
propagating link sausage. Martin, Simmons, and
Wunsch (1972) have demonstrated a variety of resonant
triads for a constant-N stratification.

Among the infinity of possible resonant interactions,
McComas and Bretherton (1977) have been able to
identify three distinct classes that dominate the com-
puted energy transfer under typical ocean conditions.
Figure 9.15 shows the interacting propagation vectors
in (k, m )-space. The associated frequencies o are
uniquely determined by the tilt of the vectors, in ac-
cordance with (9.4). Inertial frequencies (between f and
2f, say) correspond to very steep vectors, buoyancy fre-
quencies (between 2N and N) to flat vectors, as shown.

Elastic scattering tends to equalize upward and
downward energy fluxes for all but inertial frequencies.
Suppose that k3 is associated with waves generated
near the sea surface propagating energy downward (at
right angles to k3, as in figure 9.7). These are scattered
into k,, with the property m, = -m3, until the upward
energy flux associated with k, balances the downward
flux by k3. The interaction involves a near-intertial
wave k2 with the property m2 2m3. (The reader will
be reminded of Bragg scattering from waves having half
the wavelength of the incident and back-scattered ra-
diation.) Similarly, for bottom-generated k, waves with
upward energy fluxes, elastic scattering will transfer
energy into k3 waves.

Induced diffusion tends to fill in any sharp cutoffs
at high wavenumber. The interaction is between two
neighboring wave vectors of high wavenumber and fre-
quency, k, and k3, and a low-frequency low-wavenum-
ber vector k2 . Suppose the k2 waves are highly ener-
getic, and that the wave spectrum drops sharply for
wavenumbers just exceeding Ik3 l, such as Ikll. This in-
teraction leads to a diffusion of action (energy/w) into
the low region beyond k31, thus causing k, to grow at
the expense of k2.

Parametric subharmonic instability transfers energy
from low wavenumbers k2 to high wavenumbers k, of
half the frequency, co = 2-, ultimately pushing energy
into the inertial band at high vertical wavenumber.
The interaction involves two waves k, and k3 of nearly
opposite wavenumbers and nearly equal frequencies.
The periodic tilting of the isopycnals by k2 varies the
buoyancy frequency at twice the frequency of ki and
k3 . (The reader will be reminded of the response of a
pendulum whose support is vertically oscillated at
twice the natural frequency.)

The relaxation (or interaction) time is the ratio of
the energy density at a particular wavenumber to the
net energy flux to (or from) this wavenumber. The
result depends, therefore, on the assumed spectrum.
For representative ocean conditions, McComas (in
preparation) finds the relaxation time for elastic scat-
tering to be extremely short, of the order of a period,
and so up- and downgoing energy flux should be in

balance. This result does not apply to inertial frequen-
cies, consistent with observations by Leaman and San-
ford (1975) of a downward flux at these frequencies.
The relaxation time for induced diffusion is typically
a fraction of a period! (This is beyond the assumption
of the perturbation treatment.) Any spectral bump is
quickly wiped out. The conclusion is that the resonant
interactions impose strong restraints on the possible
shapes of stable spectra.

In a challenging paper, Cox and Johnson (1979)
have drawn a distinction between radiative and dif-
fusive transports of internal wave energy. In the ex-
amples cited so far, energy in wave packets is radiated
at group velocity in the direction of the group velocity.
But suppose that wave-wave interactions randomize
the direction of the group velocity. Then eventually
the wave energy is spread by diffusion rather than ra-
diation. The relevant diffusivity is K = (c), where r
is the relaxation time of the nonlinear interactions.
Cox and Johnson have estimated energy diffusivities
and momentum diffusivities (viscosities); they find
that beyond 100 km from a source, diffusive spreading
is apt to dominate over radiative spreading. There is an
interesting analogy to crystals, where it is known that
energy associated with thermal agitation is spread by
diffusion rather than by radiation. The explanation lies
in the anharmonic restoring forces between molecules,
which bring about wave-wave scattering at room tem-
peratures with relaxation times in the nanoseconds.

9.7 Breaking

This is the most important and least understood aspect
of our survey. Longuet-Higgins has mounted a broadly
based fundamental attack on the dynamics of breaking
surface waves, starting with Longuet-Higgins and Fox
(1977), and this will yield some insight into the inter-
nal-wave problems. At the present time we depend on
laboratory experiments with the interpretation of the
results sometimes aided by theoretical considerations.

Figure 9.16 is a cartoon of the various stages in an
experiment performed by Thorpe (1978b). A density
transition layer is established in a long rectangular
tube. An internal wave maker generates waves of the
first vertical mode. Before the waves have reached the
far end of the tube, the tube is tilted through a small
angle to induce a slowly accelerating shear flow. The
underlying profiles of density, shear, and vertical dis-
placement correspond roughly to the situation in figure
9.13.

For relatively steep waves in a weak positive8 shear,
the waves have sharpened crests. At the position of the
crest, the density profile has been translated upward
and steepened (B1). There is significant wave energy
loss in this development (Thorpe, 1978c, figure 10).

276
Walter Munk

-- I - I ·I�----·I



elastic scattering induced diffusion parametric subharmonic
instability

k

Figure 9.I5 Resonant triads for three limiting classes of in-
teraction, according to McComas and Bretherton (1977). The
propagation vectors are drawn in (k, m)-space. Radial lines

C(z)-

designate the tilt of the k vectors for w = f, 2f, IN, n. taking
N = 24f.

A

A I

A

At

A P,

Figure 9.i6 Cartoon for various stages of Thorpe's experi-
ment. The early stages lead to the development of advective
instability (upper three sketches), and the final stage to shear
instability (bottom). Waves are traveling from left to right;
the mean flow is forward in the direction of wave propaga-

tion) above the density transition layer and backward below
the transition layer. The density profiles along the indicated
vertical sections are shown to the left; a velocity profile is
shown to the top right (thin lines give the undisturbed pro-
files).
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With increased positive shear, or with increased time,
the particles at the crest accelerate, the isopycnal wave
front becomes momentarily vertical, and a jet of fluid
moves forward of the crest (B2). The resulting density
inversion gives rise to a Rayleigh-Taylor instability,
forming a turbulent patch (shaded) whose turbulent
energy is irretrievably lost to the organized wave mo-
tion. The turbulent patch becomes fairly well mixed,
and introduces a steplike feature into the density pro-
file (B3). The patch spreads horizontally under the in-
fluence of the ambient stratification, forming blini, or
pancakes. The detailed dynamics are complicated (Bar-
enblatt and Monin, 1979); it is possible that in the
oceans the spreading of the patches is eventually re-
tarded by geostrophic confinement.

In Thorpe's laboratory experiment, the later stages
of horizontal spreading are interrupted by the sudden
formation of billows that grow rapidly, extracting en-
ergy from the mean shear flow (bottom of figure). Their
wave length is quite short, only several times the
thickness of the transition layer.

Hence, Thorpe (1978b, 1979) distinguishes between
two types of instability leading to internal wave break-
ing. In the case of advective instability, breaking grows
out of existing large-amplitude internal waves: more
precisely, waves associated with steep isopycnal slopes.
Eventually the particles in the crest are advected for-
ward of the crest, leading to a local density inversion
with the potential for a Rayleigh-Taylor instability.
Advective instability can take place in the absence of
ambient shear, though it is advanced by shear. The

a)W0
0

U)

a

3:

second type is induced shear instability (Kelvin-Helm-
holtz instability in the limit of an abrupt density tran-
sition), and can take place even in the absence of any
(finite) wave disturbance, but is catalyzed by an exist-
ing wave background.

The two types appear as end points on a stability
curve in slope-shear space, constructed by Thorpe
(1978b, 1979) from theory and experiment (figure
9.17). Under the conditions described by the author,
internal waves on a transition layer are unstable if their
slope exceeds 0.34 in the absence of ambient shear, and
if the shear exceeds 2N in the absence of slope. Away
from the end points, there is advective instability mod-
ified by shear, and shear (K-H) instability modified by
advection. The stability curve for the transition profile
is not symmetric, implying that (under the prescribed
geometry) negative shear delays instability.

The essential feature of advective instability is that
the particle speed at the crest eventually exceeds the
wave speed. The stability curve in figure 9.16 has been
constructed from Ucrest = c (carrying the theory to third
order in wave slope). This is in fair agreement with
experiment. From a similar point of view, Orlanski and
Bryan (1969) had previously derived the required criti-
cal amplitude for advective instability in the oceans,
and have checked their analysis with numerical exper-
iments. They conclude that more than enough internal
wave energy exists for this type of instability to occur.
They also conclude that conditions favor advective
instability over shear instability, by the following very
simple argument. From (9.12),

'Iduced

Couette
profile trans

4)CL
0(n

U)

0
3:

UNSTABLE UNSTABLE
I 

2 -2

U /N

Figure 9.I7 Stability diagram for internal waves in a shear
flow for a Couette profile (as in figure 9.12) and for a transition
layer as in figure 9.13). Slope is defined as r wave
height/wavelength. The ordinate is U'/N (or Ri-112 ), with U
in the direction of wave propagation. For the transition profile,

layer

UNSTABLE

(U/ N)mx

U' and N2 are proportional to sech2(z - h), and hence
U'/N - sech(z - h) has its maximum value at the transition
z = h. The curves are drawn for the specific dimensions
described by Thorpe (1978a, 1979).
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mu u (1 - co2/N2~ 12

N co/k 1 f2/w2 )

u
co/k

for f<<o <<N.

But mu/N = Ri-"2 = 2 for shear instability, and
u/(co/k) = 1 for advective instability. The linearized9

treatment then says that waves have to be twice as
high to be shear unstable than to be advectively un-
stable. The trouble with this argument is that it is lim-
ited to the self-shear of an elementary wave train, and
does not take into account the imposed ambient shear
(possibly due to other components of the internal wave
spectrum). Thorpe's stability plot (figure 9.17) shows
that the instabilities can go either way, depending on
wave slope and the ambient shear.

McEwan (1973) has generated breaking internal
waves in the laboratory by crossing two internal wave
beams from separate sources. He finds that the break-
ing is associated with localized, abruptly appearing in-
tensification in density gradient and shear. These
"traumata" persist and spread, and become the locus
of incipient turbulence. True turbulent disorder was
always preceded by the sudden and widespread occur-
rence of the traumata.

In some further laboratory experiments with break-
ing internal waves, McEwan (personal communication)
has estimated separately the work done in generating
internal waves (allowing for wall friction), and the frac-
tion of this work going into mixing, e.g., going into the
increase in the potential energy of the mean stratifi-
cation. The remaining energy is dissipated into heat.
McEwan finds that something less than - of the input
energy goes into mixing, in support of an estimate by
Thorpe (1973b). (In the ocean, the mixing of salt and
heat may proceed at different rates because of the dis-
parity in the diffusivities.) Thompson (1980) argues
that this ratio is, in fact, the critical Richardson num-
ber.

All of this points toward a strong connection be-
tween breaking internal waves and the microstructure
of density and velocity. Evidently, breaking internal
waves can modify a density profile, reducing gradients
in turbulent patches and sharpening them elsewhere.
This can lead to a steppy fine structure. But we have
shown that internal wave shear is concentrated at the
steps, thus producing conditions for shear instability,
and renewed breaking. This is like the chicken and the
egg: which comes first?

9.8 Ocean Fine Structure and Microstructure

Measurements by Gregg (1975) off Cabo San Lucas and
in the North Pacific gyre (figure 9.18 and table 9.1)
speak for great geographic variability in the mixing

processes. (This is apart from the local patchiness in
microstructure even in regions of strong mixing.) Three
water masses intermingle off Cabo San Lucas: the sa-
line outflow from the Gulf of California, the relatively
fresh waters being brought in from the northwest by
the California Current, and Equatorial Water of inter-
mediate salinity from the eastern tropical Pacific. MR6
remains in Equatorial Water. MR7 is from a shallower
drop taken the next day within a few kilometers of
MR6. Here we see the intermingling of the three water
masses, each jostling for a level appropriate to its den-
sity.

Temperature inversions (negative dT/dz) are gener-
ally balanced by positive salinity gradients, so that the
density increases with depth, and N 2 is positive. The
temperature inversions have typical vertical scales of
5 m, with a step structure (e.g., just beneath feature D)
attributed to the diffusive regime of double diffusion.
The underside of temperature inversions (just above E)
is often characterized by strong salinity inversions
(positive dSldz), and by prominent microstructure at-
tributed to the fingering regime of double diffusion.
Double-diffusive processes can be very important lo-
cally; they are discussed by J. S. Turner in Chapter 8.

Occasional density inversions (such as at 13 m depth
in MR7) are accompanied by intense microstructure.
These inversions are very local, and they disappear in
a plot of 3-m averages. We are tempted to attribute the
density inversions and associated intermittent micro-
structure to internal wave breaking.

MR7 is a good example of intrusive fine structure.
Stommel and Fedorov (1967) gave the first discussion
of such features based on their measurements near
Timor and Mindanao. At the bottom of a well-mixed
layer they found a pronounced temperature inversion
(balanced by high salinity) that could be traced for
200 km! Evidently the warm saline water was formed
1 or 2 months earlier over the Australian continental
shelf at a distance of 500 km, sliding down along an
isopycnal surface. The thickness of the inversion layer
varied from 20 to 40 m. Beneath the inversion layer, a
number of warm, saline lamina of typically 5-m thick-
ness could be traced over 5 km. All these features are
associated with horizontal pressure gradients that must
be geostrophically balanced. The authors made some
calculations of the rate of lamina spreading associated
with frictional dissipation in Ekman spirals above and
beneath the lamina boundaries. Once the lamina are
thinner than 1 m, they are swiftly conducted away. I
refer the reader to Stommel and Fedorov's stimulating
discussion.

Table 9.1 summarizes some statistical parameters.
For comparison we have included MSR4 from the mid-
gyre of the central North Pacific (Gregg, Cox, and
Hacker, 1973). The three stations MR7, MR6, and
MSR4 characterize strongly intrusive, weakly intrusive
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Figure 9.18 The water structure at two stations 60 km south-'
west of Cabo San Lucas (the southern tip of Baja California),
and the associated T-S diagrams (from Gregg, 1975). The
measurements have been processed to give the fine structure
of S, T, a-,, N and the microstructure of dTldz. Note differ-
ences in scale. The cuspy T-S diagram for MR7 is an indica-
tion of intrusive fine structure.
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Table 9.1 Variances and Spectra of Vertical Gradients in the Ocean Fine Structure and Microstructure at Two Stations off
Cabo San Lucas (MR7 and MR6) and in the Mid-Gyre of the Central North Pacific (MSR4)

MR7 MR6 MSR4a

Strongly intrusive Nonintrusive

(zT - f C)2) in In 26 9x 10- 1 x 10-3

(aT)
2 in () 4x 10- 3 8x 10- 4 6x 10- 4

Thermal diffusivity
in cm2 s - 1

8 b 0.015 0.002

Cycles per meter 0.1 1 10 0.1 1 10 0.1 1 10

Spectrum of

zT in (§)CPm 2x10 -1 lxlO- 2 xlO- 2 2x10-3 2x10- 4 7x10-5 7x10- 4 lx10- 4 3xlO - 5

0aS in (- m/cpm 2x 10- 2 lx10-3 8 x 10- 4 5x10- xlO 10
- 5 ? 4x10 - 8x10- 2x 10-5

ap in(gms cpm 2x10- 9 7x10- 1°0 7x10- 10 2x10- 1 °0 2x10- 11 ? 2x10-" 1lx 10-" 9x10- 12

Spectrum of

a aTin g cmm cpm 2x10- 8 1xlO-10 9 xlO- 9 2x10-10 2x10- 11 ? 3x10- 4x10- 12 lx10- 2

baS in V_ m -)cpm 1x10-8 0.6x10-9 0.5x10-9 0.3x10- 1°0 0.6x10-11 ? 0.3x10-1 5x10- 2 13x10 -1

p-in (g r \2cpm 0.2x10-8 0.7x10- 9 0.7x10-9 2x10-10 2x10- 11 ? 2x10-1 1 0x10-12 9x10-' 2

a. MSR4 is not necessarily representative for the mid-gyre; subsequent cruises have given larger mean-square gradients.
b. The vertical heat flux for MR7 can probably not be modeled by an eddy coefficient (Gregg, 1975).

and nonintrusive situations, respectively. The conclu-
sions are: (1) The ratio of the mean-square gradient to
the mean gradient squared (the "Cox number") for tem-
perature is highly variable, from 5000 at MR7 to 2 in
the mid-gyre. Under certain assumptions (Osborn and
Cox, 1972), the eddy diffusivity is the molecular dif-
fusivity times this ratio, giving values all the way from
8 to 0.002 cm2 s- ' (but see the footnote to table 9.1).
The canonical value of 1 cm2 s- 1 [for which I am partly
responsible (Munk, 1966)] is of no use locally. (2)
Spectral levels in vertical gradients diminish with in-
creasing vertical wavenumber up to 1 cpm, and then
level off. (3) The relative contributions to the density-
gradient spectrum has been estimated from azp =
-a T + b ,S, with a = 1.7 x 10-

4 gcm-3 (C)-1, b =

8 .x 10- 4 gcm-3(0 o)-1. For MR7 at 0.1 cpm, the meas-
ured density gradient is much smaller than that in-
ferred from either temperature alone or salinity alone.
This is consistent with the near cancellation between
temperature and salinity for intrusive features. (4) At
higher wavenumbers for MR7, and at all wavenumbers
of MR6 and MSR4, the density gradient spectrum is of
the same order as that inferred from temperature or
salinity alone, thus implying the dominance of internal
waves.

Probability densities of the temperature gradients are
highly non-Gaussian with an enormous flatness factor
(138 for MR7, 55 for MR6) attesting to the patchiness
(Gregg, 1975). The construction of meaningful ensem-
ble averages in a highly intermittent environment
(space and time) is an important task for the future.

To return now to internal waves, we can distinguish
between two quite different effects on vertical profiles:
(1) an (irreversible) microstructure and fine structure
associated with intermittent internal wave breaking,
and (2) a (reversible) fine structure due to the vertical
straining of an otherwise smooth profile by internal
waves of short vertical wavelength. The reversible con-
tribution to fine structure by internal waves was first
noticed by Lazier (1973b) and Garrett (1973). How are
we to distinguish it from diffusive land other irrever-
sible) fine structure?

Let 8T and 8S designate departures in (potential) tem-
perature and salinity from some long-time or long-dis-
tance averages To(z), S0(z) at the same depth. Then

$p = -a 8T + b S

is the associated density departure, with a(T, S. p) and
b(T, S, p) designating the (positive) coefficients of ther-
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mal expansion and haline contraction. Take first the
case of an intrusion only (figure 9.19). If it is totally
compensated,

8p =0,

and if it is not totally compensated, it soon will be (in
a time of order N-'). It follows that any vertical dis-
placement of the isopycnals is not intrusive but due to
a vertical displacement of the water, which we asso-
ciate with internal waves (see next section). The ver-
tical displacement 4 can be found from conservation of
potential density:

P(z + ) = PolZ).

For the case of internal waves only, conservation of
potential temperature and salinity give

T(z + ) = To(z), S(z + ) = So(z),

and the -values from the three preceding equations
should be the same:

P = T = S- (9.17)

Then in general, ,p gives the vertical displacement by
internal waves, and rT - p and s - ,p are measures of
intrusive activity.

Figure 9.20 shows the situation in (T, S)-space. In the
combined case, a projection parallel to the isopycnals
can separate the two effects. For constant a and b, it is
convenient to introduce a family of lines that are or-
thogonal to the lines of equal potential density (Ve-
ronis, 1972). They are here designated by r, for "spici-
ness" (hot and salty°1 ), and they give a measure of the
strength of the intrusion. The construction in (p, ir)-
space has some convenient properties. If the x- and y-

internal wave intrusive glob

T
_7--

h'mp

-- o,,--

"-. ....... /

P

Figure 9.I9 Contours of potential temperature, salinity and
potential density in a vertical section (x,z) for an internal
wave hump and a compensated warm and salty intrusive glob.

axes are scaled in equivalent density units, bS and aT,
then

8p = -aT + bS, 87r = aT + bS. (9.18)

Figure 9.21 shows plots of the inferred vertical dis-
placements in an area 200 miles southwest of San
Diego (Johnson, Cox, and Gallagher, 1978). T, s, and
Up should all be alike for the case of a fine structure
due to internal waves only [equation (9.17)], and this
turns out to be the case down to a depth of 225 m.
There is a broad intrusion between 225 and 260 m, and
a narrow intrusion at 275 m. From a spectral analysis
it was found that internal waves dominated the fine
structure for all vertical scales that could be resolved,
that is, down to 5 m.

The displacement spectrum in vertical wavenumber
m steepens from approximately m-2 for m < mu to m-3

for m > m,,, with mu, near 0.6m-1 (-0.1 cpm). This
kink appears to be a common feature in temperature
spectra (Gregg, 1977; Hayes, 1978), and is most clearly
portrayed in the temperature-gradient spectra figure
9.22). A similar steepening is found in the spectrum of
currents and current shear, but at a somewhat lower
vertical wavenumber (Hogg, Katz, and Sanford, 1978).

A free-fall instrument called the "camel" for meas-
uring the velocity microstructure has been developed
by Osborn (1974; see chapter 14). Figure 9.23 presents
measurements in the Atlantic Equatorial Undercurrent
during the GATE experiment (Crawford and Osbom,
1980). The most intense microstructure of temperature
and current was found above the velocity core. The
microstructure in the core was weak and intermittent.
Moderately intensive microstructure was found below
the core, near the base of the thermocline. This is
shown in great detail in figure 9.24. As an example,
between 81 and 82 m there is an active temperature
microstructure with positive and negative OzT, accom-
panied by an active velocity microstructure. Similar
evidence is found in horizontal tows, as for example in
the upper part of figure 9.25 (Gibson, Schedvin, and
Washburn, personal communication; see Gibson,
1980). The important conclusion is that velocity mi-
crostructure and small-scale temperature inversions
must be closely linked, for one is not found without
the other.

Occasionally one encounters patches of temperature
microstructure without velocity microstructure. The
inference is that these patches are the remains of a
mixing event for which the velocity microstructure
has decayed (fossil turbulence). Examples are found in
the vertical profiles (figure 9.24 between 69 and 70 m
depth), and in the horizontal tows (figure 9.25, bottom).
But for the vertical profiles the temperature micro-
structure is here limited to only positive OzT; the au-
thors suggest that this might be a peculiarity of the
core (velocity and salt) of the undercurrent.
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Figure 9.20 T-S relations for an internal wave hump and a
compensated intrusive glob. The dots (e) correspond to the
undisturbed positions of the five contours in figure 9.19. The

open circles (o) give the positions through the center of the
disturbance. The "isospiceness" lines (constant r) are orthog-
onal to the isopycnals (constant p).
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Figure 9.21 Displacement profiles in meters as inferred from
the temperature, salinity, and density profiles. These should
be alike for internal wave produced fine structure. The mean
T and S gradients were of opposite sign as in figure 9.19),
hence the opposite signs of AT - ,p and ts - ,. (Johnson, Cox,
and Gallagher, 1978.)

(°C m-1)2c 0-5¢pm

in-B
10 10' 101

m (cpm)

Figure 9.22 Temperature gradient spectra for two stations in
the North Pacific. (Gregg, 1977.)

Crawford and Osborn have calculated the dissipation
rates. Typical values just beneath the core of the un-
dercurrent range from e = 10- 4 to 10-3 cm2 s-3 (10-5 to
10-4 W m-3 ). (Measurements away from the equator fall
within the same limits.) But Belyaev, Lubimtzev, and
Ozmidov (1975) obtain dissipation rates in the area of
the undercurrent from horizontal tows that are higher
by two orders of magnitude."1

The question of the relative magnitudes of vertical
and horizontal scales has been examined by Hacker
(1973) from a comparison of wing tip and nose tem-
peratures of a rotating free-fall instrument. The hori-
zontal separation is 1.7 m. The two records are coher-
ent for vertical wavelengths down to 1 m. At smaller
wavelengths the analysis is made difficult by the ran-
dom tilts (50 rms) associated with internal waves. By
selectively analyzing depth ranges of small tilts, Elliott
and Oakey (1975) found coherence over a horizontal
spacing of 0.5-m down to 10-cm vertical wavelengths.
The conclusion is that anisotropy extends beyond the
fine structure into the microstructure, perhaps as far
as the dissipation scale (-1 cm).

The picture that emerges is one of a fine structure
that is usually dominated by internal wave straining
and is fairly uniform, in contrast to a microstructure
that is extremely patchy and variable even in the mean.
Patches of temperature microstructure without veloc-
ity microstructure ("fossil turbulence") evidently mark
the demise of internal waves that had previously bro-
ken.

9.9 An Inconclusive Discussion

Is there a connection between internal wave activity,
dissipation, and buoyancy flux? What is the explana-
tion for the seeming steadiness of the internal wave
field? Having gone this far, I cannot refrain from con-
tinuing with some speculation. The reader is encour-
aged to go no further (if he has gotten this far).
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Figure 9.23 Temperature and velocity microstructure in the
Atlantic Equatorial Undercurrent at 0° 18'S, 2801'W. (Craw-
ford and Osborn, 1980.) The large scale-current profile was
measured by J. Bruce. The region between 65 and 82 m is
shown on an enlarged scale in figure 9.24.
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Figure 9.25 Active and fossil turbulence from towed body
measurements during the mixed-layer experiment (MILE) in
September 1977 near ocean station PAPA. The body was
towed in the seasonal thermocline at a depth of 33 m; note
the horizontal temperature change by about 0.3°C across the
patches. The 1°C scale (left) refers to frequencies f < 1 Hz; the
0.17°C scale is for 1-12 H.
(I am indebted to C. Gibson, J. Schedvin, and L. Washburn for
permission to show these measurements. See also Gibson,
1980.)

Figure 9.24 An enlarged section of the microstructure profile
shown in figure 9.23. The encircled features have been attrib-
uted to various sources of instrumental noise.
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We shall need some quantitative guidance for inter-
nal wave intensities. For that purpose I shall use the
model spectrum of Garrett and Munk (1972b, 1975,
1979), with slight modifications. The model fails near
the ocean boundaries12 (Pinkel, 1975). The spectrum
was developed on the basis of rank empiricism, with
no trace of underlying theory. But it has since gained
some respectability by the theoretical findings of Wat-
son and collaborators that the shape of the GM spec-
trum is stable to nonlinear interactions, except for the
lowest modes and near-inertial frequencies [Meiss,
Pomphrey, and Watson (1979); Pomphrey, Meiss, and
Watson (1980); see also McComas (1977)].

9.9.1 Model Spectrum GM79
The internal wave energy is assumed to be equally
distributed in all horizontal directions, so that only a
single horizontal wavenumber, k = (k2 + k2)"2, is used.
Upward and downward energy flux are taken as equal.
The spectra of vertical displacement, horizontal veloc-
ity, and energy per unit mass are 3

F(wo,j) = b2NoN-(o2 - f2)t- 2E({,j), (9.19)

F(o,j) = FU + F.2 = b2NoN(Wo2 + f2)c- 2E(w,j), (9.20)

Fe(to,j) = (FU + N2F) = b2NoNE(o,j), (9.21)

where j is the vertical mode number, b 1.3 km the
e-folding scale of N(z), with No - 5.2 x 10-3 s - 1 (3 cph)
the surface-extrapolated buoyancy frequency and f =
7.3 x 10-5 s -I the Coriolis frequency at lat. 30° . We can
ignore Fw compared to Fu. At high frequencies, o > f,
kinetic and potential energy densities are equal: IFu =
iN2 Fc. E(co,j) is a dimensionless energy density that is
factored as follows:

Elo,j) = B(o)-H(j)-E,

B(w) = 2 1r-fo-'l( 2 - f2)-12,

(j2 + j2 )-
H(j) = (j2 + )-'

fB(o)d = 1,

H(j) = 1.
j=1

The factor (W2 - f2)-112 in the expression for B(w) is a
crude attempt to allow for the peak at the inertial
turning frequency (see figure 9.11); ji = 3 is a mode
scale number, and E is the internal wave "energy pa-
rameter." We set

E = 6.3 x 10- 5 (dimensionless). (9.22)

There is a surprising universality14 to the value of E
(mostly within a factor of two).

The transfer into (w,k)- or (o,m)-space is accom-
plished by setting F(co,j) Sj = F(lok) dk = F(co,m) dm,
with

m = k ( ) 1/2= -rb1 (N ) 1/2 (9.23a)

for a slowly varying N(z), in accord with the WKB
approximation [equations (9.4) and (9.7)]. For most pur-
poses we can ignore the situation near the buoyancy
turning frequency,15 so that

m kN(o 2 - f2)-'12 - b-'(NIN . (9.23b)

For the sake of simplicity, the energy spectrum has
been factored into B(w)-H(j). But there is evidence from
Pinkel (1975) and from the IWEX measurements
(Miller, Olbers, and Willebrand, 1978) that there is
relatively more energy in the low modes at high fre-
quency, and this could account for the astounding ver-
tical coherences found by Pinkel in the upper 400 m at
high frequencies.

I have no doubt that further discrepancies will be
found; still, I believe that the model can now give
useful quantitative estimates. For example, according
to "Fofonoff's rule" (he disclaims ownership), the
mean-square current within a 1-cph band centered at
1 cph is 1 cm2s-2; this compares to F(1 cph) =
0.8 cm2 s-2 (cph)-l from (9.20). This agreement is not
an accident, of course, the GM model having been
based, in part, on the site D measurements (Fofonoff,
1969).

The mean-square quantitites are likewise in accord
with the usual experience. From (9.19), (9.20), and
(9.21),

= f d F = 3(Nw mj)

= b2ENoN-' = 53(NINO)-l M2 ,

(u2) = (u2) + (U2) = f do F(,i)

= {b2ENoN = 44(N/No) cm2 s-2,

ez) = dYo Fe()

= b2ENoN = 30(NINo) cm 2 s-2,

(9.24)

giving 7 m for the rms vertical displacement and
7 cms - I for the rms current in the upper oceans be-
neath the mixed layer. The energy can be written al-
ternatively E(z) = [(u2) + N2(~)] so that the total
kinetic energy is three times the total potential energy
in the GM model. pP(z) is the energy per unit volume;
the energy per unit area is

p = f pE(z)dz =pb2ENo f Ndz = pb2ENo f bdN

- pb3NIE

= 3.8 x 106 ergcm- 2 = 3800 Jm -2 ,

using b - = N-1 dN/dz as definition for the e-folding
scale b.

9.9.2 Universality
It has turned out, quite unexpectedly, that the intens-
ities are remarkably uniform in space and time.
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Wunsch (1976) has made a deliberate attempt to find
systematic deviations for a variety of deep water loca-
tions in the North Atlantic, with the purpose of iden-
tifying sources and sinks of internal wave energy. Us-
ing the frequency band to cph as a standard, the
only clear deviations he could find were associated
with topographic features, particularly Muir Seamount,
and even these were inconspicuous at short distance.
In a further study (Wunsch and Webb, 1979) some evi-
dence is presented for deviations on the equator and in
regions of high mean shear.

Figure 9.26 shows a continuing spectral display over
an 18-day period, and this is found consistent with a
stationary Gaussian process (Cairns and Williams,
1976). [The mean distribution is in accord with the
equation (9.19) for Fco) = XFd(o,j), setting XH(j) = 1.]
These observations were taken during 21 days of mild
to moderate winds. Davis (personal communication)
has recorded currents in the seasonal thermocline over
a 19-day interval with two periods of heavy winds (fig-
ure 9.27). The first event is followed in about 2 days
by an increase in mean-square currents, the second
event in somewhat less time. Energy enhancement is
by a factor of three or less. Johnson, Cbx, and Gallagher
(1978) found a temporarily elevated spectral level on a
windy day. Following these events, the intensities rap-
idly relax to their normal state.

9.9.3 Generation
The observed growth times are consistent with a the-
ory for the generation of internal waves by resonant
interaction with surface waves (Brekhovskikh, Gon-
charov Kurtepov, and Naugol'nykh, 1972; Watson,
West, and Cohen, 1976).

But there are other means of generating internal
waves. Garrett (1979) has reviewed a variety of con-
tenders, all of which fall (surprisingly) into the right
order of magnitude. For reference, he takes 7 x
10-3Wm -2 for the internal wave dissipation (corre-
sponding to a relaxation time of one week). Globally,
this amounts to 2 TW (terawatts: tera = 1012'. The total
loss of energy of the earth-moon system is known from
the moon's orbit to be 4 TW, mostly by tidal dissipa-
tion in the oceans. It is not impossible that surface
tides pump significant amounts of energy into internal
wave motions via internal tides (cf. chapter 10). Other
contenders are surface forcing by traveling fluctuations
of wind stress and buoyancy flux, currents over bottom
topography, and extraction from the mean current
shear. There is no problem with supplying internal
waves with 2 TW of power; the problem is rather to
eliminate some of the potential donors.

9.9.4 Instability
We can now derive some numerical estimates for a
variety of instability parameters. The spectrum Fu,,, of

spectrum of vertical displacement

,, wind stress

' ,I 27 19 , 25

1974 July

Figure 9.26 Time-frequency display of F,(w) from MISERY 1
and MISERY 3. (Caims and Williams, 1976.) (t) is the depth
of the 6.60" isotherm (at a mean depth of 350 m) in a location
800 km offshore of San Diego, California, measured with a
yo-yoing midwater capsule. The squared wind (bottom) shows
light winds at the start and end of the experiments.
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30- kinetic energy
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GM- As L u N/V= __ 54 m
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O' A ._

. . . . ' 3 1 1 ' ' ' ' 
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Figure 9.27 Kinetic energy (u 2) = (u) + (u2) during the
mixed-layer experiment (MILE) on station PAPA (50"N,
145"W) at 42 and 54 m depths. The upper two plots refer to
a frequency band of 0.3 to 1.0 cph, the next two plots to a
band 1.0 to 2.5 cph. The squared wind (bottom) shows two
episodes of large wind stress. The GM model levels are indi-
cated [using N = 0.023, 0.0096 s-1 (13, 5.5 cph) at 42, 54 m],
though the model is not really applicable to such shallow
depths and sharp N-gradients. (I am indebted to R. Davis for
permission to use his measurements.)
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the reciprocal Richardson number is defined by

Ri - = ((u')2)/N2 = dco Fu'/N(O,j),

where ((u')2) = ((dzu,)2) + ((Zu2)2) = m2(u2). But
m = 7rrb-'(N/No)j (9.23b) and so

Fu,/N = 2*rE(N/No)f(o2 + f2)o-3(o2 - f2)-1/2j2H(j). (9.25)

The principal contribution comes from the inertial fre-
quencies. Performing the co-integration,

Ri-' = 'Tr2E(N/No0)j2H(j). (9.26)

We now perform the mode summations (subscript u
for upper)

ju
Y j2(j2 + i,)-' - Ju,
j=l

jU
E (j2 + j2)-i lij2 (rj* - 1) -1' = 0.47

j=1

for ju >> ij = 3. The spectrum Fu,/N(j) is white (except
for the lowest few mode numbers) and Ri-' depends on
the choice of the upper cutoff ju. In terms of the lim-
iting vertical wavenumber mu = 7rb-l(N/N0)ju we have,
finally,

Ri - ' = urJEmub. (9.27)

If we identify mu with the kink (figure 9.22) at 0.6m-'
(0.1 cpm), then Ri-' = 0.52. If the spectrum is extended
beyond the break, with a slope m - 1 to some new upper
limit muu = 10mu (say), then Ri- = 0.52(1 + lnmuu/m,)
= 1.72. Hogg, Katz, and Sanford (1978) find Ri-' near
0.5 in the open ocean near Bermuda, including m up to
0.2 cpm. An interesting scatter plot has been produced
by Eriksen (1978) and is shown in figure 9.28. The
conclusion is that the internal-wave shear field is as-
sociated with Richardson numbers of order 1:

Ri-' = order(l). (9.28)

We can proceed in a similar manner with regard to
advective instability. The simplest generalization of
the earlier discussion (section 9.7) is to derive the spec-
tral decomposition of (u2/c2), c = co/k. (Would
(u2)/(C2) be better?) The equations of continuity and
of dispersion (away from the turning frequencies) can
be written

kf+m(4=0, c = ol/k=N/m,

so that

u mu u'
c mc N'

Similarly, for horizontal and vertical strain,

a/1ax = -/az = ik6 = (k/o)u = u/c.

0.510- -

d I
N 2

0 0.5x10
-

<u' 2>

10 (S-2 )

Figure 9.28 A scatter plot of squared shear (over 6.3 m vertical
separation) versus N2 (over 7.1 m) of estimates made every
40 s for 78 hours. (Eriksen, 1978.) Eriksen finds that Ri rarely
falls below the critical value , and that = tan- Ri is
uniformly distributed for greater than tan-(l).

Thus shear, advection, and longitudinal strains all have
similar conditions for instability, and we can write

(42) = CEmub (9.29)

for any of these, without having to go into gruesome
details. [Integrations yield C = 2.5, 5.8, 3.3, 3.3 for
u'/2N, u/c, 0.at , 0,, respectively; this is a spectrally
weighted version of the Orlanski and Bryan argument
[equation (9.16)] that advective instability is the most
likely to occur.]

9.9.5 Compliant Wave Cutoff
The instability condition (42) = order(1) is an argu-
ment for a universal value of the product Emu. To
account for a universal E we need some additional
condition.

I propose that the upper cutoff mu is related to the
transition at c, N/m = rmsu from the intrinsic to
the compliant parts of the internal wave spectrum:

mu = C'm = C'N/rmsu, (9.30)

where C' is a constant of order (1). It stands to reason
that the strongly interacting high wavenumbers have
a different spectral form from the intrinsic waves. If
we identify mu with the kink (figure 9.22) at 0.6 m-l
(0.1 cpm), then for N = 0.01 s- 1 and rmsu = 10 cm s -

this gives C' = 6 (somewhat large for comfort).
There is an equivalent way of postulating the upper

cutoff. The -spectrum is white up to some limit
which is the reciprocal of the vertical extent A of the
smallest +-features. One might suppose this vertical
extent to be some given fraction of the rms amplitude
of the internal waves. (White caps occupy some frac-
tion of the surface wave crests; the distance between
crests is not a critical factor.) Using the foregoing num-
bers, we can write

A = m ' = 1.37(C')-'rms (9.31)
= 0.23 rms = 1.7 m.
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From the expressions (9.24) for (2) and (u2), either
condition (9.30) or condition (9.31) leads to an energy
parameter

E = [(02)ICC']2No/N. (9.32)

For C = 5, C' = 6, E = 10-3(4)2)2No/N. Then with (42)

a moderate fraction of its critical value 1, we can re-
cover the numerical value E = 6 x 10-5. This is not to
say that E has been calculated from first principles; it
is only to say that acceptable values for the various
coefficients lead to a small numerical value of the di-
mensionless energy parameter, as observed.

9.9.6 Dissipation
For small numerical values of the instability parameter
(42) we are in a regime of sparse instabilities in space
and time (such as incipient whitecaps in light winds).
When (4)2) is near 1 the probability for instabilities is
high. For an a priori estimate of (42) we require (1) a
model to relate (4)2) to the internal wave energy dis-
sipation, and (2) an estimate of the rate of dissipation
(or generation for a given steady state). This is essen-
tially the procedure followed by Longuet-Higgins
(1969a) in his stimulating attempt to interpret the Phil-
lips saturation constant for surface waves.

Perhaps the simplest scheme is to relate the dissi-
pation to the probability for 4) > 1.16 The variance of
4 associated with 4) > 1 is (2) p ( > 1) for uncorre-
lated and 4 (as when 4 = 0z,). Potential energy is
proportional to (2); accordingly the rate of fractional
energy dissipation can be written

1 dE
= -op() > 1), (9.33)

E dt

where -' is the characteristic interval during which
the energy associated with 4) > 1 is lost to the organized
wave field and renewed by generation processes. For a
rough estimate (Garrett and Munk, 1972a),

N N

,2 _,-2tf/ 2F,(&o)do,/ f Fl(wo)do

7 r-2fN (9.34)

for any of the 4-spectra [such as (9.25)]. A Gaussian 4)-
distribution p(4)) = r-1/23exp(-i,342 ) leads to

1
p (4) > 1) = r-' 2/3-1/2 exp(-3), 2 - ' (9.35)

provided ,3 is large. In the upper ocean or = 20 per day,
and 3 = 2.1, 3.7, for relaxation times of 1 day, 1 week,
respectively. The foregoing numerical values are not
important; what is significant is that a tenfold increase
in the rate of dissipation (and generation) is accom-
panied by only a threefold increase in /32 (and hence in
wave energy). Thus the energy level stays within rather
narrow limits even though generation and dissipation

processes may vary widely, particularly for large /3. We
propose for a "universality hypothesis" that the energy
level responds only logarithmically to variable forcing.
We shall examine this situation in more detail.

9.9.7 The Energy Balance
The differential equation of wave energy can be written

dEldt = G(t) - D(t),

where G(t) and D(t) are the rates of energy generation
and dissipation. We use the notation E, , D to repre-
sent the "normal" state of internal wave statistics.
From (9.32) and (9.35)

E - 3-2(No/IN), D - fi-'/2e-,

with ID = . We define the relaxation time

= G ;

accordingly t-' is the initial rate of decay for a wave
field in equilibrium with 0 if the generation is sud-
denly turned off. The differential energy equation can
now be written+ W4" exp[(l -W-12)] = g(T),
dr

(9.36)
h = e2(N/No) - '2,

where

(T) = E/E, g(-) = G/G,

with

= t,

(g) = 1, (g) = 1.

For large , the dissipation is g14 exp and thus large;
for small , it is Wg,4 exp _(W-12) and thus very small.

The problem is to derive properties of the energy
statistics for given generation statistics. (This is related
to the fluctuation-dissipation theorem in the study of
Brownian motion.) Two special solutions are easily
found. For an equilibrium situation, (9.36) with
dWl dr = 0 gives the values g(g;i) in table 9.2. Depar-
tures from the normal state in E are much smaller than
those in g, particularly at large 3 and for small g's.

To obtain some feeling for the nonlinear response
time, let g(r) go abruptly from 1 to g at time 0, and set

(r) = 1 + E(T), with E << 1 (but not e/3 << 1). Equation
(9.36) becomes

dzldr' + 2 = gz, z = exp{½fE), T= 3T,

with the solution

2 (g - l)z
lg g-z

For the case g -- 0, r' -- z- -- 1, and

de/dr = 2-' d lnz/dr -z, (9.37)
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Table 9.2 Energy Equilibrium i({g,) from (9.36) for dI/dT =
0 (top), Dimensionless Response Time r1/2 (9.38) for an
Abrupt Change in Generation from 1 to g (center),
Relaxation Time r,12 (9.39) for a Change fromg to 1
(bottom)a

g (dB)

-10

Energy levels in dE
2 -6.0

A8 5 -3.0

10 -1.7

-5 0 5 10

-3.4 0 4.9
-1.7 0 2.0
-0.9 0 1.0

Response time (dimensionless)
2 2.75 1.41 0.69

A 5 1.10 0.56 0.28

10 0.55 0.28 0.14

Relaxation time (dimensionless)
2 1.43 1.02 0.69

A 5 0.57 0.41 0.28

10 0.29 0.20 0.14

1 = (r1)- m12 exp( -,8)A,

where p1(z), (z) are the dissipation and energy per
unit volume, respectively. The dependence on depth is
through

(r -n, n- l'2, A - n,

with n(z) = N(z)/No; hence

13.0 /1 = od-3912 exp(,/0 - ), A = 0oP-2.

4.6

2.1

0.32 0.14

0.13 0.06
0.06 0.03

0.45 0.27

0.18 0.11

0.09 0.05

a. Generation g and energy g are in decibels relative to
normal levels.

in accord with d/edr = -1 for the initial rate of decay.
As T goes from 0 to o, z goes from 1 to g, and e from
0 to 2 - 1 lng. Half energy response is for E = -1 lng,
z = g1 2, and

r1/2 = 2-lg -1 ln(l + g 2). (9.38)

For energy relaxation, going abruptly from g to 1 at
time 0, the solution is

T = 2ln, - 1)z 1/2 = 2-'ln(1 +g- 2). (9.39)= g(z - 1)' 

Half-times T1/2 are given in table 9.2. For a linear
system these would all be the same. Here the times are
shorter for internal wave storms (g > 1) and longer for
calms (g < 1), and this variation is more pronounced
in response to a change in generation from a normal to
a perturbed level than for relaxation back to normal
generation. (The assumption of weak nonlinearity for
computing T is violated in the columns forg = + 10 dB.)

The imperceptible decay of internal wave intensities
during relatively low winds (figure 9.26) is consistent
with half the normal energy, and the rapid decay fol-
lowing a blow (figure 9.27) requires perhaps three times
normal energy. If we can count on a storm or some
other generation event to "top up" the internal wave
energy once every hundred days, then we may expect
the wave energies to remain generally within a factor
of two.

I have paid no attention to depth dependence. The
dissipation can be written

Writing dz = b dnln = -2b d/3l/,

f D dz = 2bof 11/2 exp1,30 -l8) dl3,

f dz = 2bAof -3 dl.

Integrating from the surface ( = o)
(3 oo), the integrals for large o (as
sumed) give

f15 dz = 2bO,lo30-2,

to the bottom
previously as-

f dz = boi 2

with an "integral relaxation time"

1l721olbo = jgl:/2 04eool-. 19.40)

Suppose the generation takes place in the upper few
hundred meters, so that the dissipation in the interior
ocean is compensated by downward radiation of inter-
nal wave energy. From a rotary decomposition of cur-
rent profiles, Leaman (1976) estimates a downward flux
of order 10- 4 Wm-2 . We compare this with the inte-
grated dissipation beneath a scale depth z = -b -
-1.3 km where n = e-L and 8 = 8oVe):

P B l(z)dz = 2 -112e-ll 4 a-6e-ooN20pb 3a,

where P is the "normal" dimensionless energy param-
eter. The result is 130 = 2.1. The corresponding integral
relaxation time [equation (9.40)] is 7 days. The normal
surface relaxation time is

io = A 01o = (Tr3plo112ela-' = 1.1 days.

The dimensionless times in table 9.2 can be interpreted
as shallow response times in days.

The strong dependence of dissipation on depth is an
inherent feature of the proposed phenomenology.

9.9.8 Mixing
The balance between production and dissipation of tur-
bulent energy can be represented by

tX = E = E + Ek- (9.41)

pep is the rate of production of potential energy, e.g.,
the buoyancy flux g(w'p'), with the primes designat-
ing the fluctuating components; pek is the dissipation
of kinetic energy into heat. The fraction of work going
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into potential energy is the flux Richardson number
Rf:

Rf = Ep/p = E,/E. (9.42)

Rf < 1 in order for Ek > 0. We have previously discussed
the evidence that something less than of the kinetic
energy dissipated appears as potential energy. Taking
a typical value Ep/Ek = (Thorpe, 1973b, p. 749) gives
Rf = . The eddy flux of density can be written in terms
of the eddy diffusivity A: (w'p') = A dp/dz =
AN2 (g/p)-l = pp/g, and so

EsE Ek RfA = - N- R f N2f (9.43)

Our procedure is to estimate E, from internal wave
breaking, and to compute A and E from (9.43), using
Rf = . There are, of course, other sources of turbu-
lence; Osborn (1980) stresses the work done by the
ambient turbulence in a mean shear: tz = (u'w') du/dz.
His procedure is to estimate from the measured
mean-square shear, and to compute A from (9.43).

The random superposition of internal waves leads to
the intermittent occurrence of "traumata" 7 associated
with > 1. The traumata are the locus of incipient
turbulence, and quickly spread to some thickness A
within which the average , is reduced from 1 to about
0.9 (Thorpe, 1973b). Subsequently the patch continues
to grow to some maximum thickness Amax at the time
the surrounding is largest, always keeping within
the patch to 0.9.

The change of potential energy per unit surface
area associated with perfect mixing over a depth A
in a density gradient dp/dz is (1/12)g(dpldz)A3 =
(1/12)pN2 A3 . (Imperfect mixing just reduces the factor
1/12.) The average change of potential energy per unit
time per unit volume is then

PE, = 1 pN2
A

3 v,12

where v is the number of traumata per unit (t, z)-space.
pe, equals the buoyancy flux pN2A by definition of the
eddy diffusivity A; hence

A 1 A3 v
12

I have previously identified A with mu' [equation
(9.31)]. For v we write

V = m'op( > 1), m' = 0.2m, 7 r-'(fN)

where m' is the rms spacial frequency derived frc
equation analogous to (9.34). Putting all this tog

A 10-2 A2/T, T o-lflm'12et,

1/2

)m an

where T is the expected time interval between events
over a distance I/m'. This is of similar form as the
result of Stommel and Fedorov (1967), as is inevitable
for what is, after all, a mixing-length theory.

The principal conclusion is a strong dependence of
A on depth, and on any departures from normal gen-
eration. The numerical value for the normal state is
A = 10-2 cm 2 s -', much lower than the global 1 cm 2 s- '.

9.9.9 Saturation Spectra
There is an essential distinction between the usual
formulation of turbulence and the saturation processes
as here envisioned. We consider the regime of sparse
instabilities in space and time (such as incipient white-
caps in light winds). Then the +-field consists of scat-
tered and uncorrelated spikes, and the -spectrum is
accordingly white up to some limit that is the recip-
rocal of the vertical extent of the spikes. The dissipa-
tion is localized in physical space, and therefore
broadly distributed in wavenumber space. In the usual
turbulent situation, the dissipation is confined to a
narrow (dissipation) region in wavenumber space, and
spread in physical space.

A white spectrum in any of the +-spectra, whether
shear, advection or strain, implies an m- 2 energy spec-
trum. The energy spectrum steepens (perhaps to m -3 )
in the transition from the intrinsic to the compliant
waves. Presumably the m - 3 energy spectrum extends
to the Ozmidov (or Richardson or Monin-Obukov)
scale m, = (N3/e)'2 4 m- 1 (about 0.6 cpm), which is
conveniently close to the definition of the microstruc-
ture boundary, then flattens out to the Kolmogorov
dissipation scale mk = (E/v3)'4 3 cm- ' (0.5 cpcm), and
finally cuts off exponentially (Gregg, Cox, and Hacker,
1973, figure 11). But such a description of "in-the-
mean" scales may not be appropriate to a patchy en-
vironment, and is anyway beyond the scope of this
survey.

9.10 Conclusion

I shall end as I started: the connection between internal
waves and small scale processes-that is where the key
is. I feel that we are close to having these pieces fall
into place, and I am uncomfortable with having at-
tempted a survey at this time.

Notes

1. They were found at Loch Ness at about the same time
(Watson, 1904; Wedderbum, 1907).

ether, 2. The temperature measurements were made using a sub-
marine cable from a recording Wheatstone bridge on the shore

(9.44) at Bermuda to two resistance thermometers offshore: both lay
on the bottom, one at a depth of 50 m and the other at 500 m
(Haurwitz, Stommel, and Munk, 1959).
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3. Salinity is not directly measured, but has to be inferred
from conductivity or sound speed, which are primarily re-
sponsive to temperature. This large temperature "correction"
has been a source of some difficulty.

4. The notation U' = 8zU refers to the ambient shear, and
u' = 0,u to the shear induced by the orbital wave motion. The
distinction is not always so clear.

5. In general, forward flow refers to positive c(g x curlU),
where g and U are the vectors of gravity and ambient velocity,
respectively.

6. I am indebted to D. Broutman for very considerable im-
provements of this section, and for the preparation of figure
9.14.

7. The linearized calculations indicated that they are in fact
not small.

8. Backward breaking occurs for negative shear; this can be
visualized by turning the figure upside down.

9. Frankignoul's (1972) treatment of fnite amplitude waves
[his equations (24) and (28)] lead to precisely the same result.

10. Garrett points out that a lot of laboratory experiments
have been sweet-and-sour rather than spicy.

11. It has been suggested that vibration and temperature con-
tamination contributes to the high values from the towed
devices; it has also been suggested that the dropped devices
have inadequate dynamic range to measure in the highly
active patches where most of the dissipation takes place.

12. A normal-mode formulation is applicable near the bound-
aries (Watson, Siegmann, and Jacobson, 1977).

13. Frequencies are in rads-', wavenumbers in radm-1. For
comparison with computed spectra we sometimes include (in
parenthesis) the values in cycles per hour (cph) and cycles per
meter (cpm).

14. We note that Fe(t >> f) a E(w,j) - o-2fE. There is some
evidence that the spectral energy density is independent of
latitude (Wunsch and Webb, 1979; Eriksen, 1980), and we
should probably replace fE by NoE', with E' = (f30oNo)E =
8.8 x 10- 7 the appropriate f-scaled energy parameter.

15. Desaubies (1973, 1975) explains the observed N-peak in
the spectrum and the vertical coherence of vertical displace-
ment.

16. This is related to the "intermittency index" evaluated by
Thorpe (1977) from temperature inversions in Loch Ness.

17. "A disorderly state resulting from stress." This descrip-
tive terminology is due to McEwan (1973).
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