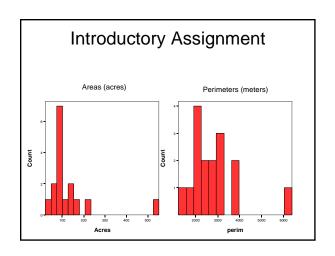
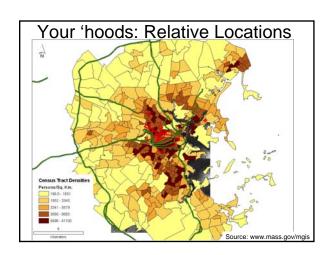
Accessibility: The Land Use-Transportation Link

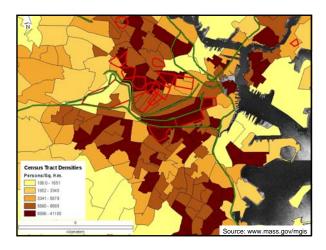

Day 5 11.953

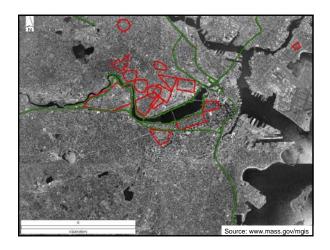
Content

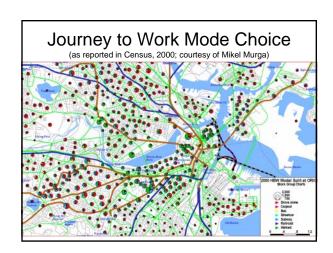
- Review of Introductory Assignment
- · Accessibility: History and Definitions
- Types of Accessibility Measures
- Example Applications
- Accessibility: Indicator or Variable?
- Practical Uses of Accessibility Measures

Introductory Assignment

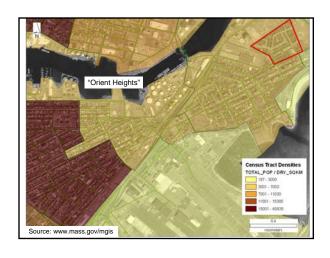

- · Defining Neighborhoods
 - Primarily Physical: 10
 - Physical-Social-Economic: 9
 - "Other"
 - "Daily/Weekly Patterns": 2
 - Variations in concept of "nearness"
- Example characteristics
 - "atmosphere", housing stock age/type, activity types, aesthetics
 - "walkability"
 - Clear boundaries: physical, monuments, street patterns
 - "status"

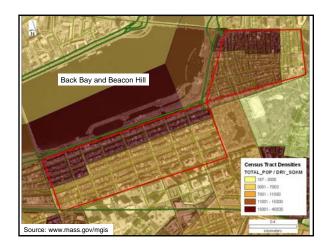


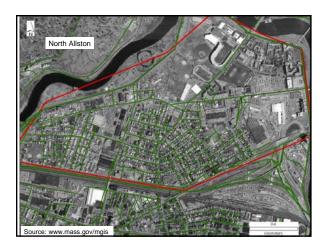

Introductory Assignment

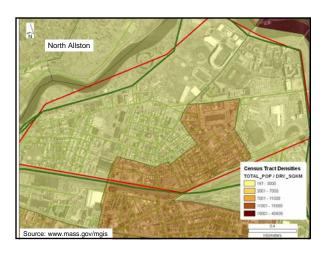

Neighborhood Summaries

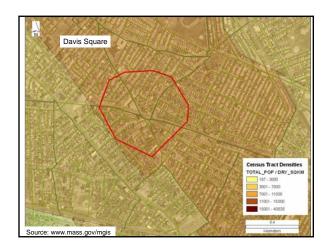
	Perimeter		
	(m)	HAs	Acres
N	16	16	16
Mean	2827.75	51.83	128.08
Median	2642.00	35.98	88.90
Minimum	1227	8	21
Maximum	6383	224	553

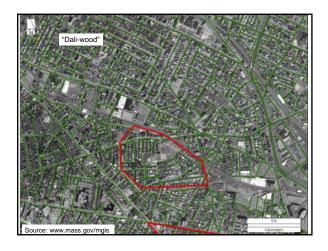


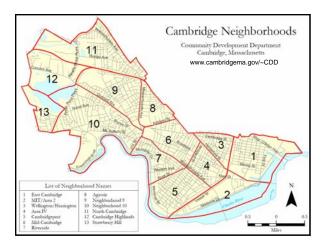


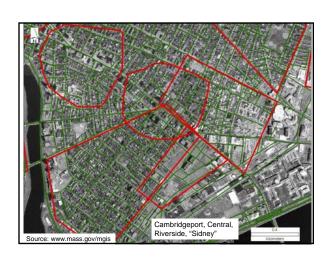


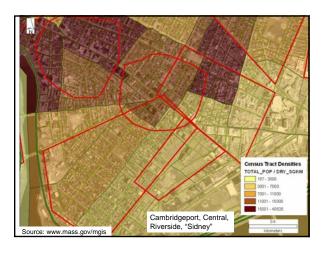


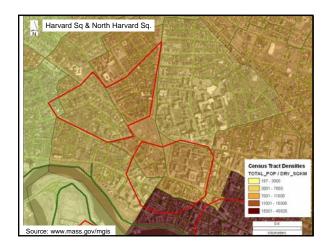


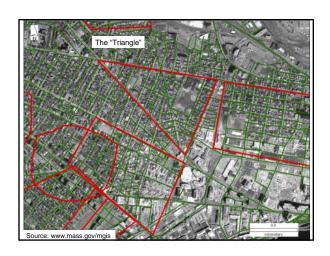


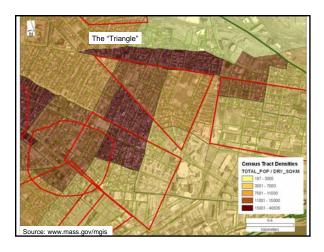


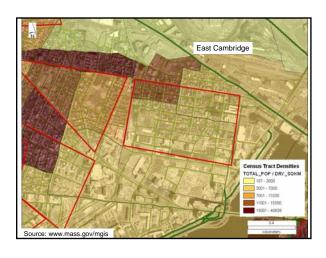












Physical Characteristics of "Relevance"

- "Neighborhood"
 - Parking, Transit Access
 - Traffic Calming
 - Density
 - Street Width, Streetscape, NMT Networks, Mix Uses
- Regional Setting, Access to Jobs

Non-Physical Characteristics & Future Factors

Non-Physical Characteristics

- Student populations
- · Family Life-cycle
- Vehicle Costs

Future Factors

- Public Transport Networks
- · Automobile Costs
- "Culture"

Accessibility

Defining Accessibility

 "extent to which the land-use and transportation systems enable (groups of) individuals to reach activities or destinations" (Geurs and van Wee, 2004; p. 128)

Accessibility = Function of:

(transportation system, land use patterns, the individual characteristics of firms and people, the overall quality of "opportunities" available, the communications system)

Accessibility: Contributing Elements

Elements	Effect on Accessibility (all else equal)		
Transportation	Improved with more links, faster or cheaper service		
Spatial distribution of "opportunities"	Improved if proximity of opportunities is increased		
Individual (personal/firm) characteristics	Improved with physical, mental, economic ability to take advantage of opportunities		
Quality of opportunities	Improved with more, or better, opportunities within same distance/time		

Accessibility and Human Development

Sen's (2002) view of sustainable development:

"enhancing human freedoms on a sustainable basis"

Sen's Concept	Meaning	Link to Accessibility/Mobility
Functionings	Everything that an individual may wish to be or do (to "flourish" as human beings)	Potential trip purposes (work, school, shopping, etc.)
Capabilities	Freedom to achieve the "functionings" that individuals have reason to choose	The land use-transportation system directly influences an individual's ability to realize trip purposes and combinations of trip purposes

Types of Accessibility Measures				
Measure Type	Examples	Suitability		
Infrastr based	Travel speeds by different modes; operating costs; congestion levels	Weak - only reflect level of throughput, no explicit land-use component		
Location- based	Distance measures (e.g., cumulative opportunities); potential measures (e.g, gravity-based measures)	Okay/Good - normally derived for some spatially aggregated unit; can represent stratified population segments		
Person- based	Space-time prisms	Good - measured at the individual level, according to temporal constraints		
Utility- based	Random utility-based measures (i.e., from discrete choice models or the doubly constrained entropy model)	Good - based on microeconomic benefit (utility) for individuals or stratified population segments		

Infrastructure-Based	Internal Accessibility Measures for the 60 Largest MSAs			
Example	trav	verage el time inutes)	trav	werage el time iinutes)
60 Largest US MSAs "Representative" Points in counties chosen Point-to-point travel times	Sacramento, CA Houston, TX Phoenix, AZ Tulsa, OK Dellas, TX Los Angeles, CA Detroit, MI Pittsburgh, PA Rochester, NY St. Louis, MO	69.72 69.45 67.79 67.76 65.49 62.53 62.00 61.52 60.42 59.43	Cleveland, OH Indianapolis, IN San Antonio, TX Allentown, CT Kansas CIT, MO Tampa, FL Dayton, OH Buffalo, NY Honolulu, HI Orlando, FL	48.32 47.16 46.86 46.84 46.63 46.62 46.59 46.41 46.37 46.05
calculated (based on existing road network and relevant average speeds	San Diego, CA Greensboro, NC Denver, CO Nashville, TN Birmingham, AL Miami, FL	58.24 57.73 57.42 57.18 56.71 56.59	Pt. Lauderdale, FL Cincinnati, OH Toledo, OH Columbus, OH Seattle, WA San Francisco, CA	45.50 45.39 44.51 44.45
 Average calculated for each origin 	Atlanta, GA New York, NY Minneapolis, MN Hartford, CT	56.19 55.23 55.08 54.97	Louisville, KY Charlotte, NC Richmond, VA Philadelphia, PA	42.26 40.09 40.50 40.17
 Average of averages calculated = Accessibility Index 	Syracuse, NY Albany, NY Providence, RI Chicago, IL Oklahoma City, Ok Salt Lake City, UT Memphis, TN Boston, MA	54.88 54.14 52.95 52.72	Milwaukee, Wi New Orleans, LA Baltimore, MD San Jose, CA Youngstown, OH Gary, IN Anahelim, CA Grand Rapids, MI	39.53 39.39 36.64 35.92 34.87 34.33 34.16 32.97
Allen et al, 1993; BTS, 1997.	Portland, OR Washington, DC	49.44 48.68	Newark, NJ Akron, OH	30.46 30.00

Gravity-based Measures

- · Theoretical origins in physics,
- Improvement over distance-based measures, partly because they attempt to better reflect travel behavior realities through their functional form, generally:

$$A_i = \sum_i W_j f(c_{ij}, \beta)$$

- where:
 - $-W_{i}$ represents the opportunities available in a given zone j;
 - $-f(c_{ij}, \beta) = \exp(-\beta c_{ij}) = \text{impedance between zones i and j};$
 - c_{ij} represents the travel cost/distance between zones i and j; and
 - β is a travel cost sensitivity parameter.
 - generally enters as a negative exponential function
 - the accessibility measure clearly is highly sensitive to this parameter.
 - Should come from empirical analysis

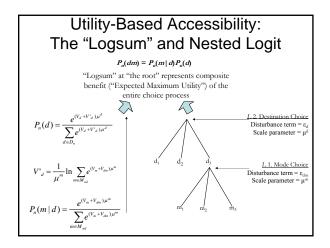
Gravity-based Measures

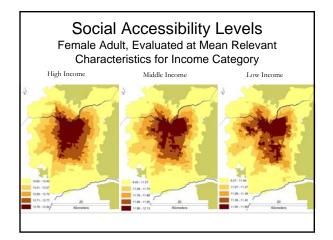
- Can be derived for an area (zone) and/or groups of people
- Fairly straightforward calculation based on readily available data
- Can be adapted to account for competition for opportunities at the destination
 - e.g., when the number of job opportunities is limited at given site (Shen, 1998)

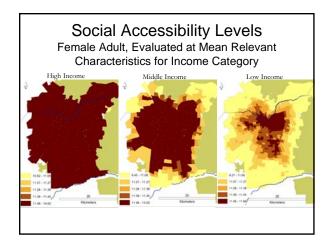
"Person-based" or "Constraints-based"

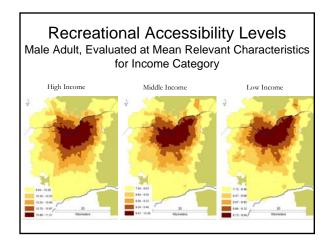
- Origins in Hagerstrand's (1970) time-space framework
 - aims to capture temporal and spatial constraints
 - i.e., both distance (between themselves and potential activities) and available time (to engage in activities).
- Theoretically appealing
- · Some applications
- Data-intensive
 - e.g., require information on people's activities and time budgets
- Computationally burdensome

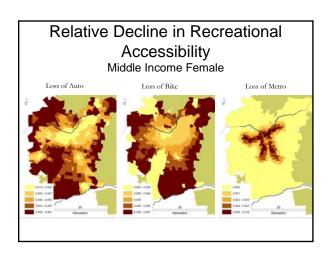
Baradaran and Ramjerdi, 2001

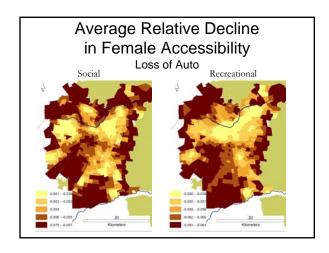

Utility-Based Accessibility


- Can reflect individual preferences
 - Consistent with Sen's "human freedoms" perspective
 - Based on the individual's actual choice set
- Directly linked to traditional measures of consumer surplus
 - Based in microeconomic theory (Williams, 1977; Small and Rosen, 1981)
- · Derived from discrete choice models
 - With a long tradition of application in transportation system analyses


Utility-Based Accessibility: the Logit Model


$$U_{jn} = V(z_{jn}, s_n, \beta) + \varepsilon_{jn}$$


$$P_n(i) = \frac{e^{\mu V_{in}}}{\sum_{i=1}^{j} e^{\mu V_{jn}}}$$



"Utility-based" Measures

- Theoretically appealing
 - Basis in behavioral theory and welfare economics
- Not immediately and easily convertible into meaningful and understandable units
 - Convertible into currency, time, but cumbersome
- Assumes utility linear with respect to income
 - Nonpresence of income effect
- Still travel-biased measures
 - Cannot immediately account for non trip-based accessibility (e.g., not traveling; trip-chaining)