
The Zoning Variance Database & More

Advanced

SQL Query Construction Techniques

Outline
• The Zoning Variance Database
• More About Queries (SELECT Statements)

o Review: SELECT Statement Syntax
o Ordering Rows Returned by a Query
o Order of Operations with 'AND' and 'OR'
o SELECT DISTINCT
o Cartesian Products
o Null Values
o Outer Joins
o Inner vs. Outer Joins with GROUP BY

• Views and Other Table-Like Database Objects
• The Data Dictionary
• Data Manipulation Language

o INSERT: Add Rows to a Table
o DELETE: Delete Rows from a Table
o UPDATE: Modify Data in a Table

• Transaction Control
• Data Definition Language

o Create and Drop Objects
o Access Privileges for Objects

• SQL Query Construction Techniques
o Method 1: Creating Intermediate Tables
o Method 2: Use a View Instead of a Table
o Method 3: Use a Subquery
o Method 4: Use a More Efficient Subquery

The Zoning Variance Database

Zoning Variances* Schema of ZONING table (and listing of
related lookup tables)

1980 Census data (by
Boston NSA)*

Schema of 1980 Boston Census data (and
related lookup tables)

Schema of Decision, Use,
NSA, Neighbrhd Lookup
Tables*

Schema of Lookup tables (second half of
Census data web page)

Sub-Neighborhood lookup
table*

The NSA and NEIGHBRHD tables
(bottom of Zoning Variance web page)

SQL examples using
zoning variances*

Annotated SQL queries of ZONING table

Grouping zoning
applicants via 'lookup'
tables*

Annotated SQL queries illustrating use of
lookup tables to categorize ownership of
properties seeking zoning variances

Zoning Variance Database
Evolution Chart*

Stages of evolution of the ZONING
variance database

More About Queries (SELECT
Statements)
Review: SELECT Statement Syntax
Basic Syntax :

SELECT expr1, expr2, expr3, ...
FROM object1, object2, ...
WHERE conditions

GROUP BY expr4, expr5, expr6, ...
HAVING conditions

ORDER BY expr7, expr8, expr9, ...
Note that the order of the clauses matters! The clauses, if included, must appear in the
order shown! Oracle will report an error if you make a mistake, but the error message
(e.g., "ORA-00933: SQL command not properly ended") may not be very informative.

* Kindly refer to Lecture Notes section

---------- --- ----------

Ordering Rows Returned by a Query
First of all, almost every SQL statement you write should specify the way the rows will
be sorted. That means you should include an ORDER BY clause in nearly every SQL
SELECT statement. While examples are in the notes, we haven't emphasized how to sort
in descending order. For this you can use the 'DESC' keyword after the expression you
want to sort that way. (SQL also has an 'ASC' keyword for ascending order. Since it is the
default, it can be omitted.)

The syntax looks like this:

SELECT ...
ORDER BY expr1 [[ASC | DESC] , expr2 [ASC |

DESC] ...]
For example, let's sort the parcels by land use in ascending order and the square footage
in descending order:
SELECT parcelid, landuse, sqft
FROM parcels

ORDER BY landuse ASC, sqft DESC;

PARCELID LAN SQFT

15 34800
10 10900
7 A 14000
14 A 10000
16 A 9600
18 A 9500
11 C 210000
2 C 100000
19 C 40000
8 C 24800
1 C 20000
4 CL
6 CM 2100
20 E 50000
5 E 25000
9 R1 1800
17 R1 1500
13 R2
3 R3 5500
12 R3 5300

---------- --- ----------

---------- --- ----------

20 rows selected.
Notice that the query can mix the ASC and DESC keywords in a single ORDER BY
clause.

Order of Operations with 'AND' and 'OR'
The Boolean operators 'AND' and 'OR' can do unexpected things when you combine
them in a query and you're not careful. Suppose we want to find parcels that have a
square footage of 5300 or 10000, and, of those, find the ones with land use code 'A'.

We might (incorrectly) write a query like this:

SELECT parcelid, landuse, sqft
FROM parcels
WHERE sqft = 5300

OR sqft = 10000
AND landuse = 'A'

ORDER BY landuse ASC, sqft DESC;

PARCELID LAN SQFT

14 A 10000
12 R3 5300

Notice that it returned a row with LANDUSE = 'R3'. That's not what we wanted! The
problem is that the 'AND' and 'OR' operators, when mixed, are not processed in the
sequence written, but rather follow an order of operations much as in algebra
(exponentation before everything, then multiplication and division before addition and
subtraction). In Boolean logic, 'AND' is like multiplication and 'OR' is like addition, and
Oracle orders their processing accordingly. Hence, the query above is actually equivalent
to this one:
SELECT parcelid, landuse, sqft
FROM parcels
WHERE sqft = 5300

OR (sqft = 10000
AND landuse = 'A')

ORDER BY landuse ASC, sqft DESC;

PARCELID LAN SQFT

14 A 10000
12 R3 5300

---------- --- ----------

Since the order of operations can surprise you at inconvenient times, you should always
use parentheses to force the correct order whenever you mix 'AND' and 'OR' in a
WHERE clause. Here is the correct way to write the query:
SELECT parcelid, landuse, sqft
FROM parcels
WHERE (SQFT = 10000

OR SQFT = 5300)
AND LANDUSE = 'A'

ORDER BY landuse ASC, sqft DESC;

PARCELID LAN SQFT

14 A 10000

SELECT DISTINCT
Normally, a query may return duplicate rows. For example, if we query the FIRES table
to list the parcels that had fires, we'll find that the parcels that had more than one fire
(parcels 2 and 3) show up multiple times:

SELECT parcelid

FROM fires

ORDER BY parcelid;

PARCELID

2
2
3
3
7
20

6 rows selected.
If we don't want to see the duplicates, we can add the keyword DISTINCT right after
SELECT:
SELECT DISTINCT parcelid
FROM fires

ORDER BY parcelid;

PARCELID

2
3
7
20

4 rows selected.

---------- -----------------------

---------- --------------- ----------

Now parcels 2 and 3 show up only once. You only use the DISTINCT once, right after
SELECT, to apply to the entire row. You do not apply it to each column. Hence, this
query is valid:
SELECT DISTINCT p.onum, o.oname
FROM parcels p, owners o
WHERE p.onum = o.ownernum

ORDER BY p.onum;

ONUM ONAME

9 PATRICK KING
10 METHUINON TRUST
11 FERNANDO MARTINEZ
18 JOHN MCCORMACK
29 FRANK O'BRIEN
32 GERALD RAPPAPORT
38 BAY STATE, INC.
55 THOMAS KELLIHER
89 JOSEPH NOONAN
100 MGH, INC.
200 VANDELAY INDUSTRIES

11 rows selected.
However, the following incorrect query, with two DISTINCT keywords, generates the
cryptic error message "ORA-00936: missing expression":
SELECT DISTINCT p.onum, DISTINCT o.oname
FROM parcels p, owners o
WHERE p.onum = o.ownernum

ORDER BY p.onum;
Note also that you can use DISTINCT with the group functions (e.g., COUNT, AVG,
STDDEV) to get these functions to consider only distinct values within a group:
SELECT COUNT(wpb) wpb_ct,

COUNT(DISTINCT wpb) wpb_ct_distinct,
COUNT(*) row_ct

FROM parcels;

WPB_CT WPB_CT_DISTINCT ROW_CT

20 20 20

1 row selected.

Finally, note that COUNT(DISTINCT *) does not work. This makes sense if you think

about it. Why do you think this is the case?

Cartesian Products
What's wrong with this query?
SELECT p.parcelid, p.onum, o.ownernum, o.oname
FROM parcels p, owners o;

This query returns 200 rows!

There are only 20 rows in PARCEL and 10 rows in OWNERS, so what's going on? The
problem here is that this query has no WHERE clause that specifies how the PARCEL
table relates to the OWNERS table. Without this information, Oracle does not know how
to match a row in PARCEL to a corresponding row in OWNERS. What does it do
instead? It matches every row in PARCEL to every row in OWNERS. Hence, we end up
with:

(20 rows in PARCEL) matched to (10 rows in OWNERS) = 20 x 10 = 200 rows
returned
This kind of unconstrained join is called a Cartesian product. This result is desirable only
under rare circumstances. If you have queries that are returning a suspiciously large
number of rows, you have probably unwittingly requested a Cartesian product. Note that
for tables of even modest size, the number of rows returned by a Cartesian product can be
explosive. If you generate a Cartesian product of one table with 1,000 rows with another
table with 2,000 rows, your query will return 1,000 x 2,000 = 2,000,000 rows! That's
right--two million rows! Hence, you should very careful to avoid unintentional Cartesian
products.

To fix this query, we need to specify how the owner numbers stored in the PARCEL
table should be matched to owner numbers in the OWNERS table. In PARCEL, the
owner numbers are stored in ONUM, while in OWNERS they are stored in
OWNERNUM. Here is the repaired query with the appropriate join condition in the
WHERE clause:

SELECT p.parcelid, p.onum, o.ownernum, o.oname
FROM parcels p, owners o
WHERE p.onum = o.ownernum;

This query returns 20 rows, which is definitely an improvement.

Note that a Cartesian product can easily be hidden in a query that requires multiple joins.
Suppose we want to find all the papers, with associated keywords, written by authors
with the last name WALKER. We could try this query:

COLUMN keyword FORMAT A20 TRUNC
COLUMN title FORMAT A25 TRUNC

SELECT a.lastname, a.fnamemi, k.keyword, t.title
FROM keywords k, match m, titles t, authors a
WHERE m.code = k.code
AND t.paper = a.paper
AND a.lastname = 'WALKER'

ORDER BY a.lastname, a.fnamemi, k.keyword, t.title;

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/expressi.htm#1023823

This query returns a whopping 6174 rows! What's wrong? All of the tables appear to be
involved in a join condition. The problem is that while the MATCH and KEYWORDS
tables are tied together, and the TITLES and AUTHORS tables are linked to each other,
nothing links these two sets of tables together. Adding another join condition fixes it:

SELECT a.lastname, a.fnamemi, k.keyword, t.title
FROM keywords k, match m, titles t, authors a
WHERE m.code = k.code
AND t.paper = a.paper
AND m.paper = t.paper
AND a.lastname = 'WALKER'

ORDER BY a.lastname, a.fnamemi, k.keyword, t.title;

This query returns a much more reasonable 14 rows. Note that we could have also
specified "m.paper = a.paper" and it would have worked too. Why?

A Cartesian product can easily be hidden by a GROUP BY, since it will aggregate all the
spurious rows, and you will not see the rows that made up the groups. Here's a variation
on the earlier, broken example, now with a GROUP BY:

SELECT a.lastname, a.fnamemi, count(k.keyword)
keywords, count(t.title) titles

FROM keywords k, match m, titles t, authors a
WHERE m.code = k.code
AND t.paper = a.paper
AND a.lastname = 'WALKER'

GROUP BY a.lastname, a.fnamemi
ORDER BY a.lastname, a.fnamemi;

Because this query returns only counts, it's not obvious that the query is defective--unless
you have an idea about what results are reasonable! Always scrutinize your results!

NULL Values
NULL is a special value that means "missing" or "unknown." It can be placed in a
column of any type, unless the column has been declared NOT NULL, in which case
NULL values are forbidden. A NULL is not the same as zero or any other value.

Special rules apply when NULL values are involved:

•	 A row containing NULL value in a column will never match another row in a
join, not even another one containing NULL.

•	 Remember that in logical conditions (e.g., col1 = col2, col3 > col4, col5 < 0),
NULL does not equal NULL; logical expressions containing NULL will always
evaluate to UNKNOWN, which is similar (but not identical) to FALSE.

•	 Never use NULL with one of the Boolean operators (col1 = NULL, col2 <>
NULL, col3 < NULL, col4 <= NULL, col5 > NULL, col6 >= NULL). All of
these will probably not perform as intended. Always use the IS operator when
testing for NULL (col7 IS NULL, col8 IS NOT NULL).

• Group functions on a column ignore NULL values.

For more information on NULL values and how Oracle treats them, consult the Oracle
documentation on NULL.

Outer Joins
Take a look at this query:

SELECT p.parcelid, f.fdate
FROM parcels p, fires f
WHERE p.parcelid = f.parcelid

ORDER BY p.parcelid, f.fdate;

The query above returned 6 rows, but there are 20 parcels. Fourteen parcels seem to be
missing. Where did they go? The answer is that Oracle will only list the parcels that
occur in both tables, PARCELS and FIRES.

How do we get around this problem if we want to see all 20 rows in the parcel table,
whether they match a record in FIRES or not? The answer is an outer join. The standard
join is also known as an "inner join," meaning that the default behavior of not matching
NULL values occurs. In an outer join, we explicitly tell Oracle that we want it to display
NULL values that would otherwise be excluded by adding the (+) outer join operator to
each column in the WHERE clause where the additional NULLs should appear.

SELECT p.parcelid, f.fdate
FROM parcels p, fires f
WHERE p.parcelid = f.parcelid (+)

ORDER BY p.parcelid, f.fdate;
Note that the position of the outer join operator (+) is significant! This query will run but
return a different result:

SELECT p.parcelid, f.fdate
FROM parcels p, fires f
WHERE p.parcelid (+) = f.parcelid

ORDER BY p.parcelid, f.fdate;

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/sql_elem.htm#4008
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/sql_elem.htm#4008

Some additional class notes on outer joins* are available. If you wish, you can peruse the
Oracle 8i documentation on outer joins.

Inner vs. Outer Joins with GROUP BY
List all the parcels that had a fire, including the address and date of the fire (this
requires an inner join):

SELECT p.parcelid, p.add1, p.add2, f.fdate
FROM parcels p, fires f
WHERE p.parcelid = f.parcelid

ORDER BY p.parcelid, f.fdate;
Repeat the same query, except list all the parcels, whether they had a fire or not
(this requires an outer join):
SELECT p.parcelid, p.add1, p.add2, f.fdate
FROM parcels p, fires f
WHERE p.parcelid = f.parcelid (+)

ORDER BY p.parcelid, f.fdate;
List the count of fires for the parcels that had a fire (this requires an inner join with
grouping):

SELECT p.parcelid, COUNT(fdate) fire_count
FROM parcels p, fires f
WHERE p.parcelid = f.parcelid

GROUP BY P.PARCELID
ORDER BY COUNT(fdate) DESC, p.parcelid;

Note that the query above lists the parcels in descending order of the count of fires. When
specifying a group function or other expression in the ORDER BY clause, you must use
the full expression, even if you defined a column alias for it in the SELECT list. In this
case, we must use COUNT(FDATE) rather than FIRE_COUNT in the ORDER BY
clause. The DESC keyword after COUNT(FDATE) indicates that we want the fire counts
shown in descending order, rather than the default ascending order. You need to apply the
DESC keyword to every expression in the ORDER BY clause that you want in
descending order.

List the count of fires for all parcels, whether it experienced a fire or not (this
requires an outer join with grouping):

SELECT p.parcelid, COUNT(fdate) fire_count
FROM parcels p, fires f
WHERE p.parcelid = f.parcelid (+)

GROUP BY p.parcelid
ORDER BY COUNT(fdate) DESC, p.parcelid;

* Kindly refer to Lecture Notes section

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/expressi.htm#1023213

Note that the query above uses an outer join on the FIRES table -- indicated by the outer
join symbol (+) -- to include the parcels that are not listed in the FIRES table in the count.
The outer join symbol indicates where a NULL should replace a real value if none is
available in the table. Note that we need to use the outer join symbol with both columns
in FIRES that we are joining with PARCEL.

The query below runs but returns the wrong result--some parcels that had no fires show
up with one fire in the count. Why?

SELECT p.parcelid, COUNT(*) bogus_fire_count
FROM parcels p, fires f
WHERE p.parcelid = f.parcelid (+)

GROUP BY p.parcelid
ORDER BY COUNT(*) DESC, p.parcelid;

Views and Other Table-Like Database
Objects

• Views
• Synonyms

A synonym is simply a second name for an existing object. These are particular
convenient when a table is owned by another user (or, stated differently, stored in
a different schema). You have been using synonyms all along for the objects in
the PARCELS, URISA, and ZONING databases. To see the synonyms, use this
query:

SELECT synonym_name, table_owner, table_name
FROM user_synonyms

ORDER BY synonym_name;

• Others (use this link to find a discussion of most of the Oracle 8i schema objects)

Views are the most useful of these alternate object types for our purposes. A view is a
query that is stored in the database, then treated like a table. Unlike a table you create
using CREATE TABLE ... AS SELECT, which creates a one-time snapshot of the data
returned by the query, a view will reflect the current state of the tables in the underlying
query. Hence, if the tables in the database are changing over time, the same query on a
view may return different results at different times. Creating a view is similar to the
CREATE TABLE ... AS SELECT statement; instead, use CREATE VIEW ... AS
SELECT. For example:
CREATE VIEW parcel_owners

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c01intro.htm#15109
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c08schem.htm#3191
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c08schem.htm#18777

 AS SELECT p.parcelid, o.oname, P.ADD1, P.ADD2,
P.ZIP

FROM parcels p, owners o
WHERE p.onum = o.ownernum(+);

CREATE VIEW owner_sqft
AS SELECT o.oname, SUM(SQFT) TOTAL_SQFT

FROM parcels p, owners o
WHERE p.onum = o.ownernum

GROUP BY o.oname;
Note that the column alias TOTAL_SQFT in the example above is required because
Oracle needs to know what to name the column in the view. Do not include an ORDER
BY clause in the SELECT statement that you use to create the view.

Once the view is created, it can be treated for (almost) all intents and purposes as a true
table. You can describe them to see their structure:

DESCRIBE parcel_owners
DESCRIBE owner_sqft

The Data Dictionary
Information describing all the Oracle objects in the database is stored in the Oracle data
dictionary, which you can access through a large number of data dictionary views. We
can query data dictionary views just like any view or table. You're already familiar with
the view CAT which provides you with a catalog of objects that you own:
SELECT * FROM cat;
Many other such views are available. The USER_SYNONYMS view mentioned above is

one of them. The data dictionary view USER_VIEWS includes information about the

views we just created. To see its structure, we can use the DESCRIBE statement in

SQL*Plus:

SQL> DESCRIBE user_views

Name Null?
Type
--- -------- -

VIEW_NAME NOT NULL
VARCHAR2(30)
TEXT_LENGTH
NUMBER
TEXT
LONG

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c04dicti.htm#233
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c04dicti.htm#233
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76961/ch2.htm#136699

 TYPE_TEXT_LENGTH
NUMBER
TYPE_TEXT
VARCHAR2(4000)
OID_TEXT_LENGTH
NUMBER
OID_TEXT
VARCHAR2(4000)
VIEW_TYPE_OWNER
VARCHAR2(30)
VIEW_TYPE
VARCHAR2(30)
To see the definition of the views we just created, we can use the following statements:
SET LONG 5000
SELECT view_name, text
FROM user_views
WHERE view_name IN ('PARCEL_OWNERS', 'OWNER_SQFT');

Note that the column TEXT has type "LONG". In order to ensure that SQL*Plus displays
this LONG column properly, we used the "SET LONG 5000" statement before running
the query on USER_VIEWS.

Data Manipulation Language
SELECT statements view or query the contents of tables. With Data Manipulation
Language (DML) statements, we can alter the contents of the tables. DML statements
include:

• INSERT

• DELETE

• UPDATE

INSERT: Add Rows to a Table
General syntax:

INSERT INTO table1 (col1, col2, ...)
VALUES (value1, value2, ...)

or

INSERT INTO table1 (col1, col2, ...)

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c14sqlpl.htm#438
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c14sqlpl.htm#438
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state14e.htm#2063932
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state11c.htm#2065902
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state27a.htm#2067717

 SELECT ...

Example: Add a row to the FIRES table

INSERT
INTO fires (parcelid, fdate, ignfactor,

estloss)
VALUES (12, '17-JAN-96', 2, 35000)

DELETE: Delete Rows from a Table
General syntax:

DELETE
FROM table1
WHERE conditions;

Example: Delete fires with losses less than $50000 from the database
DELETE
FROM fires
WHERE estloss < 50000;

UPDATE: Modify Data in a Table
General syntax:

UPDATE table1
SET col1 = value1, col2 = value2, ...

WHERE conditions;

or

UPDATE table1
SET col1 =

(SELECT ...)
WHERE conditions;

Example: Change the building value of a particular parcel

UPDATE tax
SET bldval = 200000

WHERE parcelid = 11;
Note: You can also update a table using a subquery. This typically involves one or more
correlated subqueries (see these examples). Correlated subqueries are beyond this
overview.

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/expressi.htm#1023245
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state21b.htm#2066913

Transaction Control
Transaction control statements allow several SQL statements to be grouped together into
a unit (a transaction) that are either processed or rejected as a whole. These statements
include:

•	 COMMIT: makes permanent all changes since the start of the session or the
previous COMMIT

• ROLLBACK: reverses pending changes to the database
• SAVEPOINT: allows more refined control over COMMITs and ROLLBACKs
• SET TRANSACTION: allows more refined control over transaction progress

Data Definition Language
Data Definition Language (DDL) statements affect the structure and security provisions
of the database, among other things.

Create and Drop Objects

Create new objects

CREATE TABLE table1 ... ;
CREATE VIEW view1 ... ;

CREATE INDEX index1 ON table1 (col1, ...);

Drop objects permanently

DROP TABLE table1;

DROP VIEW view1;

DROP INDEX index1;

Modify existing objects

ALTER TABLE table1;

ALTER VIEW view1;

ALTER INDEX index1;

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c14sqlpl.htm#2395
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c01intro.htm#9281
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state13b.htm#2060235
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state19c.htm#2065409
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state20c.htm#2065520
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state24c.htm#2067249
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c14sqlpl.htm#484
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/statem3e.htm#2061078
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state10e.htm#2065512
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state10c.htm#2062405
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a67779/ch4i.htm#3418
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state10f.htm#2061730
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state19b.htm#2066887
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a67779/ch4i.htm#3418
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/statem7b.htm#2058394
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/stateme6.htm#2050160

Access Privileges for Objects

Specific privileges on tables can be given to individual users

GRANT SELECT
ON table1
TO user1;

GRANT SELECT, INSERT, UPDATE (col1)
ON table1
TO user1

WITH GRANT OPTION;

Privileges can be revoked

REVOKE ALL
ON table1

FROM user1;

SQL Query Construction Techniques:
Building the Answer to a Complex Question

Method 1: Creating Intermediate Tables

In previous years, the introductory exercises encouraged creating temporary tables as
shown here. We now deprecate that practice in favor of creating views, especially when
trying to build a simple query into a more complex one. In some cases, however, creating
your own tables makes sense. One example is the solution to the problems with the
property owners' names in the real-world parcel database.

Adapted from Joe's URISA database examples*:

/* Find papers using keywords related to GIS and

mapping: */

DROP TABLE gispapers;

DROP VIEW gispapers;

CREATE TABLE gispapers AS

SELECT m.code, keyword, m.paper

* Kindly refer to Lecture Notes section

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state13g.htm#2062195
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state13g.htm#2062195
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/state18f.htm#2064991

 FROM keywords k, match m
WHERE m.code = k.code
AND(keyword LIKE '%GIS%'

OR keyword LIKE '%GEOGRAPHIC
INFORMATION%'

OR keyword LIKE '%MAPPING%');

/* Counts of papers using these keywords */
SELECT m.code, k.keyword, count(distinct
t.paper) papers

FROM match m, titles t, keywords k
WHERE m.paper = t.paper AND k.code = m.code
AND m.code IN

(SELECT code
FROM gispapers)

GROUP BY m.code, k.keyword
ORDER BY m.code;

Method 2: Use a View Instead of a Table

We can create a view instead of a table using the identical SELECT statement, but
substituting 'CREATE VIEW' for 'CREATE TABLE' in the example above. We have to
drop the table first because a table and a view may not have the same name.

/* Find papers using keywords related to GIS and

mapping: */

DROP TABLE gispapers;

CREATE VIEW gispapers
AS SELECT m.code, keyword, m.paper

FROM keywords k, match m
WHERE m.code = k.code
AND (keyword LIKE '%GIS%'

OR keyword LIKE '%GEOGRAPHIC
INFORMATION%'

OR keyword LIKE '%MAPPING%');

/* Counts of papers using these keywords */

SELECT m.code, k.keyword, count(distinct
t.paper) papers

FROM match m, titles t, keywords

 WHERE m.paper = t.paper AND k.code = m.code
AND m.code IN (
SELECT code

FROM gispapers)
GROUP BY m.code, k.keyword
ORDER BY m.code;

Note that we can query from the view implementation of GISPAPERS the same as from
the table implementation. A view, however, is simply a stored query (which retains its
ties to the original table), while the table copies the data (and possibly wastes a lot of
space in the database). We can look at the text of the view with the following query
against the Oracle data dictionary:

-- Use SET LONG 5000 so that SQL*Plus will

display enough characters

-- from the view definition column for us to see

the entire query.

SET LONG 5000
SELECT text
FROM user_views
WHERE view_name = 'GISPAPERS';

Note that the name of the view must be in UPPERCASE letters and surrounded by 'single
quotation marks'.

Method 3: Use a Subquery

A view is just a stored query. We can embed this query in our original SQL statement so
that we can accomplish the entire task with one statement. The subquery below is the
same as the query in the CREATE TABLE and CREATE VIEW statements, except that
the columns keyword and m.paper have been removed because they are not needed in the
subquery. (If you included them, you would see the Oracle error "ORA-00913: too many
values".)

SELECT m.code, k.keyword, count(distinct
t.paper) papers

FROM match m, titles t, keywords k
WHERE m.paper = t.paper AND k.code = m.code

AND m.code IN
(SELECT m.code

FROM keywords k, match m
WHERE m.code = k.code

keyword LIKE '%GIS%'AND (
OR keyword LIKE

'%GEOGRAPHIC INFORMATION%'
OR keyword LIKE '%MAPPING%'

)
)

GROUP BY m.code, k.keyword
ORDER BY m.code;

Method 4: Use a More Efficient Subquery

The query above works, but is not as fast as it could be because Oracle may be returning
many more rows in the subquery than needed. We can rewrite this query using the more
efficient but less obvious EXISTS syntax.

SELECT m.code, k1.keyword, count(distinct
t.paper) papers

FROM match m, titles t, keywords k1
WHERE m.paper = t.paper
AND k1.code = m.code

AND EXISTS
(SELECT NULL
FROM keywords k2
WHERE m.code = k2.code

keyword LIKE '%GIS%'AND (
OR keyword LIKE '%GEOGRAPHIC

INFORMATION%'
OR keyword LIKE '%MAPPING%'))

GROUP BY m.code, k1.keyword
ORDER BY m.code;

Note that we use NULL in the subquery's SELECT list to indicate that we do not care
about the contents returned by the subquery, but only if the subquery returns a row or not
each time it is executed (once for each candidate row in the outer query).

