidal response at suffi-
ciently low frequencies is not yet known either obser-
vationally or theoretically. The 14-month pole tide is
known to be significantly non-equilibrium in the shal-
low seas of Northemn Europe (Miller and Wunsch, 1973)
but nearly invisible elsewhere.

Observations of long-period tides have thus been too
noisy to exert real influence on tidal studies and hence
on dynamic oceanography. But the theoretical ideas
emerging from study of the low-frequency solutions of
LTE have been of great importance for dynamic ocean-
ography (even though they are likely to be inadequate
to model the full dynamics of the general circulation).

Steady (as opposed to wavelike) solutions of LTE
obtained by active tidalists (Hough, 1897; Golds-
brough, 1933) had a profound effect on dynamic ocean-
ography through the review by Stommel (1957b) of

339
Long Waves and Ocean Tides




MISERY 1

MISERY 3

Frequency (cph)

67<

67<E<67
.0067< RN <.067

Figure 10.36 Contours of vertical-displacement spectral en-
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Figure 10.37 Five-hour internal wave energy at various loca-
tions vs. semidiurnal tidal energy. (Wunsch, 1976.)

successive 5.8-h data segments and the results are contoured.
(Cairns and Williams, 1976.)

ocean-current theory and through the work by Stom-
mel and Arons (1960a,b) on abyssal circulation. Golds-
brough (1933) studied nonperiodic solutions of LTE
driven by global patterns of evaporation and precipi-
tation. The solutions are steady, provided that the pre-
cipitation—evaporation distribution vanishes when in-
tegrated along each parallel of latitude between basin
boundaries. Stommel (1957b) pointed out that Ekman
suction and blowing due to wind-stress convergence
and divergence could effectively replace the evapora-
tion-precipitation distribution, while the introduction
of ageostrophic western boundary currents allowed the
solutions to remain steady even when the integral con-
straint on the evaporation-distribution function was
violated. The resulting flows display the main dynamic
features of the theory of wind-driven circulation due to
Sverdrup (1947), Stommel {1948), and Munk ({1950).
When the evaporation-precipitation function is viewed
as modeling the high-latitude sinking of deep water
and its mid-latitude subthermocline upwelling, the
abyssal circulation theories of Stommel and Arons
(1960a,b) result.

The seminal work on low-frequency second-class
motions was the study (section 10.4.4) by Rossby and
collaborators (1939), ironically inspired by meteorolog-
ical rather than tidal studies. It led, through the studies
by Veronis and Stommel {1956) and Lighthill (1969) of
time-dependent motion generated by a fluctuating
wind to the very different views of mid-latitudes and
tropical transient circulation that prevail today (al-
though, especially in mid-latitudes, linear dynamics
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are now generally ackaowledged to be inadequate for
a full description; see chapter 5). Pedlosky (1965b)
showed how the steady western boundary currents of
Stommel [1948), Munk (1950), and Fofonoff (1954)
could be viewed as Rossby waves reflected from the
western boundary and either damped by friction or
swept back toward the boundary by the interior flow
that feeds the boundary current; Gates’s (1968) numer-
ical examples showed clearly the development of a
frictional western boundary current as a group of short
Rossby waves with seaward edge propagating away
from the western boundary at the appropriate group
velocity.

Modern interest in estimating the role of direct tran-
sient wind forcing in generating mesoscale oceanic var-
iability (see chapter 11) calls for an up-to-date version
of N. A. Phillips’s (1966b) study of mid-latitude wind-
generated Rossby waves using more realistic wind
fields and taking into account new insight into the
combined effects of bottom relief and stratification
(section 10.4.7). Such a calculation would closely re-
semble a proper (linear) dynamic theory of long-period
tides. But similar caveats apply to uncritically accept-
ing either as representing an actual flow in the ocean.
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