
Massachusetts Institute of Technology
Sloan School

Applications of System Dynamics
15.875

Prof. Jim Hines

Spring 2004

Guidelines for sixth project week and presentation: Model and analysis of first
hypothesis1

Note: This is the last of the handouts decribing the standard method. After this handout,
choose another dynamic hypothesis and go to work – that is, from this point on you will
continue cycling through handouts 5 and 6.

The sixth week: In the sixth week you should complete the computer simulation model of
your first hypotheses and analyze its behavior. Analysis involves identifying model
structure responsible for interesting model behavior, deciding whether that structure also
exists in the real world, and figuring out what to do about that structure in the real world.
For example, perhaps the structure in question causes oscillations in the model; you
decide a similar structure (i.e. a similar loop) exists in the real world. In this case, you
should develop some suggestions for what could be done to reduce the amplitude or
likelihood of oscillations in the real world.

Caution: Be sure to allow sufficient time for analysis. As a rule of thumb figure
that analyzing the model will take about as much time as building the model.

In the presentation, please provide an in-depth look at this first hypothesis – explaining
its dynamics, why the dynamics are relevant (or why you originally thought the loop(s)
would produce relevant dynamics), and the implications that the loop and its dynamics
have for your client.

Analysis. First simulate your model. If you are “lucky”, the behavior will surprise you.
Find the structure (often a single loop) responsible for the surprising behavior. Causal
tracing will identify the structure responsible for most non-oscillatory modes. Oscillatory
modes will yield to loop-knockout and loop-isolation techniques. People who have taken
15.876 may want to use an eigenvalue approach in addition.

Next go through your model parameter by parameter. For each parameter

1. Guess how the model will behave if you double the parameter.
2. Double the parameter and simulate.

1 Prepared 1998 by Jim Hines. Revised March, 1999, July, 1999,March 2000, April 2004.
copyright © 1998,1999,2000, 2004 Jim Hines.

 1

3. Understand any surprise using causal tracing, loop knockout, or loop
isolation.

4. Guess how the model will behave if you cut the parameter in half.
5. Cut the parameter in half.
6. Understand any surprise using causal tracing, look knockout, or loop

isolation.
7. Set the parameter back to its original value.
8. Go to step 1 for the next parameter.

Causal tracing. Causal tracing is usually effective at identifying the structure responsible
for non-oscillatory modes. To perform causal tracing, begin by looking at the simulated
behavior of the immediate inputs to the variable that is behaving surprisingly. Identify
which of the input variables is responsible for the surprising behavior. Now, continue the
causal trace by looking at inputs to this “new” variable. Identify which input is
responsible for the surprising behavior of the “new” variable. Keep going until you
understand the structure causing the behavior (often this will be when you complete
tracing a loop). This process is easy using the strip graph tool. (Note you will need to
keep track of the variables you are tracing in order to know when you have completed a
loop).

Loop Knockout. Causal loop tracing is less effective for oscillatory modes. A brute
force method is often required to find the structure responsible for an oscillatory mode.
Identify a likely negative loop. Disable it (i.e. knock it out). Be careful that you only
knockout the loop you intend. Does the model still oscillate? If not, that loop is likely
the culprit. To make sure, disconnect that loop from all other loops (you might need to
create a new model) and simulate – does that loop oscillate on its own? If so, you have
found the oscillatory structure. Sometimes the situation is not quite so simple.
Sometimes knocking out a loop will cause the model to stop oscillating, but the loop
won’t oscillate on its own. In that case the oscillation is caused by at least two loops
acting in concert (often an oscillatory loop and a destabilizing loop). Sometimes there
will be more than one loop that by itself is oscillatory – the model will oscillate as long as
any one of those oscillatory loops is active.

Going from model-insight to real-world-insight. Understanding the model is
intellectually satisfying, but it doesn’t do any good in the world. Ultimately, we aren’t
interested in the model; we are interested in controlling an actual social system.

After discovering the structure(s) responsible for model behavior, ask yourself if the real
world possesses analogous structures. (Note: The real world probably does possess
similar structure – after all, that’s probably why you put the structure into the model in
the first place). If the real world possesses analogous structure, that structure will tend to
cause the world to behave in a way analogous to your model. Note, you are not saying
that the real world produces observable behavior of that type – lots of things from lack of
measurement to additional structure might cause real-world observations to differ. All
you are saying is that the real world contains a structure that could produce such-and-
such behavior. If the behavior is undesirable, think of what can be done in the real world

 2

to eliminate or reduce the likelihood of that behavior. You will need to translate from
your model context (e.g. reducing the time-to-change-workforce stabilizes the system) to
a real-world context (e.g. we need to keep resumes on file, or we should consider hiring
contract workers).

The value of simplicity and the need to understand the model now. The potential
difficulty of understanding the causes of behavior in your model is why you want to keep
your model as dynamically simple as possible. Note, detail complexity does not
necessarily produce analytical problems; the real culprit is dynamic complexity –i.e. lots
of loops. Keep in mind that you need to understand your model at this stage; do not put
off understanding to a later time: Your model will never be easier to understand than it is
now. The idea behind the standard method is that your understanding of the model will
grow along with the model – so, start simple.

Presentation. You may choose to show relevant reference modes, loops, model structure,
output, insights, and/or policy conclusions. The particular mix of these things in your
presentation will depend on what you have discovered. If the modeling hasn’t led to any
insights, then you won’t dwell very much on insights. If, on the other hand the modeling
has led to many insights, then to give yourself time to discuss them all, you might need to
be very brief in discussing the model.

Reference modes and mystery. Reference modes provide an excellent grounding for your
audience, clueing them into what’s important and what’s unimportant. If you start with
reference modes, you will not get as many off-the-wall suggestions (e.g. “Does your
model include the kitchen sink?”). Further, you can motivate your presentation by
describing reference modes in terms of a problem or a question (e.g. “Time-to-market
has risen. No one knows for sure why.”). People are intrigued by a good mystery, so
reference modes presented in this way will cause folks to pay attention.

You should only present the reference modes that are important for understanding and
motivating the particular hypothesis you want to discuss.

For example, the hypothesis I chose to model was the programmers as solution loop (see
below). The relevant reference mode shows rising development times. With the
reference mode projected
on a screen, one might
offer the oral
commentary: “The key
problem we’re facing is
that each new release of
our product has been
taking longer and longer.
We are afraid that
development times will
continue to rise, but hope
that, through our work

Time to Market

1985 now 2010

 3

here, we can bring development times back down. There are processes that tend to
lengthen the development process and there are processes that tend to shorten it. Clearly,
the ‘lengtheners’ have swamped the ‘shorteners’. We want to start our consideration of
the problem with one of these “swamped” processes that in isolation would make the
process go faster. We figure if we understand this mechanism, maybe we can strengthen
it so that it can hold its own against the forces of evil.”

Hypothesis. Your simulation model will probably be too complicated/detailed to be a
clear explanation of your hypothesis, so you will probably want to present your
hypothesis in words and loops.

For example my hypothesis is:

sales

time until next
generation

-
revenues

development
budget

hiring
programmers

programmers

+

+

+
+

-

I would put up an overhead of this loop and trace the links to show how it works. I
would end by referring to the reference mode: “It appears that this loop could cause ever-
declining product development times”. Note, there is no need to put up any of the other
hypotheses.

Model. You may have time to present your entire model in stock and flow terms; if not
just present the most important parts.

If you are presenting the model to a client, you need to be prepared for the client to
disagree with the way you have represented the company. If you have interesting output,
you may find yourself in a tough position: The client has just called into question some
structure in your model and the most interesting part of the talk, which is yet to come, is
based on the model being O.K. You can head this off if you quickly show the output
before you describe the model. Showing the output first, will again focus your audience
on what’s important (behavior and, yes, structure, too, but only as it affects behavior) so
suggestions to improve the structure will tend to be more relevant. Furthermore, any

 4

surprising behavior will intrigue your audience so they will want to hurry through the
model so they can understand what causes the interesting output; they will be less willing
to take the time to make minor points about the structure. Finally, the reason people will
often raise questions about model structure is that they are afraid of what the model might
show; they combat this unfocussed fear by tearing down the model. The output is usually
more interesting and less frightening than their fears, so seeing the output first will relax
them.

For example, The model I built of the above hypothesis has interesting output. Just
before presenting the model, I would be wise to put up some of this output,

Development time
17

0
0 218

Time (months)

Prior projects development time : base months

with the explanation: “This chart shows declining project development time. The stair-
step pattern reflects the fact that we are tracking the development time of the most
recently completed project – so, development time is fixed, until the next project is
completed. Interestingly, The development-time stagnates eventually. The loop
mechanism, which we thought would cause development time to fall continually,
somehow runs out of steam. I want to spend most of our time going over the reasons that
the simulation model produces this behavior, but first let me show you what is in the
model”. [NOTE: The stair-step pattern is unusual output for a system dynamics model.
Most SD models have gradual, continuous actions, rather than discrete, all-at-once
actions. The stair steps are not a strength of this model.]

Now, you are in a position to show the model structure. You should break the model into
digestible pieces so that the overheads of the model are simple. (Your modeling should
also be done in this way, using multiple views in Vensim). One organizing strategy for
your overheads is to move backwards in the causal chain. The challenge here is to keep
your audience mindful of where they are in the loop, so that they see how the big-picture
loop has been translated into the more operational stock-and-flow structures.

 5

For example, you might present a model of the above hypothesis in the following way
(while periodically showing the loop diagram in a “you are here” way)

You might begin:

“The number of developers is represented as a stock that fills up with the hiring rate,
which closes the gap between the number of developers we actually have and the number
of developers hat we can afford. To figure out how many developers we can afford we
only need to know the usual developer salary and the budget for developers”.

Developers
Hiring and

firing

Desired
developers

average
developer

salary

time to hire
or fire

<Development
budget>

initial
developers

development
budget

hiring
programmers

programmers
+

+

“The budget for developers changes gradually, but is basically a constant fraction of
revenues. Revenues are simply unit sales multiplied by the price. In our loop diagram,
we weren’t very clear about where sales come from. I originally had in mind an
increasing market share as the functionality of the product improved, but as I was putting
this together, I realized there were other components of sales as well, including sales
from upgrades of the product. Increasing market share may be important, but what I
decided to focus on for the moment was upgrades – It seemed to me that the main reason
I buy another version of Microsoft Word is not because the functionality is suddenly
better than Word Perfect, but because a new release has come out and I want to upgrade.”

Revenues

Price

Sales Indicated
Development

budget

Revenue
fraction to

development

<upgrade
unit sales>

Development
budget

time to chan
budgets

sales

revenues

development
budget

hiring
programmers

programmers

+

+

+
+

“The next diagram shows how customers upgrade. When a product is released, all
existing customers are ‘obsoleted’. Customers then start buying the new version of the

 6

software. Most of our customers are companies who have a number of licenses, so for
every customer that upgrades, we sell some number of ‘boxes’ “.

Customers
with Old

Generation

Customers
with new

Generation
Upgrading

time to upgrade

Customersgettingobsoleted

<Releasing>

seats percompany

upgrade unit
sales

<TIME
STEP>

sales

time until next
generation

-
revenues

development
budget

hiring
programmers

programmers

+

+

+

+

“We release a new product when we have completed it. Usually, we decide to release it
without all of the originally planned functionality; we simply carry over the un-included
functionality into the next release. Our “release criterion” historically has been when we
have completed about 95% of the originally planned functionality.”

Releasing
Relative

completion

release criterion

<Product
completed>

Work
content of a
generation

“Product completed, but not released is a stock. When the product is released, our
product functionality goes up. Also when a product is released we accept a new slug of
functionality to start working on for the next generation. Programmers work on the
product to complete it. And, of course, programmers come from our first slide showing
the hiring process.”

 7

CurrentGenerationWorkAccepting
new

generation
work

Writing
code

Work
content of a
generation

Product
completedReleasing

product

<Releasing>

Product
functionali

<TIME
STEP>

<TIME
STEP>

<Developers><productivity>

sales

time until next
generation

-
revenues

development
budget

hiring
programmers

programmers

+

+

+
+

-

Output. You should show some output. If the model behaves exactly as you anticipated,
you don’t need to dwell on the output. Usually, though there will be at least one or two
items that you (and your client) didn’t anticipate.

For example:

“The time it takes to develop a product, flattens out and stops declining. This is because
our income depends – in this little structure – on the frequency of our releases. Let’s say
we release as often as possible. This implies a maximum revenue from releases. This
maximum revenue then determines the maximum number of programmers we can afford.
Of course, we may never reach that maximum revenue, if the maximum revenue does not
let us afford the as many programmers as we need to achieve minimum cycle time. In
this case, we will settle at a longer cycle time than the minimum.

Development time
17

0
0 218

Time (months)

Prior projects development time : base months

You may want to provide your explanations both in managerial terms (as above) and with
loops. Your classmates won’t have trouble following a causal loop diagram. Your
clients may have a bit more difficulty, but they may also find “thinking in loops” is neat.
For example, another insight is that if the programmers are not productive enough to
cover their own salaries, the developers will decay away (while oscillating) and
development times will lengthen. As the following output shows.

 8

Developers

13.12

0.0410
0 60 120 180 240

Projects development time
48.56

0
0 60 120 180 240

To support the above explanation, you might show the following diagram with the
comment that the behavior will depend on which loop dominates. That is, the behavior
will depend on whether each new worker creates more budget or more expense.

Developers

newReleases

Upgrade
revenue

Developer
budget

Hiring

Salary
expense

+

++

+
+

+

-

Insights and conclusions. You should present each insight as soon as you’ve given your
audience the information necessary to understand it. So, for example, after explaining
the first surprising behavior (there is a minimum development time (maximum revenue)
even in the best of circumstances) you could tick off a number of insights:

• There is a maximum revenue that is achievable from upgrades alone
• The maximum revenue from upgrades is limited by the time it takes for

customers to buy again
• This amount of time is determined by development time, but also by selling

time (how long does it take for customers to upgrade after a new release?)
• The company should consider factors affecting selling time as well as factors

affecting development time.

 9

• It is unlikely that upgrades alone will produce enough cash to achieve a
minimum cycle time

• If reducing the cycle time requires more programmers, they will be supported
from new sales, that is from gains in market share or growth in the market
overall. Unfortunately, this source of revenue is not sustainable. Only
upgrades is a sustainable revenue source.

Insights from the second aspect of surprising behavior (the company will decay away if
each programmer can’t support himself) would include:

• Salary must be less than the budget generated by each new employee.
• The budget generated by each employee depends on productivity, seats per

customer, functionality in a release (i.e. work content), fraction of revenues to
budget, and price.

• In the effort to reduce selling time, you may move budget out of development
and into advertising. But, make sure the fraction of the budget to
development does not fall below a critical level.

• Reducing functionality per release (or raising price, or increasing seats per
customer) permits a lower budget fraction to development.

At the end of your talk you may want to provide a slide listing all of the insights and
conclusions.

Equations. In large client meetings you probably will not want to show equations – too
many in the audience will not benefit from them and, if your purpose is to reveal
behavior and an insight or two, they may distract your audience from the path you want
to follow. If an equation is interesting or important, by all means put it up – but only if it
contributes to your overall message, not if it only shows how smart you are. (Your client
already knows you are smart).

For your information the views above are the stock and flow counterpart to the following
equations. Note, most of the formatting was done with Vensim’s document tool. The
tool (like most tools) can be configured by right clicking on the button. (Choose to
display equations, text, and units. Under multiple equations choose all. Under
"ordering", choose alphabetic by group. Under "formatting" choose terse. The separate
sections were created with Vensim’s group facility. You can assign an individual
equation to a particular group (and create a new group) in the equation editor by using the
group drop-down list in the lower left corner. You can assign an entire view to a group
by selecting the entire view (ctrl-A), and then choosing the menu item: View>>Act on
Selected>>Group. (Note that an equation can be assigned to only one group. So you
probably don’t want to assign shadow variables in a view to the view’s group).

 10

 .Developers

average developer salary = 5000
 Units: $/(month*person)
Desired developers = Development budget / average developer salary
 Units: people
Developers = INTEG(Hiring and firing , initial developers)
 Units: people
Hiring and firing = (Desired developers - Developers) / time to hire or fire
 Units: people/month
initial developers = 10
 Units: people
time to hire or fire = 6
 Units: months

 .Financial

Development budget =

smoothi (Indicated Development budget , time to change budgets,
initial developers * average developer salary)

 Units: $/month
Indicated Development budget = Revenues * Revenue fraction to development
 Units: $/month
Price = 1000
 Units: $/box
Revenue fraction to development = 0.25
 Units: fraction
Revenues = Sales * Price
 Units: $/month
Sales = upgrade unit sales
 Units: boxes/month
time to change budgets = 12
 Units: months

 .Product development

Accepting new generation work =

if then else (Releasing = 1, Work content of a generation / TIME STEP , 0)
 Units: functions/month
Current Generation Work =

INTEG(Accepting new generation work - Writing code, Work content of a generation
)

 Units: functions

 11

Product completed = INTEG(Writing code - Releasing product , 0)
 Units: functions
Product functionality = INTEG(Releasing product , 10)
 Units: functions
Releasing product =

if then else (Releasing = 1, Product completed / TIME STEP , 0)
 Units: functions/month
Writing code = Developers * productivity
 Units: functions/month

 .Productivity

maximum productivity = 0.05
 Units: functions/(month*person)
productivity = maximum productivity * work availability effect on productivity
 Units: functions/(month*person)
relative work remaining = Current Generation Work / Work content of a generation
 Units: fraction
work availability effect on productivity =

work availability effect on productivity f(relative work remaining)
 Units: dmnl
work availability effect on productivity f ([(0,0)-(10,1)],(0,0),(0.060423,0.324561)
 ,(0.148036,0.609649),(0.392749,0.938596),(0.770393,0.991228),(1,1)
 ,(2,1),(10,1))
 Units: dmnl

 .Release criterion

Relative completion = Product completed / Work content of a generation
 Units: fraction
release criterion = 0.95
 Units: fraction
Releasing = if then else (Relative completion >= release criterion , 1, 0)
 Units: dmnl
Work content of a generation = 10
 Units: functions

 .Upgrading

Customers getting obsoleted =

if then else (Releasing = 1, Customers with new Generation/ TIME STEP , 0)
 Units: companies/month

 12

NOTE: If-then-else equations are usually POOR modeling practice. Making an
equation explicitly depend on the time-step is also usually poor modeling
practice. If we were smarter we would figure out how to have a continuous
formulation that did not depend explicitly on time.

Customers with new Generation =
INTEG(Upgrading - Customers getting obsoleted, 0)

 Units: companies
Customers with Old Generation =

INTEG(Customers getting obsoleted - Upgrading, 1000)
 Units: companies
seats per company = 5
 Units: boxes/company
time to upgrade = 4
 Units: months
upgrade unit sales = Upgrading * seats per company
 Units: boxes/month
Upgrading = Customers with Old Generation / time to upgrade
 Units: companies/month

 .Statistics

clearing monitor for next project =

if then else (Releasing = 1, Current project's development time / TIME STEP , 0)
 Units: months/month
clearing record for next project =

if then else (Releasing = 1, Prior projects development time / TIME STEP , 0)
 Units: months/month
Current project's development time =

INTEG(time passing on current project- clearing monitor for next project , 0)
 Units: months
Prior projects development time =

INTEG(recording project development time- clearing record for next project , 0)
 Units: months
recording project development time =

if then else (Releasing = 1, Current project's development time / TIME STEP , 0)
 Units: months/month
time passing on current project = 1
 Units: months/month

 13

 .Control

FINAL TIME = 120
 Units: months
INITIAL TIME = 0
 Units: months
SAVEPER = TIME STEP
 Units: months
TIME STEP = 0.25
 Units: months

 14

