15.871 System Dynamics Recitation#1

Understanding Epidemics Using VensimPLE

For use with VensimPLE, version 6.0

A simple model that captures the dynamics of an infectious disease- SARS

Historical data: SARSDATA.vdf

-the incidence (rate at which new cases were reported, measured in people/day)

 - cumulative prevalence (cumulative number of cases reported, measured in people) for SARS in Taiwan

Step 1: Open A New Model

Step 2: Initial Settings

Step 3: Save As "SARS_Tutorial_F12"

Step 4: Load SARSDATA.vdf

----Warning----

- We will compare our simulation data to the actual/historical data in this file, so variable names need to match EXACTLY
- SARSDATA has 2 variables, those names have to match:
 - New Reported Cases
 - Cumulative Reported Cases

Step 5: Population Susceptible to SARS (stock)

Step 6: Population Infected with SARS (stock/level)

Step 7: Infection Rate (flow/rate)

Step 8: Infectivity (auxilary)

Step 9: Add Causal Arrow

Step 10: Right-click on Arrow "handle" to Add Polarity

Step 11: Contacts Between Infected and Uninfected People

Step 12: Complete the Rest of the Model + Label the Loops

Use comment tool to add labels

Step 13: Specify Equations

Exogeneous and Endogeneous Variables

- Variables in SD models are classified as either exogenous or endogenous:
 - Exogenous variables are defined independent of other variables of the model.
 - They are functions of time (i.e., Exogenous Variable = f(t)).
 - Of course the exogenous variables may be constants, in which case they are called parameters.
 - Endogenous variables are influenced by other variables in the system
 - Endogenous Variable = f(x, y, z), where x, y, z are other variables in the model

Step 14: Define Infection Rate

Step 15: Define Population Susceptible to SARS

Step 16: Define Susceptible Contacts

Step 17: Define Contacts Between Infected and Uninfected People

Step 18: Define Probability of Contact with Infected Person

Step 19: Define Total Population

Step 20: Define Contact Frequency

Step 21: Define Infectivity

Step 22: Define Population Infected with SARS

Time Out and Run

Plotting Results

Optional: Permanent Graph Use: I/O Object or Custom Graph

Step 23: Add Variables in the Dataset

Step 24: Add Infection Rate (as a shadow variable)

Step 25: Add Causal Link and Polarity

Step 26: Define New Reported Cases

Step 27: Define Cumulative Reported Cases

Step 28: Units Check

Step 29: Error!!!

Step 30: Redefine Contact Frequency

Step 31: Units Check – A. O. K.

Step 32: Rename Case – "Base" and Run

Step 33: Plot Cumulative Reported Cases

Step 34: Try Lowering Contact Frequency

Step 35: Change Run Name

Step 36: Displaying Multiple Runs

Step 37: Synthesim

Amazing!!!

MIT OpenCourseWare http://ocw.mit.edu

15.871 Introduction to System Dynamics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.