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5.1 Introduction and Summary

The past 30 years have witnessed a rapid evolution of
circulation theory. Much of the progress can be attrib-
uted to the intuition and physical balance that have
emerged from the use of simple models that isolate
important processes. Major contributions along these
lines were made by Stommel, Welander, and others.
An excellent presentation of the ideas together with a
number of significant advances appears in Stem's
(1975a) book. More recently numerical simulations
have provided a different attack on the problem. Proc-
esses that are difficult to study with analytical models
become accessible through the latter approach. Early,
climatological-type studies by Bryan have now been
supplemented by numerical models oriented toward
the isolation of the effects of individual mechanisms.
The papers of Rhines and Holland cited below have
been especially instructive.

The development of the theory for the dynamics of
large-scale oceanic flows is very recent. One has only
to look at the chapter on dynamics in Sverdrup, John-
son, and Fleming (1942) to realize how primitive the
theory was in the mid-1940s. Sverdrup's (1947) impor-
tant demonstration of the generation of planetary vor-
ticity by wind stress was the first step in obtaining
explicit information about oceanic flow from a simple
external observable. Until that time the dynamic
method (i.e., geostrophic-hydrostatic balance) was
used to obtain flow information, but this hardly con-
stitutes a theory since one internal property must be
used to determine another.

Ekman's (1905) theory for what we now call the
Ekman layer was a significant early contribution, but
its application to large-scale theory was not understood
until Charney and Eliassen (1949) showed the coupling
to large-scale flows via the spin-up mechanism. Ac-
tually, the generation of large-scale flow by Ekman
suction in the laboratory was observed and described
by Pettersson (1931), who repeated some of Ekman's
(1906) early experiments with a stratified fluid to de-
termine the inhibition of vertical momentum transport
by stratification. Pettersson found the large-scale cir-
culation to be an annoying interference, however, in
his primary objective, determining vertical transfer of
momentum by turbulence, and he discarded the ap-
proach as unpromising.

Shortly after Sverdrup's paper Stommel (1948) pro-
duced the first significant, closed-basin circulation
model showing that westward intensification of
oceanic flow is due to the variation of the Coriolis
parameter with latitude. Hidaka (1949) proposed a
closed set of equations for the circulation including the
effects of lateral (eddy) dissipation of momentum.
Munk (1950) continued the development by obtaining
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a solution that resembled Stommel's except for details
in the boundary layers near the eastern and western
sides of the basin. He applied his solution to an ideal-
ized ocean basin with observed wind stresses and re-
lated a number of observed oceanic gyres to the driving
wind patterns. The first nonlinear correction to these
linearized models (Munk, Groves and Carrier, 1950)
showed that inertia shifts positive vortices to the south
and negative vortices to the north. Nonlinear effects
thus introduce the observed north-south asymmetry
into a circulation pattern that is predicted by steady
linear theory to be symmetric about mid-latitude when
the wind driving is symmetric.

Fofonoff (1954) approached the problem from the op-
posite extreme, treating a completely inertial, non-
driven model. His solution exhibits the pure effect of
inertia for steady westward flows. The circulation pat-
tern is symmetric in the east-west direction and closes
with the center of a cyclonic (anticyclonic) vortex at
the south (north) edge of the basin. When linear, fric-
tional effects perturb the nonlinear pattern (Niiler,
1966), the center of the vortex shifts westward. Niiler's
model had been proposed independently by Veronis
(1966b) after a numerical study of nonlinear effects in
a barotropic ocean, and Niiler's solution had been sug-
gested heuristically by Stommel (1965).

The theoretical models leading to these results for
wind-driven circulation are discussed below in sections
5.5 and 5.6. More general considerations in section 5.2,
based on conservation integrals for the nondissipative
equations (Welander, 1971a), prepare the way for the
ordered system of quasi-geostrophic equations that are
presented in section 5.3. The latter are derived for a
fluid with arbitrary stable stratification and for a two-
layer approximation to the stratification.' A large por-
tion of the remainder of the paper reports results ob-
tained with the simpler two-layer system.2

Section 5.7 concludes the discussion of simple
models of steady, wind-driven circulation with a sug-
gested simple explanation of why the Gulf Stream and
other western boundary currents leave the coast and
flow out to sea (Parsons, 1969; Veronis, 1973a). Sepa-
ration of the Gulf Stream from the coast occurs within
an anticyclonic gyre at a latitude where the Ekman
drift due to an eastward wind stress in the interior
must be returned geostrophically in the western
boundary layer. If the mean'thermocline depth is suf-
ficiently small, i.e., if the amount of upper-layer water
is sufficiently limited, the thermocline surfaces on the
onshore side of the Gulf Stream and separation occurs.
The surfacing of the thermocline is enhanced by the
poleward transport by the Gulf Stream of upper-layer
water that eventually reaches polar latitudes and sinks.

A review of models of thermohaline circulation is
given in section 5.8. The open models introduced by
Welander (1959) and Robinson and Stommel (1959) and

the subsequent developments by them as well as other
authors are described. The section concludes with a
description of a closed, two-layer model in which the
heating and cooling processes are parameterized by an
assumed upwelling of lower-layer water across the
thermocline (Veronis, 1978). The closure of the model
leads to an evaluation of the magnitude of upwelling
of 1.5 x 10- 7 m s- , in agreement with values obtained
from chemical tracers and the estimated age of deep
water.

The normal modes for a two-layer system are derived
in section 5.9 and the free-wave solutions are obtained
for an ocean of constant depth. The derivation is a
generalization of the treatment by Veronis and Stom-
mel (1956) but the method is basically the same. The
results include barotropic and baroclinic modes of iner-
tiogravity and quasi-geostrophic Rossby waves. Brief
mention is made of observations of these waves and
the roles they play in developed flows.

Topography introduces a new class of long-period
wave motions. Quasi-geostrophic analysis leads to the
three types of waves described by Rhines (1970, 1977)
as topographic-barotropic Rossby waves, fast baro-
clinic (bottom-trapped) waves, and slow baroclinic (sur-
face-trapped) waves. The properties of slow baroclinic
waves are independent of topography, yet the creation
of these waves may be facilitated by steep topography
that inhibits deep motions. For purposes of comparison
the analysis is carried out with stratification approxi-
mated by two layers and by a vertically uniform density
gradient.

Baroclinic instability in a two-layer system is de-
scribed in section 5.11. The model (Phillips, 1951;
Bretherton, 1966a) has convenient symmetries (equal
layer depths and equal and opposite mean flows in the
two layers) that simplify the analysis and show the
nature of the instability more clearly. The stabilizing
effect of p is evident after the simpler model has been
analyzed. After a discussion of the energetics and of
the relative phase of the upper- and lower-layer mo-
tions required for instability, the study of linear proc-
esses ends with a brief review of the stability study
made by Gill, Green, and Simmons (1974) for a variety
of mean oceanic conditions.

The last section extends the discussion to include
the effects of turbulence and strong nonlinear interac-
tions. Batchelor's (1953a) argument that two-dimen-
sional turbulence leads to a red cascade in wavenumber
space is followed by a description of several of Rhines's
(1977) numerical experiments exhibiting the red cas-
cade for barotropic quasi-geostrophic flow and the in-
hibition of the red cascade by lateral boundaries and
topography. An initially turbulent flow in a two-layer
fluid will evolve toward a barotropic state followed by
the red cascade when nonlinear interactions or baro-
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clinic instability generate motions on the scale of the
internal radius of deformation. The latter scale is the
window leading to barotropic behavior. Rough topog-
raphy can inhibit the tendency toward barotropy by
scattering the energy of the flow away from the defor-
mation scale.

The generation of deep motions in wind-driven flows
by upper-layer eddies that evolve from barotropic and
baroclinic instabilities leads to a mean flow that is very
different from the one predicted by the linear theories
of the earlier sections. The closed-basin circulation ob-
tained in a two-layer quasi-geostrophic numerical ex-
periment by Holland (1978) and analyzed by Holland
and Rhines (1980) shows how many of the processes
described earlier come together to generate the mean
flow. Simple balances for some of the results are sug-
gested. A significant result of this experiment (and oth-
ers mentioned) is the enhancement of the mean trans-
port by the circulation resulting from the eddy
interactions. A similar enhancement is made possible
when topography and baroclinic effects are present
(Holland, 1973). A brief discussion of several other nu-
merical studies concludes the review.

Most of the emphasis in this paper is on linear proc-
esses and on the remaining features of the dynamics
that can be used as building blocks to synthesize the
involved, interactive flows observed in the ocean. Only
a selected few of the many numerical studies that have
emerged in the past few years are discussed, and even
for those only some of the generalizable results are
mentioned. Some important topics, such as the use of
diagnostic models (Sarkisyan, 1977) and the generation
of mean circulation by fluctuating winds (Pedlosky,
1964a; Veronis, 1970; Rhines, 1977), are omitted only
because time limits forced me to draw the line some-
where. Most of the references are to the literature in
the English language because that is the literature with
which I am most familiar.

5.2 The Equations for Large-Scale Dynamics

The complete equations for conservation of momen-
tum, heat, and salt are never used for studies of large-
scale oceanic dynamics because they are much too
complicated, not only for analytical studies but even for
numerical analyses. Justification for use of an appro-
priate set of simplified equations requires a much more
extensive argument than is feasible here so we shall
confine ourselves to a short discussion with references
to publications that discuss the different issues. It is
appropriate, however, to mention a general result for
a fluid with a simple equation of state.

If dissipative processes are ignored, the conservation
of momentum for a fluid in a rotating system can be
written as

Ov 1
-v + vVv + 211 x v = -- Vp - VC,
Wt P

or equivalently as

ft + (2f1 + V x v) x v

1P ( )
P - 2 ) 

(5.1)

(5.2)

where v is the three-dimensional velocity vector, is
the angular rotation vector of the system, p the density,
p the pressure, and VF the total gravity term (Newton-
ian plus rotational acceleration).

Conservation of mass is described by

dp + pV.v = 0,dt
d 0
dt ~_-+ vtV.dt at (5.3)

Furthermore, if a state variable s(p,p) is conserved
along a trajectory, it satisfies the equation

dst0.dt (5.4)

These equations can be combined to yield the con-
servation of potential vorticity (Ertel, 1942):

d [ (2 + V x v) Vs] =0.
I ~ p (5.5)

This general result for a dissipation-free fluid does not
apply precisely to sea water where the density is a
function not only of temperature and pressure but also
of the dissolved salts. The effect of salinity on density
is very important in the distribution of water proper-
ties. However, for most dynamic studies the effect of
the extra state variable is not significant and (5.5) is
valid.

Circulation of waters in the world ocean involves
trajectories from the surface to the deep sea and from
one ocean basin to another. The relative densities of
two parcels of water formed at the surface in different
locations can be inverted when the parcels sink to great
depths. Thus, surface water in the Greenland Sea is
denser than surface water in the Weddell Sea; yet when
these water masses sink and flow to the same geo-
graphic location, the latter (Antarctic Bottom Water) is
denser and lies below the former (North Atlantic Deep
Water). This inversion is due in large part to the dif-
ferent amounts of thermal expansion of waters of dif-
ferent temperatures and salinities. 3

Neither compressibility nor individual effects of
temperature and salinity on the density are included in
the treatment that follows. Use of potential density
(not only in the equations but in boundary conditions
as well) together with the Boussinesq approximation
(Spiegel and Veronis, 1960) makes it possible to treat
the dynamic effects of buoyancy forces in a dynami-
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cally consistent fashion. Comparison of observed mo-
tions (especially long- and short-period waves) with
those deduced when potential density is used yields
good qualitative, and often quantitative, agreement.
But it is clear that some phenomena, such as the rel-
ative layering of water masses and small-scale mixing
related to double-diffusive processes, cannot be ana-
lyzed without the use of a more extended thermody-
namic analysis. Therefore, although the present dis-
cussion allows a treatment of inertially controlled
flows, it does not admit the interesting array of phe-
nomena associated with tracer distributions, except in
the crudest sense. By implication, motions related to
the largest time and space scales are not accessible
either.

In those cases where a homogeneous fluid model is
invoked the effects of stratification are implicitly pres-
ent since the basic equations would be different for a
truly homogeneous fluid (where the direction of the
rotation axis could be more important than the local
vertical). The fluid is sometimes assumed to be ho-
mogeneous only because the feature that is being em-
phasized is independent of stratification or because the
simplified analytical treatment is a helpful preliminary
for the more complicated stratified system.

The effects of rotation and Newtonian gravitation
lead to an equilibrium shape for the earth that is nearly
a planetary ellipsoid. For earth parameters the elliptic-
ity is small (1/298) and an expansion in the ellipticity
yields a spherical system with a mean (rather than
variable) radius to lowest order (Veronis, 1973b). An
additional simplification is to neglect the horizontal
component of the earth's rotation. This assumption is
not entirely separate from the use of a mean radius
(N. A. Phillips, 1966a). It is normally valid for the types
of motion treated here, though the effect of the ne-
glected term is discussed for certain physical situations
by Needler and LeBlond (1973) and by Stem (1975a).
Grimshaw (1975) has reexamined the -plane approx-
imation and gives a procedure in which the horizontal
rotation is retained.

With all these simplifications the foregoing equa-
tions simplify to

-+dv f x v = -- V - P XVP, (5.6)
dt Pm Pm

d = 0(5.7)

V-v = 0, (5.8)

dq -
dt [(f + V x v)JVp] 0,d (5.9)

where f = 21lsinqbk is twice the locally vertical (di-
rection k) component of the earth's rotation, is the
latitude, g is gravity, Pm is a mean (constant) density,

and p is the deviation of density from the mean. The
hydrostatic pressure associated with the mean density
has been subtracted from the system. Equations (5.7)
and (5.8) describe the incompressible nature of this
Boussinesq fluid. The quantity s in (5.4) can then be
replaced by p, and the potential vorticity q in (5.9) is
simplified accordingly [note the change of dimensions
of potential vorticity as defined in (5.5) and (5.9)].

For steady or statistically steady flows we can mul-
tiply (5.6) by v to obtain a kinetic energy equation
which can be written as

v*V .V + p + gp) VVB = 0, (5.10)

where B is the Bernoulli function. In this case, since q,
p, and B are each conserved along flow paths, any one
of them can be expressed in terms of the other two and
we obtain

p = p(B,q), B = B(p,q), q = q(B,p). (5.11)

Even though the distributions of the surfaces cannot
be determined without knowledge of the flow field, the
relationship between p, B and q is conceptually useful.

The quantities B, q, and p are specified by their
values in certain source regions where dissipation,
mixing, and other physical processes are important.
(Obvious source regions are Ekman layers, areas of con-
vective overturning, and boundary layers near coasts.)
Having acquired values of B, q, and p at the sources,
fluid particles will retain these values along their flow
paths. If particles from different sources and with dif-
ferent values of B, q, and p converge to the same geo-
graphical location, regions of discontinuity will de-
velop, and mixing, dissipation or some other non-ideal
fluid process will be required. The locations of these
discontinuous regions can be determined only from a
solution to the general problem, and, in general, we
may anticipate new sources of B, q, and p to develop
there. Hence, the system becomes a strongly implicit
one and the closure of the problem is very complicated.

Even though a solution to the general problem may
be impossible, these general considerations are impor-
tant. We should be prepared for the likelihood that the
solution at a particular location will not be simply
determined by values at solid boundaries that are easily
specified. The ocean is more likely a collection of dy-
namically self-contained pools (some subsurface) that
interact along open-ocean boundaries where they join.
Perhaps only the most persistent of these are statisti-
cally steady features. It is possible that locally the flow
is relatively laminar. In that case the solution would
be accessible once the source regions were identified
and the values of B, q, and p in these regions could be
specified.
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5.3 The Quasi-Geostrophic Equations and the ti-
Plane

Even with the simplifications made in the previous
section the equations are more general than required
for a study of large-scale dynamics. We shall therefore
simplify them further by invoking geostrophic and hy-
drostatic balances at lowest order and by restricting
attention to spatial scales of interest. In so doing we
shall derive an appropriate p-plane approximation for
the study of oceanic waves and mesoscale motions. A
similar procedure is followed by N. A. Phillips (1963).4

- tan0 (I + sino) f0 + cot a )

-ax + a tan 0),
dv y av vwd+ tan u + a-t a a 

+atn 1 sin2o a)

OP

(5.20)

+ fou (1 + coto)
a

(5.21)

5.3.1 Continuous Stratification
The spherical components of (5.6) take the form

du uv tan +uw+-- -2Q1sinbvdt a a

1 dP

a coseb dx'

dv u2 tan + vw 1 OP
+ ~ + _ + 2 sin eu

dt+ a a a 0'

dw U2 + v2 OP p
dt a g z Pm 

1 Ou d 1 C w 2w

dp 
0,dt

d 0 u a vO a
t a cos +- +a 

dt at a os 0 x a wo O,

dw y Ow u + v2 OP gp+ tan b =udta r a Oz pm

au Ov w / y 
Ox by + Oz y ta nbo

Yr ow 2w
tan O0-z + - = 0,

(5.12) a Oz a

5.131 d + tanu 9oUP =0,(5.13) dt a ax

d 0 a a a
(5.14) dt -t + u x + v Y + W a

(5.15)

(5.16)

(5.22)

(5.23)

(5.24)

(5.25)

Flows with a primary geostrophic balance will satisfy

P OP
fov satp - fob u a - y. (5.26)

Hydrostatic balance yields

(5.17) OP _
az Pm

(5.27)

where (X, , z) are longitude, latitude, and upward and
have respective velocities (u, v, w); P is P/Pm, a is the
mean radius of the earth, and p is the total density
minus Pm.

Center attention on a latitude eo, write e = 00 + e',
and consider flows with north-south scale L substan-
tially smaller than a. Then with a e' = y, we can expand
the trigonometric functions in y, keeping only terms
of OIL/a), to obtain

Variations over the depth H of the ocean are described
by

0 1

az H' (5.28)

so the "pressure" scale derived from (5.27) is

p gHAp
Pm

(5.29)

sine = sink o(1 + cot(boy/a),

cosb = cosbo 11 - tanboyla1),

fo = 2Q sin o,

a 1 a
Ox a cos 40 aOX'

1 a
Oy a a0

To first order in y/a the equations become

du y au uwdt tanu +- adt a '~ a

Geostrophic balance then suggests the velocity scale

(5.18) V gH Ap
foL Pm

(5.30)

If these scales are used as orders of magnitudes for
(5.19) the respective variables and if we also take

a 1 a 1 a
Ox L ' Oy L ' Ot o

y L H
a a' L' w- V8,

we note the following.

I44
George Veronis



Relative to the lowest order (in yla) Coriolis terms,
the nonlinear terms in ddt in (5.19) and (5.20) are
O(Ro) where Ro = VfoL. The remaining nonlinear
terms are

0 (Ro or o L Ro).

In the vertical equation of motion the acceleration
terms are

0(82), 0(82Roj, or o (8Ro)

when compared to the terms on the right. Observations
of the flows of interest support the inequalities

Ro << 1, L/a << 1, 8 << 1. (5.31)

Rather than expand the equations in powers of the
small parameters we shall simply make use of (5.31)
and drop all terms which involve products of Ro, 8 and
L/a. Also, rather than give a relative ordering of these
three parameters we keep all terms up to first order in
Ro, 8, and L/a, a procedure that yields the following
general system of equations

du - fov 1 + cot 0)

O1 + a

a 

dv + fu 1+ cot 
l+- t)

OP

Oy'
(5.33)

(5.34)
OP
- = gPIPm,

ou Ov Ow O w
d + d + d - a - v tanr ) - tan 0 W
Oxr Oy Ox- 

= 0,

dtp + tano0u p= 0,
t a axo

keeping in mind that the nonlinear terms in (5.32) and
(5.33) are O(Ro) compared to the lowest-order Coriolis
terms.

Now write

v = v0 + v1, P = P0 + P, p = Po + Pi, (5.37)

where (v,, P, PI) are O(Ro) or O(L/a). We shall also
assume that time variations appear at first order, i.e.,
l0/t = O(Ro) or O(L/a). Then at lowest order we obtain

the expected geostrophic hydrostatic system:

Po (5.38)
fo vo =-Ox (5.38)

By'0P0

OPo

du o V o0
ax ay

(5.39)

(5.40)

(5.41)
Owo = 0,Oz

If w0 vanishes at any level or if it is required to satisfy
inconsistent (with Owo/z = 0) boundary conditions at
top and bottom, it will vanish everywhere. One or the
other of these two conditions is satisfied for all of the
flows that we shall consider, so we obtain the result

w = 0. (5.42)

This means that the scaling w - V8 suggested by the
geometry is inappropriate and that a factor Lia or Ro
should be included on the right-hand side. In other
words, quasi-geostrophic flows are quasi-horizontal
and the convective derivative in 5.32) reduces to

d a a a
+ =t +Uo +Vo .I at ax ay'' (5.43)

The restriction to flows with less than global scales
precludes a treatment leading to the basic stratifica-
tion. Since vertical density changes Ap are generally
much larger than the horizontal changes, say Ap', gen-
erated by the motion field, we must account for the
difference in (5.36). In particular, we write p = (z) +
p'(x, y, z, t) so that

Op' Op' p' Op'ot +v + + w- 
t Ox Oy +=

+w + tan ouPF =0.
ax a ax

The considerations leading to (5.43) apply here as well
j5.35) for the terms involving p'. Accordingly, at lowest order

we can drop the terms w Op' lz and (yla) tan 0u u(Oip' lx)

6) to end up with
{5.361

dp' + O 0,
dt +=

(5.45)

where Ap' is assumed to be O(Ro) or O(L/a) relative to
Ap. Since w is correspondingly smaller than u or v, the
two terms balance. In terms of our ordering, therefore,
we can write

dpo Op
dr + w 1 = 0,dt az

(5.46)

where we have used the fact that the density used in
the hydrostatic equation is really p' (since the balance
OP/Oz = -gp is valid when there is no motion and
hence can be subtracted from the system).

At next order we have

(5.44)
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dut -f oVl fo cot0 oVo
-f a

aP y aPo- d , -y tan 0 -°'
ax a ax -d- -+ foul foCOt -

dt a ay 

0u, .v Ow, 0 / oyax + + -by tala tan00v l= 0. (5.49)Ox -y Oz Oy a

These equations, in addition to providing the balances
for first-order quantities, serve the important function
of closing the zero-order system when first-order terms
are eliminated. Thus, cross differentiating (5.47) and
(5.48) and making use of (5.38) to (5.41) and (5.49), we
obtain

d-t + BVo = fo wl
dt Oz

fo cot o01=a
0 Vo auo"o- --

ax ay

From (5.46) we observe

Oawl 1 dpo] d / . 5.51)
=z z[ Ol/Oz dt J dt Oz 8P OdZ (5.51)

Also,

vo df (5.52)

where f = fo(l + cot o (y/a)). Then using (5.38) to (5.41)
to express u0, vo, po in terms of Po we obtain the lowest-
order closure

d [Po + ff + (f NP z)] 0,

where N2 = -g(Opl/z)/pm is the square of the buo
frequency. Equation (5.53) describes the conser,
of quasi-geostrophic potential vorticity. It is some
written in terms of the stream functions ¢q = Po/

dt [V2 + f + d folaz)] = 0.

The derivation given here has been carried out in
dimensional form. It is as rigorous, though not as for-
mal, as derivations with nondimensional variables
(e.g., Pedlosky, 1964a) and has the advantage of includ-
ing the intermediate equations in dimensional form.
Obviously, the equations are valid only for those mo-
tions (smaller than global scale, low frequency, etc.)
that satisfy the assumptions.

5.3.2 Equations More Commonly Encountered
Instead of the set (5.47)-(5.49) one more often encoun-
ters the equations with rectangular cartesian coordi-
nates, no subscripts, and with f = fo + y, i.e.,

du OP
fv = Ox'

dt

(5.47) a+ f =- '

au v w(5.48) T + + d = .ax ay Oz

(5.55)

(5.56)

(5.57)

This system is often used even when the flow is not
quasi-geostrophic. For quasi-geostrophic flows, partic-
ularly if one makes use principally of the vorticity
equation and the fact that w is really a higher order
quantity, one can avoid serious errors.

For flows at low latitudes (small o0) the neglected
terms (-tan 0 ) are small and (5.55) to (5.57) may be
adequate. But errors notwithstanding, a large part of
the literature deals with this more approximate sys-
tem, and we shall have to refer to it frequently.

5.3.3 Layered Stratification
Continuous density stratification is frequently approx-
imated by a series of discrete layeis each of uniform
density. The derivation parallels the one just given but
it is easier to make use of what we have done and to
note the following.

Number the layers sequentially downward from the
top so that the ith layer has thickness h"', density p",
and mean thickness (for linearized cases) H"'i'. Further-
more, write h") = 77(i) + H" - ri+l) so that "i) and
"Vi+) are the deviations of the top and bottom surfaces

of the layer from the mean. Integrate the hydrostatic
relation downward from the top surface to layer i to
derive the horizontal pressure gradient in terms of gra-
dients of thicknesses

(5.53) i-I
) Vp() =g p(n) Vh(' + gpi) V71 ).

,1=

(5.54)

(5.58)

Conservation of mass for each homogeneous layer is
V3*vi) = 0, where V3 is the three-dimensional operator.
The horizontal velocities are independent of z because
the flow is hydrostatic. Therefore, integrating over the
depth of the layer yields

dhi=)
hU)V'v( +d = 0,dt (5.591

where we have used the free surface conditions

w )i'(x, , y , r, t) = t 'dt '
(5.60)

w"(x, Y, y, i+), t) =d7dt
dt

Also, since H'i' is constant

d (, _ + dh"'
dt dt '
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We can thus integrate (5.5.0) over the depth of each
layer to obtain the conservation of potential vorticity
for the layered system

dt (hi + = 0. (5.61)

The velocity in the convective derivative is (uo, vi).
In subsequent treatments of the two-layer, ,8-plane,

inviscid, momentum equations, we shall use the ap-
proximate form (5.55) and (5.56) together with the ver-
tically integrated form of (5.57). The equations are

du, = 0t-fv =-g ax'

dvt
dT + ful = -g 

adt a]dhi +h, (u + vi =

dU2 fV2 = -g ( { ) -71 (5.65)

frictional processes acting near the bottom. 6 Assuming
that horizontal variations of the stress are small com-
pared to vertical variations (easily verified a posteriori),
we can write

-fv = -fvg + vu,,,

fu = fug + vvW,

(5.68)

(5.69)

where subscript z corresponds to 0/az and the pressure
gradient is written in terms of the geostrophic velocity.
The velocity vanishes at the (flat) bottom

v=0 at z=0. (5.70)

(5.62)
The method of solution is well-known (Lamb, 1932,

p. 593). Combining u and v as u + iv, i = V-1, the
(5.63) equations (5.68) and (5.69) take the form

iu + iv) = f if
(5.64) (u + iv),, = __ (u + iv) - ( + v.)(5.64) ~ ~ ~~~P 1,

dt + fu, = -[g 1- + d,] 5.66)
ly a+ ay

d-T +h, (5.67)

where, EP2 = P2 - Pi, h2 = /2 + H2 - r3, and 71, is the
height of the bottom above an equilibrium level. The
subscripts in (5.62) to (5.67) identify the layer rather
than the order of L/a or Ro.

For linear steady flows the above system is some-
times used with spherical coordinates.

5.4 Ekman Layers

The equations derived above do not contain friction
explicitly. However, when the variables are written in
terms of a mean (ensemble, time average, etc.) plus a
fluctuation and the equations are averaged, Reynolds
stresses emerge and these are often parameterized in
frictional form through the use of Austausch or eddy
coefficients. Though this procedure is often question-
able, it may not be a bad approximation near the top
surface where wind stresses impart momentum to the
ocean and near the bottom where frictional retardation
brakes the flow. This was the view taken by Ekman
(1905), who introduced the model for what is now
called the Ekman layer.5

5.4.1 Pure Ekman Layers
Ekman first applied the theory to the wind-driven layer
near the surface of the ocean. It is preferable to intro-
duce the subject by investigating how a horizontally
uniform geostrophic flow given by f k x v, = -VP in a
fluid occupying the region z > 0 is brought to rest by

(5.71)

and the solution satisfying (5.70) with v -, 0 as z -- oo
is

u + iv = (ug + ivg)(1 - e-r), (5.72)

where 8 = Vfi. Accordingly, the flow vanishes at z =
0, tends to v, for large z and is predominantly to the
left of v. in between.

The vertically integrated transport of the exponen-
tially decaying part of (5.71) is (-1 + i)(u, + iv)(v/2f)112,
which suggests he = (vl2f)1/

2 as the scale of the Ekman
layer. If we integrate the geostrophic part over the
depth, he, we obtain the transport u, + ivJ)he. Hence,
the net transport is i(u, + ivg)he, which is to the left of
the geostrophic current, i.e., down the pressure gra-
dient required to support v., as we would expect. In
vector form the net transport is (-vg, ug lh5 .

Next consider Ekman's problem, with fluid occupy-
ing the region z < 0 and with the flow driven by the
spatially uniform wind stress (divided by the density)
given by (, TY) acting atz = 0. With vg = 0, the solution
is

e8z
u + iv = {Trsin(z + r/4) - T sin(&z - Tr/4)

+ i[rTsin(z - 7r/4 ) + Tr'sin(z + r/4)]}. (5.73)

In the hodograph (u, v)-plane the solution has the form
of a spiral (called the Ekman spiral). Just as rotation
generates a velocity component to the right (for f > 0)
of the (pressure) force for geostrophically balanced flow,
a flow to the right of the tangential-stress force is gen-
erated in the Ekman spiral solution. In contrast to
geostrophic flow, however, the present system is dis-
sipative, and a velocity component parallel to the force
is also present. At the surface the magnitudes of the
components are equal so the flow is directed 450 to the
right of the wind stress. The velocity component par-
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allel to T decreases with depth but near the surface the
normal component does not (it cannot since has the
same direction as aT/Oz). But below that the stress veers
to the right as does the velocity vector.

Though Ekman's solution provided a satisfactory ex-
planation of Nansen's observation of surface velocity,
the spiral is not normally observed in the field. Ekman
failed to observe it in spite of repeated attempts. Hun-
kins (1966) reported measuring a well-defined Ekman
spiral (ironically, in the Arctic Ocean, where Nansen's
first observations were made). The spiral structure de-
pends on the form of the stress term, and since the
stresses near the surface are turbulent (due to thermal
convection, surface waves, and other small-scale proc-
esses) and therefore not necessarily of Navier-Stokes
form, it is not surprising that the observed current
structure differs from the theoretical one. Also, the
mixed layer at the surface sits on a stably stratified
fluid and the depth h of the former often does not
exceed he when a turbulent eddy viscosity is used.
Gonella (1971) showed that when a stress-free condi-
tion is applied at the base of the mixed-layer the so-
lution is a function of he/h. For shallow (h << he) mixed
layers there is essentially no spiral. Csanady (1972)
reported that field measurements in the mixed layer in
Lake Huron support Gonella's findings. He also refor-
mulated the problem in terms of external parameters
of the system instead of using an eddy viscosity.

In contrast to the detailed velocity structure, the
vertically integrated transport of the wind-driven Ek-
man layer is independent of the form of vertical vari-
ation of the stress. If the stress terms in (5.68) and
(5.69) are written as T7/Oz and if we integrate the equa-
tions vertically, the transports are given by (, -")/f.

Thus, the total transport is to the right of the wind
stress irrespective of the form of x and subject only to
these conditions: = (x, T) at the surface and T = 0 at
the bottom. In vector form, with Ve = f°hvdz (where
h is a depth-finite or infinite-at which X vanishes),
the result called the Ekman drift) is

Ve = ( x k)/f. (5.74)

where r is now the wind stress vector and k is the
vertical unit vector.

5.4.2 Effect of Ekman Layers on Interior Flows
Although the pure Ekman layer theory given above
requires horizontally uniform conditions, the theory is
valid with horizontal variations as long as the horizon-
tal scale is substantially larger than he. The neglected
horizontal variations of the stress terms are smaller
than r/laz by the ratio of the squares of vertical to
horizontal scales. Furthermore, for the mixed layer
near the surface the vertical pressure gradient in the
vertical equation of motion vanishes (as long as we
consider scales larger than the small-scale turbulence

which generates the mixed layer). Hence, the horizon-
tal pressure gradients associated with Ekman layer
processes are negligible at lowest order, and the original
equations, and therefore the results given by (5.73), are
still applicable.

Accordingly, suppose that T in (5.74) varies horizon-
tally. When the continuity equation Vov = 0 is inte-
grated in the vertical over the depth of the Ekman layer
and the boundary condition (w = 0 at the top) is ap-
plied, we find (Charney, 1955a)

We = V'Ve, (5.75)

where we is the vertical velocity at the base of the
Ekman layer. With (5.74) this becomes

We X f y f ) f) (5.76)

Thus, horizontal variations in x generate vertical mo-
tions which penetrate into the fluid below. Since the
Ekman layer is thin relative to the depth of the ocean,
this forced vertical velocity (called Ekman pumping)
can be applied as a boundary condition (approximately
at the surface) for the underlying inviscid fluid.

The same analysis can be applied to the bottom (sub-
script b) Ekman layer, where the vertically integrated
transport was found to be Vb = (--Vg,ug)hb. If the bottom
is flat, so that w = 0 there, the vertically integrated
continuity equation yields

Wb = -V'Vb,

where Wb is the vertical velocity induced at the top of
the Ekman layer. Substituting for Vb we obtain

a a
Wb =- (Vghb) - (U ghb)

or taking hb constant,

Wb = hbkV x vg. (5.77)

This value for w serves as a boundary condition (ap-
proximately at the bottom of the ocean) for the over-
lying inviscid fluid.

5.4.3 Additional Considerations
Only the simplest results of Ekman layer theory have
been given here. A number of important extensions are
discussed by Stem (1975a, chapters 7 and 8). Horizontal
momentum is imparted to the ocean by the wind stress
acting at the surface; yet the momentum vanishes at
the base of the Ekman layer. Stern answers the ques-
tion where the momentum goes by analyzing the an-
gular momentum balance about the axis of rotation for
a cylindrical system. The analysis is carried out in an
inertial frame of reference where the torque of the wind
stress is balanced by the absolute angular momentum
of the fluid. The latter is proportional to the absolute
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vorticity of the undisturbed (no wind stress) vortex
flow in our case, solid-body rotation). The correspon-
dence between the cylindrical problem and the recti-
linear system [with (5.74) as the result] is that for large
radii the angular momentum argument is equivalent
to saying that the rate of momentum imparted by the
wind stress is balanced by the divergence of the radial
flux of absolute azimuthal momentum.

Though the Ekman layer depth he is clearly defined
for laminar boundary layers, the value for turbulent
boundary layers is not. Caldwell, van Atta, and Holland
(1972) formed the boundary layer scale r112 /f from the
(only) external parameters and f. Assuming that the
molecular scale (v/f)11 2 is not likely to affect the tur-
bulent scale, they suggest that 12 /f is the turbulent
Ekman boundary layer thickness. Stem (1975a, §8.1)
carried out a crude stability analysis to conclude that
a layer thicker than he - rl1 2f will radiate energy to
the deep water. He surmised that nonlinear modifica-
tions will show that the turbulent energy is thereby
reduced as the thickness shrinks to 1 12/f, where the
system will stabilize. For typical values of r, the value
of he (so defined) is 0(100 m) at mid-latitudes. These
considerations are based on the assumption of a ho-
mogeneous fluid. For a stratified fluid like the ocean
the stratification may be decisive in determining the
boundary layer thickness as Csanady's (1972) report of
observed velocities in Lake Huron indicates.

As we saw from the simple analysis presented above,
the effect of the top Ekman layer on the underlying
water is determined completely by the wind stresses,
whereas in the bottom Ekman layer the condition is
expressed in terms of the velocity of the overlying
water. More generally there will be a nonlinear cou-
pling between the Ekman layer and the interior which
can alter the results significantly. Fettis (1955) carried
out the analysis for a laboratory model of a nonlinear
Ekman layer to show that the results can be approxi-
mated by (5.74) but with the absolute vertical vorticity
replacing f. Stem (1966; 1975a, §8.3) and Niiler (1969)
have investigated the effect of coupling of Ekman layer
flow with geostrophic vorticity (eddies) and have
shown that the latter can have a dominant influence
since coupling with the interior can occur even for a
uniform wind stress.

5.5 Steady Linear Models of the Wind-Driven
Circulation

When integrated vertically from z = -h to z = 0 this
yields

0

-h V= fvod

or

tV = Kev x X - fo0wx, y, -h), (5.79)

where the variation of f in ieV x (lf) is (consistently)
neglected at lowest order.

5.5.1 Sverdrup Transport
If the stratification is strong enough so that distortion
of the density surfaces is negligible at some depth
above the bottom, the last term in (5.79) vanishes and
we obtain the Sverdrup transport

f3V = keV x T. (5.80)

Thus, the vertically integrated north-south transport
is determined by the curl of the wind stress. Sverdrup
(1947) introduced this relation to estimate transports
in the eastern equatorial Pacific (see chapter 6). Phys-
ically, the interpretation of (5.80) is straightforward.
With 3V written as h dfldt we see that a column of
fluid moves to a new latitude (new value of planetary
vorticity f) with a speed that compensates for the rate
at which the wind stress imparts vorticity to the ocean.

The continuity equation (5.41) can be integrated in
the vertical and in x to yield

U = -f dx + PFy)

or

U = -f - (iv x ) dx + Fly),t= or (5.81)

where Fly) is arbitrary. The most common procedure
for theoretical analyses is to assume that the foregoing
is valid eastward to a meridional boundary x = L, where
U must vanish. Then

u = f 1 a0 (k.v x T)dx, (5.82)

and the transport is determined in the entire region in
which the assumptions are valid. In general, the theory
does not determine the flow in a basin bounded on the
west as well since it is not possible to satisfy the zero
normal flow condition there.

For steady, linear flow of moderate scale we have
Ro << La so the term do,/dt in (5.50) can be neglected.
The resulting equation is

v = o dz (5.78)

5.5.2 Stommel's Frictional Model
If the fluid motion penetrates to the (flat) bottom, the
last term in (5.79) is given by (5.75) with v, = Volz=-h
and (5.79) becomes

pV = V X - f0hb a o \Ox oy/z=_
(5.83)
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Thus, one must supplement this equation with addi-
tional ones that determine the vertical structure of the
velocity field. However, if the fluid is assumed to be
homogeneous so that v0 is independent of z and if one
then writes

(U, V) = (Uo, vo)h,

the system closes with

fPV = kV' x - Thb V _ U) (5.84)

Introducing the transport stream function V = k x
Vq, yields

fi,3r = k.V X T - KV2 ,, (5.85)

where K = fohb/h. Stommel (1948) obtained (5.85) by
assuming a bottom drag law for the friction term. The
derivation using Ekman layer theory makes the as-
sumptions more evident.

The solution with Tr = -Tcos(syM), , = 0 and
with = 0 atx = 0, L andy = 0, M is

MT { (1 - eD2L)eDx - {1 - eDIL)eD2X}
7rK |\ 1 eDIL - eD2L

x sin-, (5.86)

where

D = - 2K + 2K M
D2 P (1)(/(n()

Values of versus x are shown in figure 5.1 for the
case with L = 6000km, M = 3000km, f8 = 2 x
10-11 m-1 s - 1, and K = 2 x 10-6 s-. Stommel's model
was the first to exhibit the westward intensification of
the oceanic response to a symmetric wind-stress curl.

With K/IJL << 1, 5.85) is a boundary-layer problem,
where the highest derivative term (the bottom fric-
tional effect) is important only in a narrow region near
the western boundary where the flow is northward. In
the remainder of the basin the Sverdrup balance (5.80)
is approximately valid (but see below), the flow is slow
and southward, and friction is unimportant. The neg-
ative vorticity injected into the ocean by the wind is
eventually dissipated in the western boundary layer,
where the induced northward flow deposits columns
of fluid at their original latitudes with the original
planetary vorticity restored. Detailed balances and a
fairly comprehensive discussion are given by Veronis
(1966a).

The westward intensification is normally explained
in terms of the vorticity balance, but a qualitative dis-
cussion in terms of momentum balance is also possi-

ble. Thus, we note that the Ekman wind drift in the
northern half-basin is southward whereas that of the
southern half-basin is northward. Water piles up at
mid-latitude, raising the free surface level and creating
a high pressure ridge at mid-latitude (H in figure 5.2).
The induced eastward geostrophic flow in the northern
half-basin requires a low pressure along the northern
boundary. In the southern half-basin a westward flow
of the same magnitude requires less of a north-south
pressure difference because the Coriolis parameter is
smaller) so the low pressure (HL in figure 5.2) at the
south is higher than the low pressure (LL in figure 5.2)
at the north. The solid boundaries at the east and west
will divert the flow. A narrow frictional boundary layer
at the east would require flow from the low low pres-
sure at the north to the high low pressure at the south,
i.e., flow up the (gross) pressure gradient. On the west-
em side, on the other hand, a narrow frictional bound-
ary layer supports flow from high to low pressure.
Hence, if a thin frictional boundary layer exists, it must
be on the western side. This "explanation" ignores a
lot of important details, but the reasoning is consistent
with the roles that rotation and friction play in bal-
ancing the pressure gradient.

If a system without meridional boundaries (a zonal
channel) were subjected to a zonal stress, a zonal flow
would be generated (apart from the Ekman drift).
Hence, the Sverdrup transport of Stommel's model
must depend on the presence of meridional boundaries.
Yet it seems likely that if the meridional boundaries
are far enough apart, the system should resemble a
zonal channel more than an enclosed ocean except in
relatively narrow regions near the east and west where
meridional flow takes place. Welander (1976) showed
that that is the case. With the zonal wind stress given
above one can substitute = '(x) sin(iry/M) to derive

K~" - K~ M + ' = - M' rM2 M- (5.87)

Figure 5.I The transport streamfunction, normalized with re-
spect to the Sverdrup transport and divided by siniry/M, is
shown for Munk's solution with lateral diffusion (top curve)
and Stommel's solution with bottom friction. The nominal
boundary layer thickness is L160. Stommel's solution shows
the decreased transport because of the effect of friction in a
basin with 7rL/M >> 1. Munk's solution oscillates near the
western boundary, giving rise to a weak countercurrent to the
east of the main northward flow.

I5o
George Veronis

...

x



of wind stress and bottom friction, the vertical diver-
gence term in (5.78) will also contribute the term
fdhldt to the right-hand side of (5.84). If the latter is
combined with the / term, the result is

(5.88)

Figure 5.z A cosine wind stress T7 causes an Ekman drift
(double arrows) toward mid-latitude where the free surface is
elevated and a high pressure region (H) is created. A geostroph-
ically balanced current flows eastward in the north half-basin
and westward in the south. Because of the larger Coriolis
parameter a lower low pressure (LL) is required along the
north boundary than along the south (HL) to support the same
transport geostrophically. If the zonal transport is deflected
southward in a frictional boundary layer near the eastern side
(dashed curve), the flow must go against the gross pressure
difference (from LL to HL). If the flow is in a western boundary
layer (solid curve), the gross pressure difference drives the
flow against frictional retardation. The latter is a consistent
picture.

As we have seen, the second-derivative term is impor-
tant only in the western boundary layer where the scale
of variation is K/,3 = 100 km. North-south diffusion
(the undifferentiated '1 term) is unimportant when the
geometry is square. But when the zonal separation is
large (rL/M >> 1), the balance is between wind-stress
curl and north-south diffusion, D = MT/rK), and the
flow is zonal. The Sverdrup transport relation holds in
an eastern boundary layer with the east-west scale
/3M2 Tr2/K. Bye and Veronis (1979) pointed out that the
northward transport in the western boundary layer is
much smaller than the transport calculated by the
Sverdrup balance if the aspect ratio rL/M is large, as is
the case for nearly all wind-driven oceanic gyres. Of
course, these results are contained in the complete
solution of the simple model discussed here. But when
relatively modest refinements are introduced (e.g.,
spherical geometry), a complete solution is no longer
possible and boundary layer methods must be used. It
is then necessary to recognize the correct approximate
balance in the different regions of the basin.

5.5.3 Topography and Lateral Friction
The principal result of the foregoing analysis, viz., the
westward intensification of an oceanic gyre, is verified
both by observations and by much more sophisticated
analyses. Hence, it is a feature that appears to be in-
sensitive to the drastic simplifications that were made.
But it is a simple matter to change the result by relax-
ing one of the simplifications and then restoring the
result with a second, seemingly unrelated, assumption.
In other words, the simple model is not as crude as it
appears to be.

For example, introduce realistic topography (Hol-
land, 1967; Welander, 1968). Then on vertical integra-
tion, we see from (5.60) that, in addition to the effects

Hence, the driving and dissipative forces on the right
will cause a fluid column to respond by moving to
points determined by the value of f/h rather than f as
before. Since the contours of flh are sometimes strongly
inclined to latitude circles (Gill and Parker, 1970), the
transport pattern is very different from (in fact, less
realistic than) Stommel's. Thus, the effect of topogra-
phy is exaggerated in a homogeneous model.

Stratification can reduce the topographic effect. In
fact, if the density surfaces adjust so that the pressure
gradient in (5.55) vanishes at and below a given level,
there will be no driving force to support a flow. If
topography does not project above this level of density
compensation, it has no effect on the flow. In an in-
termediate situation, the density distribution can com-
pensate for part of the pressure gradient so that at the
level where it interacts with the bottom the velocity
is considerably weaker than the surface velocity. A
treatment of the latter case would necessarily incor-
porate convective processes in some form.

When complete compensation takes place in a steady
model, the topographic influence is eliminated, but our
derivation of bottom friction is no longer valid because
it is no longer possible to parameterize the frictional
processes at the bottom in terms of the mean velocity.
The essential results of the model can be preserved,
however, by parameterizing frictional effects in terms
of an assumed lateral eddy diffusion. The last term in
(5.83) is then replaced by a lateral frictional term so
that the vorticity equation, in terms of the transport
stream function becomes

8 = ikV x + A V4, (5.89)

where A is the magnitude of eddy viscosity based on
the intensity of eddy processes at scales smaller than
those being analyzed. Hidaka (1949) introduced this
equation together with the vertically integrated con-
tinuity equation

OU av
+ a= . (5.90)

Ox ay

A convenient set of boundary conditions where the
wind stress curl is proportion to sin(ry/M) is

U=0=V at x =0, L,
5.91)

V=0 = at y=O,M.
y
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The solution is easily obtained (Munk, 1950) and is
included in figure 5.1. It contains a Sverdrup transport
in the interior; a narrow eastern boundary layer in
which V decreases to zero at the eastern wall; and a
western boundary layer with no tangential velocity at
the western wall, a northward flow near the wall and
a weak, narrow countercurrent just east of the north-
ward flow. Because frictional processes are now asso-
ciated with higher derivatives, the effect of friction in
the interior is considerably weaker than in Stommel's
model, and the Sverdrup balance is valid throughout
the interior. Accordingly, in this case the aspect ratio
of the basin has little influence on the magnitude of
the transport. Because the zonal velocity increases lin-
early with distance from the eastern boundary, for
broad ocean basins the flow has a strongly zonal ap-
pearance. In Stommel's model the north-south flow
essentially vanishes in the western portions of the
basin and the flow is truly zonal there.

Although these formal models are steady, the appli-
cation is to flows that are transient but statistically
steady. Transient motions can have a strong barotropic
component even when the statistically steady flow is
largely baroclinic. With that in mind we may still use
a bottom frictional drag for the stratified steady model,
though the connection to the mean flow will then be
not through the coupling to a steady Ekman layer but
through a time averaging of interacting transient mo-
tions. Rooth (1972) has made such an estimate for K
and obtains a value considerably smaller than the one
normally used.

5.5.4 Laboratory Models
Though these steady, linear models can provide only
the crudest approximation to real oceanic flows, they
have served an important function in the development
of oceanic theory. Stommel (1957b) put together the
important components (Ekman suction and p-effect) to
construct a comprehensive picture of ocean current
theory as determined by these simple processes. The
ideas were tested in a laboratory model of ocean cir-
culation (Stommel, Arons, and Faller, 1958) in which
the P-effect was simulated by the paraboloidal depth of
a homogeneous layer of water in a pie-shaped basin
rotating about the apex (see chapter 16). The equiva-
lence of pl and variable depth is suggested by the lin-
earized form of potential vorticity,

(4 +f)/h ( + f/h + Ho-
where -7 is the deviation of the free surface from its
mean value H, so that a change in forl/H2 is equivalent
to a change in f, i.e., to p. When water is being added
at the apex, the free surface in the interior rises not by
a direct vertical motion but by a radially uniform in-
ward movement of columns of fluid (figure 5.3). The

circulation generated in this way simulates the Sver-
drup transport, the inward radial direction correspond-
ing to north (increasing f or decreasing depth).

In the experiment, boundary layers near the "west-
ern" boundary and the rim and apex are required to
complete the circulation pattern (figure 5.3). The azi-
muthal flow and the rising free surface needed to feed
the interior radial flow are generated in the rim bound-
ary layer. Near the apex the flow is diverted to the
western boundary layer to join the fluid being injected.
It is interesting to note that the radially inward flow
that causes the free surface to rise is toward the source
of fluid. Thus, the transport in the western boundary
layer is twice that of the source. Half of the former
goes to raise the free surface; the other half serves as
the vehicle for the indirect circulation. (Also see Fig-
ures 16.1 and 16.2 and the accompanying discussion.)

Additional experiments and a rigorous analysis using
rotating-fluid theory to treat the various boundary lay-
ers were subsequently provided by Kuo and Veronis
(1971), who showed that for different parametric ranges
the experiment could be used to simulate Stommel's
model with a bottom frictional boundary layer or the
Hidaka-Munk model with a lateral frictional boundary
layer. Veronis and Yang (1972) provided a perturbation
treatment of the nonlinear effects and verified the re-
sults with a series of experiments. Pedlosky and Green-
span (1967) proposed an alternative laboratory model
with the depth variation provided by an inclined
boundary at the top and/or bottom of a rotating cylin-
der. The flow was driven by the differential rotation of
the top plate. For this model Beardsley (1969, 1972)
carried out a comprehensive set of experiments and

Qc9 Br

Figure s.3A A weak source of fluid at the apex of a rotating
pie-shaped basin will cause flow toward the rim in a "west-
ern" boundary layer. Fluid flows from the rim boundary layer
radially inward toward the apex as shown.

1

Figure . A vertical cross section through the apex. The

Figure 5.3B A vertical cross section through the apex. The
basin is filled in the interior by the inward movement of
columns of fluid as shown.

152
George Veronis



extended the theory analytically and numerically to
include inertial effects.

The foregoing experiments and theories are more
appropriate areas of application than the real ocean is
for the ideas introduced by Sverdrup, Stommel, and
Munk. At the time that they were introduced, how-
ever, these ideas were remarkable advances into un-
known territory. They have provided a framework for
further development and some of them persist as im-
portant elements in more extensive theories.

5.6 Preliminary Nonlinear Considerations

The first perturbation analysis of nonlinear effects in
a wind-driven gyre was by Munk, Groves, and Carrier
(1950), but it is easier to see the qualitative changes by
looking at Stommel's model (Veronis, 1966a). From the
linear problem we saw that the vorticity and its zonal
variation are largest in the western boundary layer, so
we expect the largest nonlinearities there. The wind
stress is not important in that region, and we start with
the vorticity equation, including inertial terms but not
the wind-stress curl:

d
d (4 + f) = v.V4 + fv = -4.It (5.92)

For more nonlinear flows the dissipation takes place
largely in the northern half of the boundary layer. Fur-
thermore, the excess inertia of the particles causes
them to overshoot their original (interior) latitudes so
there must be an additional region where inertial proc-
esses and friction restore the particles (southward) to
their starting points. The effect is to spread the region
of inertial and frictional control first to the north and
eventually eastward from the northwest corner of the
basin. A discussion of the successively stronger effects
of nonlinear processes and a division of the basin into
regions where different physical balances obtain is
given by Veronis (1966b).

This argument strongly suggests that it may be pos-
sible to analyze the region of formation of western
boundary currents in terms of a frictionless inertial
model. Stommel (1954) proposed such an analysis
which he subsequently included in his book (Stommel,
1965).

Fofonoff (1954) focused his attention on nonlinear
processes by treating the steady circulation in a fric-
tionless, homogeneous ocean. The starting point is the
conservation of potential vorticity in a basin of con-
stant depth, viz.,

d
d I[ + f) = o,It (5.93)

In the southern half of the basin the flow is westward
(u < 0) into the boundary layer where it is diverted
northward. Thus, a fluid particle is carried from the
interior, where vanishes, into the boundary layer,
where is large and negative, so d,/dt < O0. Northward
flow implies dfldt > 0. Hence, the convective term bal-
ances part of the fi-effect and -E; must consequently
decrease in size. Since the vorticity is essentially v/ax,
it will decrease if v decreases or if the horizontal scale
increases. But from v = dl/ax we see that a decrease
in v also corresponds to an increase in the horizontal
scale. Therefore, we conclude that inertial effects
weaken the flow by broadening the scale. This effect
will also decrease the dissipation in the inflow region.
The same considerations apply to the case with lateral
friction.

In the northern half of the basin where the flow
emerges (u > 0) from the western boundary layer, fluid
is carried from a region of negative vorticity to the
interior where a vanishes, so dCldt > 0. Since the flow
is northward in the boundary layer, df/dt is also posi-
tive. Therefore, the amplitude of the vorticity must be
larger since the dissipation --E must be larger than in
the linear case. Hence, the horizontal scale of variation
must decrease.

The net effect of inertial processes is thus to broaden
the boundary layer thickness and to reduce the dissi-
pation in the region of inflow, and to sharpen the
boundary layer thickness and increase the dissipation
in the region of outflow.

together with the two-dimensional continuity equa-
tion. These equations are satisfied by u = -M/0y =
constant or

' = -uy, (5.94)

but boundary conditions are not, so it is necessary to
add boundary layers at the eastern and western sides
of the basin.

A first integral of (5.93) is

V2* + f = F(q,) (5.95)

and in the interior where the relative vorticity vanishes

F() = f = fo + y. (5.96)

But (5.94) yields y = -u there, so that F(J) =
fo - ptu and (5.95) becomes

V2 / + -e = -y. (5.97)

This equation is satisfied nearly everywhere by =
O(x)y so that

O" + - = -f.u (5.98)

The north-south flow near the meridional boun-
daries is thus geostrophic. A boundary layer solution
with 4 = 0 at x = OL is possible for u < 0 if =
(-fi/u) 1 12 >> L. It is
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= Uhe [sinhEx - sinhEL + sinhE(L - x)]
sinh EL

x [y - Me-'M-]. (5.99)

This yields a uniform, westward flow in the interior,
and boundary layers of thickness E-1 with northward
flow at the west, southward flow at the east, and a jet
across the northern edge (figure 5.4).

It is possible to have the eastward jet at any latitude
by adding an appropriate constant to Ji in (5.94). With
u > 0 the system does not have a boundary layer so-
lution but oscillates across the basin (Fofonoff, 1962a).

Although Fofonoff's solution appears to be very ar-
tificial, it is one of the survivors of the earlier theories.
The strongly nonlinear version of Stommel's model
leads to a solution that looks remarkably like Fofon-
off's (Veronis, 1966b; Niiler, 1966). The recirculation
region just south of the Gulf Stream after the latter has
separated from the coast has the appearance of a local
inertial circulation. Thus, it is likely that some version
of the latter will be part of any successful model of
large-scale ocean circulation.

Shortly after Fofonoff's analysis and following Stom-
mel's (1954) suggestions, Charney (1955b[ and Morgan
(1956) produced models of the Gulf Stream as an in-
ertial boundary layer. By using observed or simulated
conditions at the inflow edge of the Gulf Stream to fix
the form of F(l), and working with a two-layer model
with potential vorticity (f + )/h and geostrophic bal-
ance for the northward flow, they were able to calculate
the streamfunction pattern and the thermocline depth
distribution in the formation region of the Gulf Stream.
Charney showed that in a two-layer ocean inertial
forces can cause the thermocline to rise to the surface
at a latitude corresponding to Cape Hatteras. His so-
lution could not extend beyond that point.

Morgan began his analysis by dividing the ocean into
an interior with a Sverdrup balance, a formation region

Figure 5.4 Fofonoff's (11954) inertial flow pattern for steady
westward flows in the interior. An inertial boundary layer at
the west diverts the flow northward and an eastward jet is
formed. The latter feeds into an inertial boundary layer on the
east that supplies the steady westward flow of the interior.

for the western boundary current, which he analyzed
using the same model that Charney did, and a northern
region. He speculated that friction and inertial and
transient processes would interact in the north, but he
did not attempt to analyze that region. He was one of
the first to point out that pressure torques at the bot-
tom and sides of the ocean can help to balance the
torque exerted by the wind stress about a mid-ocean
axis.

In contrast to the demonstration following 5.92) that
inertial effects are consistent with the formation of a
western boundary layer by the interior flow, a similar
argument for the formation of an eastern boundary
layer is not possible. For example, consider an anticy-
clonic gyre when an eastward interior flow generates
an eastern boundary layer with southward flow. The
vorticity in the boundary layer is negative, so -E is
positive. For southward flow dfldt is negative and
therefore d(/dt must be positive. But that is not pos-
sible since ; must change from a nearly zero value in
the interior to a large negative value in the boundary
layer. An analysis of the various possibilities for both
cyclonic and anticyclonic gyres shows that it is gen-
erally not possible to form eastern boundary layers
from eastward interior flows (Veronis, 1963). The ac-
tual existence of eastern boundary layers means that
the necessary physical processes (in my opinion hori-
zontal advection of density must be included) are miss-
ing from these simple models.

In an important model of a steady wind-driven gyre
in a homogeneous ocean of constant depth, Derek
Moore (1963) produced a complete circulation pattern
with contributions from frictional and inertial proc-
esses in both inflow and outflow regions of the western
boundary layer. Moore combined boundary-layer ar-
guments from classical fluid mechanics with most of
the features given above. Using a Navier-Stokes form
for friction, he proved that frictional and inertial proc-
esses cannot be combined consistently to produce a
boundary layer confined to the eastern side. In the
vorticity equation of his model inertia is included as
an east-west convection of the vorticity with a zonal
velocity, U(y) = U cos(ry/M), consistent with the form
of the wind stress. In the southern half-basin (figure
5.5) the incoming (westward) flow forms an inertially
controlled western boundary current. In the northern
half-basin the emerging flow oscillates eastward and
has the appearance of standing, damped Rossby waves
imbedded in an eastward current. The center of the
gyre is north of mid-latitude, consistent with the ef-
fects of inertia mentioned earlier. His results depend
on the magnitude of a Reynolds number defined by
Re = U2/vl2, which can be looked upon as the ratio
of the inertial boundary layer scale (UO/,)112 to the vis-
cous scale v/U. The result is shown for Re = 5. As Re
is decreased, the flow tends toward the Munk pat-
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Figure 5.5 Contours of the streamfunction in a homogeneous
ocean driven by a wind stress of the form -cosry/M as de-
rived by Moore (1963). An Oseen approximation for the non-

tern. With larger Re the oscillations extend farther to
the east and eventually fill the northern half of the
basin. In the latter case there is a rapid transition across
mid-latitude in the interior and the oscillatory flow
becomes unstable. Qualitatively this homogeneous
model contains a remarkably realistic array of features
of oceanic flow, though the observed recirculation in
the northwest comer is missing.

We turn to a discussion of stronger nonlinear effects
in Stommel's model. As Ro is increased (Veronis,
1966b), the western boundary layer in the southern
half-basin broadens and dissipative effects are more
confined to the north. Inertial effects also intensify in
the north so that a particle overshoots the northern-
most latitude that it had in the interior. Hence, a new
boundary layer region must be generated (offshore of
the original one) where friction and inertia force the
particle southward to its original latitude. In this latter
region the relative vorticity is actually positive because
the return flow to the south is stronger close to the
boundary layer than it is farther to the east. The
overshoot can be seen in figure 5.6A.

With even stronger driving the overshoot is larger
and eventually the particle is driven close to the north-
em boundary and then eastward before it starts its
southward return to its original latitude (figure 5.6B).
Thus, the frictional-inertial region is broadened. In an
extreme case (figure 5.6C) fluid particles move east-
ward in a jet at the north and reach the eastern bound-
ary before turning south. In the latter case, there is
essentially no Sverdrup interior, and the flow pattern
resembles Fofonoff's free inertial flow with a mild
east-west asymmetry as the only evidence that the
flow is wind driven. An interesting fact here is that the

linear terms with a mean current U(y) - cosrTy/M was used.
The wavy contours in the north half-basin are standing Rossby
waves imbedded in the mean velocity field.

northward transport in the western boundary layer
does not increase beyond the Sverdrup transport until
the eastward moving inertial jet reaches the eastern
boundary. In the calculations cited, that happens when
the inertial scale (U/,11 2 (-Ro' 12L) exceeds the viscous
scale KI/, by a factor of 2 or so. Here, U0 is a measure
of the Sverdrup velocity. Qualitatively, at least, the
observed recirculation to the south and east of the Gulf
Stream after it has separated from the coast is simu-
lated by this model. The separation from the coast is
not. An analytic model of the highly nonlinear case
was suggested by Veronis (1966b) and independently
carried out by Niiler (1966). The resulting pattern is
consistent with the one shown in figure 5.6C. Stommel
(1965) guessed a similar pattern.

Bryan (1963) carried out an extensive set of numeri-
cal calculations in a rectangular basin for the nonlinear
Hidaka-Munk model with k-V x x - sin ry/M, zero
velocity boundary conditions at east and west, and
zero-shear conditions at north and south. He presented
his results in terms of a Reynolds number Re essen-
tially the same as Moore's, and the Rossby number,
Ro. The results differ greatly from those with bottom
friction because for Re > 60 a barotropic (Rayleigh-
type) instability can occur near the western boundary
where the tangential velocity must vanish. Figure 5.7
illustrates his results for three values of Re, with Ro =
1.28 x 10 -

3 for figures 5.7A and 5.7B and Ro = 3.2 x
10 -4 for figure 5.7C. The first two cases, with Re =
20 and Re = 60, show the development of the flow
with increasing nonlinearity. Only a mild, steady, os-
cillatory pattern is present with Re = 20, whereas with
Re = 60 the oscillations are more intense and a closed
eddy (recirculation) is present near the northwest cor-
ner. For Re = 100 the flow is transient with a barotropic
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gure 5.6 Three streamfunction patterns by Veronis (1966b)
r an ocean basin with varying degrees of intensity of wind
ress. (A) shows the perturbation effect of nonlinearity with
id particles in the western boundary layer overshooting
Leir equilibrium latitudes. (B) shows a much stronger inertial
fect. In (C) inertia dominates the system, creating an east-
ard jet along the north reminiscent of Fofonoff's solution.

RE= 60 RE= 5

gure 5.7 Bryan's (1963) streamfunction contours for a ho-
geneous ocean with lateral friction. The circulation in (A)

nearly linear; that of (B) is near the limit of forcing that still
Lds to a steady circulation. With even more intense driving
barotropic instability occurs as in (C), where a time-average
ld is shown after the system approaches a statistically
eady state. See also Figure 3.13 and discussion there. Re is
:or (A), 60 for (B), and 100 for (C).
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instability induced in the northern half of the intense
northward jet. Figure 5.7C shows the time-averaged
flow after the transients have settled down. In this case
also there is an offshore region in the north with pos-
itive vorticity where particles return southward to
their starting latitudes. It is not possible to obtain an
intense recirculation with this model because of the
barotropic instability.

Bryan also calculated the flow for a basin with a
western boundary directed north, then due east, and
then north again. The break was north of mid-latitude.
The object was to see whether the break in the bound-
ary would force the western boundary current out to
sea. The flow pattern was modified mildly, but the
stream turned the comer and hugged the coast.

5.7 Why Does the Gulf Stream Leave the Coast?

The Gulf Stream flows along the coast from Florida to
Cape Hatteras, where it parts from the coast and flows
slightly north of eastward out to sea see chapter 4).
The Kuroshio and all other western boundary currents
also separate. The phenomenon is explained here by a
very simple argument. Although processes more com-
plicated than the ones discussed below are also present,
I believe that the argument given here contains the
essential features even though the local dynamical de-
tails are not included.

Consider a two-layer system with the lower layer at
rest. Then from equations (5.65) and (5.66) it follows
that

Vn2 =- I Vi, V = AP Vh 1 .
P2

If the motion is geostrophic (Ro << 1) except for the
vertical stress term near the surface, equation (5.62)
upon vertical integration over the depth h of the top
layer becomes, with g' = g AP/P2,

-fVw = g'h coa + T, (5.101)
a cos OX

where spherical coordinates have been retained so
there is no geometrical distortion. Here the stress at
the interface is assumed negligible and corresponds
to the zonal wind stress. Multiply (5.101) by a cos 
and apply the operator f.e( )dA, where e is the meridian
of the eastern boundary, to obtain

2f 2f
hi = h, fTl-, T, f5.102)

g g

where subscript e denotes a value at Xe, T =
.a cos t V dX is the meridional transport, and TE =

fa cos T dXlf is the Ekman drift.
In all of the calculations reported in the previous

section, the downstream velocity in the western
boundary layer is geostrophic to a very good approxi-

mation. Hence, (5.102) is valid not only for interior
flow but for the entire basin from west to east. There-
fore, if we evaluate (5.102) at the western edge kw, T1
represents the total meridional transport. If the ocean
basin is enclosed to the north of the latitude in ques-
tion, T must vanish in the steady state and (5.102)
becomes

(5.103)h2w = h2 e -- TE-.

Now, for > 0 the Ekman drift, TE is toward the south
(positive as defined above) and the depth of the upper
layer at the western boundary hiw will be less than hle.
For sufficiently large TE, h1 w will vanish, i.e., the ther-
mocline (interface) rises to the surface. With observed
values for AP/P2, r, and hie for the North Atlantic, h1w
vanishes at about the latitude of Cape Hatteras.

North of that latitude r is even larger and (5.103)
cannot be satisfied because TE is too large. However,
the solution can be extended northward by setting h1 w
equal to zero at a new longitude (>Ahw which is chosen
to reduce TE so that the terms on the right of (5.103)
balance. This new longitude marks the westernmost
edge of the warm-water mass and is the longitude of
the Gulf Stream. But > kw means that the Gulf
Stream must separate from the coast and extend out to
sea. This argument alone does not suffice for higher
latitudes where r eventually becomes negative. We
shall return to that issue presently.

Before doing so, however, we discuss the simple
physical balances given above. The meridional flow in
the interior is a combination of geostrophically bal-
anced motion and Ekman drift. If the flow were com-
pletely geostrophic, vanishing T1 would require equal
values of h1 at the eastern and western edges. But the
Ekman wind drift, which does not involve a pressure
gradient, accounts for part of the southward transport
when > 0. Therefore, since the total transport van-
ishes, there is a net northward geostrophic transport,
of magnitude TE, which requires hw < he. Thus,
the Ekman drift causes the thermocline to rise to the
surface. Separation of the Gulf Stream from the coast
simply moves the western edge of the warm-water
mass (upper layer) eastward so that the smaller Ekman
drift acting on that water mass of more limited east-
west width can just balance the geostrophic flow de-
termined by hfle (since h4w vanishes).

It is also interesting to note that the Coriolis param-
eter does not appear in (5.103). In fact, the result is
exactly the one obtained for a nonrotating lake where
the wind blows the warm water to the leeward edge
and causes the thermocline to rise on the windward
side. The principal difference between the two phe-
nomena is that the induced pressure gradient drives a
vertical circulation in the lake, whereas it is geostroph-
ically balanced in the rotating ocean, thereby generat-
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ing a horizontal cell. But the leeward piling up of water
is the same in the two cases.

Returning to the problem at high latitudes, we note
first that the analysis given above must be supple-
mented by the remaining dynamic balances. The reader
is referred to Veronis (1973a) for the details for the
wind-driven model. The qualitative discussion given
here is simpler and clearer than in the original paper.

The first problem is that the Sverdrup transport for
the interior vanishes with kV x , and without adding
to the simple argument there is no way of supplying
warm water to the north of the latitude (40°N in the
North Atlantic) where the curl vanishes. Second, even
supposing that warm water has somehow been sup-
plied to the north, the Sverdrup transport there is
northward (kiV x > 0), so the southward return of
the flow by a western boundary current would require
that the thermocline be deeper on the western side of
the boundary layer. That is not possible with the
boundary current in mid-ocean.

Both of these issues can be resolved by considering
what happens even farther to the north where warm
water flows northward and impinges on the northern
boundary. In the real ocean and in a model including
thermal driving (Veronis, 1978), this water will sink
and give rise to a deep circulation and an overturning
cell. In a wind-driven model the water travels counter-
clockwise as an isolated warm boundary current and
rejoins the stream at the point of separation. In the
analysis given above, this recirculating current repre-
sents an excess transport in the separated boundary
current. Because its transport does not depend on local
winds, it can transport water past the latitude of van-
ishing wind-stress curl and supply warm water to the
interior at high latitudes. When it is included in the
analysis, a revised longitude for the separated boundary
current is obtained. The calculation, which can be
made consistent and quanitative for both the wind-
driven model and the one including thermal driving, is
contained in the two papers cited above. The path of
the separated Gulf Stream is reproduced in figure 5.8.
It is especially interesting to note that the vestigial
current in the northeastern corner of the basin corre-
sponds to the Norwegian Current (the Alaskan Current
in the Pacific) and that its transport is important for
the separation of the Gulf Stream and also for the
determination of the longitude of the current after it
has separated.

The analysis leading to the separation of the Gulf
Stream from the coast is contained in a quasi-geo-
strophic model by Parsons (1969). It was derived inde-
pendently by Veronis (1973a) as part of a study of the
circulation of the World Ocean. The extension pole-
ward of the latitude where the wind-stress curl van-
ishes is contained in the latter paper. Kamenkovich
and Reznik (1972) included a (bottom friction) analy-
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Figure 5.8 The path (solid curve) of the Gulf Stream after it
has separated from the coast [from a reduced gravity model
by Veronis (1973a)]. The zonal wind stress that drives the
system is taken from observations and has zero curl at 40'N.
The Norwegian Current is the narrow jet in the northeast.
The dashed curve is the prediction for an isolated anticyclonic
wind gyre (Parsons, 1969). The latter solution cannot be ex-
tended north of the latitude of zero wind-stress curl. Axes are
latitude and longitude.

sis of the deep circulation induced by the separated
current.

All of the above make use of a steady, linear, quasi-
geostrophic model, and it is certain that the details
(e.g., the longitude of the separated current) will be
altered when a more complete dynamic model is used.
The key elements of the argument, however, are the
geostrophic balance of downstream velocity in the
western boundary current, the Ekman wind drift, and
a limited amount of upper-layer water. As long as a
different dynamic model does not drastically change
those three features (they are pretty rugged and can
withstand a lot of battering) the moje complicated dy-
namics can be incorporated to change the details of the
results, leaving the main argument unchanged.

By the same token, the present analysis suggests that
an explanation of the separation of western boundary
currents from the coast must necessarily include the
surfacing of the thermocline (with a possible mixed
layer at the surface). Western boundary currents can be
forced out to sea between wind-driven gyres of opposite
sign, but that occurs at low latitudes as well where the
phenomenon is qualitatively different because the
thermocline does not surface.

In addition, the argument given here depends on
properties of global scale. A more precise dynamic
treatment based on local properties can lead to a better
understanding of the detailed mechanistic balances of
the separated current, but the cause of separation
seems to be based on global properties.

5.8 Thermohaline Circulation

The physical processes that are involved in the for-
mation of the thermocline have been studied as a sep-
arate part of the general circulation. The models in-
corporate geostrophic dynamics and steady convection
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