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Outline
• Overview, Notations, Little’s Law
• Counting Process vs. Interarrival Times

– Memoryless Process
• Markovian Queues

– M/M/1
– M/M/k

• General Queues
– M/G/1
– M/G/k
– M/G/∞
– M/G/k/k
– GI/G/k
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Queuing Applications
Situation Customers Server

Bank Customers Tellers

Airport Airplanes Runaway

Telephone Calls Switches, 
routers
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Queue Representation
System

L: expected number of people in the system
W: expected time spent in the system
Q: expected number of people in queue
D: expected time spent in queue

Server

Arrival 
Rate λ

Service 
Rate µ

Queue
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Service time/rate

• Service rate: µ (Customers/minute)
• Average service time: 1/µ (Minutes/cust.)

• Service Process is equivalent to Departure 
Process only if the queue is always 
nonempty. Customers in 

system

time



© 2005 Guillaume Roels

Little’s Law
• L=λW (system view)
or
• Q=λD (waiting line view)

Also, W=D+1/µ

Therefore, compute one quantity (say, L), and get 
the three others (W, D, Q) for free!

Time spent in the 
system Time spent in the 

queue

Service Time
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Notations: A/B/m

• A:  Arrival Process
– M: Memoryless (or Markovian or Poisson)
– G: General

• B:  Service Process
– M: Memoryless
– G: General

• m: Number of servers
• Also: A/B/m/k if system has capacity k
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Counting Process vs. Interarrival Times
Markovian Process (M)Number of 

arrivals

Interarrival Time is Exponentially 
Distributed

Time between Customer 2’s 
arrival and Customer 3’s arrival

At time t,N(t)=3

N(t) is a Poisson 
Process

t
time
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Markovian Arrival Process
• Poisson Counting Process (λ=5)

• Counts the number of people that have arrived in a 
time interval t (Discrete Distribution)

• Memoryless: the number of people who arrive in [t, 
t+s] is independent of the number of people who have 
arrived in [0,t]
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Markovian Arrival Process

• P(N(t)=n)=exp(-λt)(λt)n/n!

• E[N(t)]=λt;  Var[N(t)]= λt

• Excel:  =POISSON(n,λ,0)

• When λt>20, very close to a Normal 
distribution
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Properties of a Poisson Process
• Merging two Poisson processes, with rates λ1

and λ2 gives rise to a Poisson process with rare 
λ1+λ2.

• Randomly splitting a Poisson process with rate 
λ, according to probabilities p and (1-p), gives 
rise to two Poisson processes with rates λp and 
λ(1−p).

λ1

λ2

λ1+λ2

p

1-p

λ

λp

λ(1-p)
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Markovian Arrival Process
• Exponential Interarrival times (λ=5)

• Time between two arrivals; time between now and the 
next arrival (Continuous Distribution)

• Memoryless: the time between now and the next arrival 
is independent of when was the last arrival! 
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Markovian Arrival Process

• P(T≤t)=1-exp(-λt); t>0

• E[T]=1/λ;  Var[T]=(1/λ)2

Coeff. Of Var=1 (highly random)

• Excel:  =EXPONDIST(t,λ,1)
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Example

The number of glasses of beer ordered per hour 
at Dick’s Pub follows a Poisson distribution, 
with an average of 30 beers per hour being 
ordered.

1. Find the probability that exactly 10 beers are 
ordered between 10 PM and 10:30PM.
Poisson with parameter (1/2)(30)=15.
Probability that 10 beers are ordered in 1/2 
hour is 

048.
!10

151015

=
−e

Example from Winston, Operations Research, Applications and Algorithms (1993)
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Example cont’d
2. Find the mean and standard deviation of the number of 

beers ordered between 9 PM and 1 AM.
λ=30 beers per hour; t=4 hours.
Mean=4(30)=120 beers
Standard Deviation=(120)1/2=10.95

3. Find the probability that the time between two 
consecutive orders is between 1 and 3 minutes.
X=time between successive orders
X is exponential with rate 30/60=0.5 beers/min.

∫ =−==≤≤ −−−3

1

5.15.05.0 38.)5.0()31( eedteXP t
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M/M/1 Queue

0 321 …

λ λλλ

µ µµµ

• Memoryless Queuing System:  
• State of the system:  number of people in 

the system
• Utilization Rate ρ=λ/µ (<1)
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M/M/1 Balance Equations

• In steady state, the rate of entry into a 
state must equal the rate of entry out of a 
state, if ρ<1.

0 321 …

λ λλλ

µ µµµ

λΠ1+µΠ3=(λ+µ)Π2
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M/M/1: Solving the Balance 
Equations

Πi=(λ/µ)i Π0 =ρi Π0  

• Solution
Π0=1-ρ
Πi = (1-ρ)ρi

Geometric distribution
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Performance Analysis
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Example

An average of 10 cars per hour arrive at a single-
server drive-in teller.  Assume the average 
service time for each customer is 4 minutes, 
and both interarrival times and service times 
are exponential.  

M/M/1 with λ=10 cars/hour and µ=15 cars/hour.
Answer the following questions:
1. What is the probability that the teller is idle?

Π0=1−ρ=1−2/3=1/3

Example from Winston, Operations Research, Applications and Algorithms (1993)
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Example (cont’d)

2. What is the average number of cars waiting 
in line for the teller?  (A car that is being 
served is not considered to be waiting in 
line)

3. What is the average amount of time a 
drive-in customer spends in the bank 
parking lot (including service time)?

customersQ
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Example (cont’d)

4. On the average, how many customers per 
hour will be served by the teller?
If the teller were always busy, he would serve 
an average of µ=15 cust./hour.
From (1), we know that he is only busy two-
thirds of the time.  Thus, during each hour, the 
teller will serve an average of (2/3) 15 = 10 
customers.
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M/M/1 Further Analysis

• If ρ<1, the departure process of an M/M/1 
queuing system is Poisson with rate λ.
– Same as arrival process!
– Very useful for series of queues.

• The distribution of the waiting time in the 
system is exponential with rate (µ−λ).
– Better measure of service.
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M/M/k Queue

k servers available
Utilization rate ρ=λ/(kµ)
If less than k customers in the system, use 

as many servers as the number of 
customers

0 k21 …

λ λλλ

µ kµkµ2µ

λ

3µ
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M/M/k Steady-State Probabilities

Same kind of derivation as for M/M/1
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M/M/k Example

Consider a bank with two tellers. An average 
of 80 customers per hour arrive at the 
bank and wait in a single line for an idle 
teller.  The average time it takes to serve a 
customer is 1.2 minutes.  Assume that 
interarrival times and service times are 
exponential.  Determine the expected 
number of customers present in the bank.

Example from Winston, Operations Research, Applications and Algorithms (1993)
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M/M/k Example
M/M/2 with λ=80 cust./hour and µ=50 cust./hour.  Thus 

ρ=80/(2(50))=0.80<1.

M/M/k model is very useful for capacity planning (try 
different k’s)
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M/G/1 Queue

• Exponential service time often unrealistic 
because of memoryless property.

• General Service Time T, with mean E(T)=1/µ
and Variance Var(T)=σ2 (ρ=λ/µ).

Not an approximation!
Observe that Q, L, D, and W increase with σ2.
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M/G/k Queue -- Approximation

SCVs=squared coefficient of variation for 
service times

Q≈(Expected waiting time for M/M/k) [(1+SCVs)/2]
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M/G/∞ Queue

• Infinite number of servers; hence, D=Q=0.

• L has a steady-state Poisson distribution, 
with rate λ/µ.

• Applications of M/G/∞:  
– (S-1,S) inventory control; order one item as 

soon as you sell one.
– Number of firms in an industry
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M/G/k/k Queue

General service time with mean τ.
No waiting space.  All potential customers that 

arrive when all k servers are busy depart the 
system.  Blocked customers are cleared.

Steady-state distribution of customers in 
system:

∑
=

== k

i

i

n

i

nnLP

0 !
)(

!
)(

)(
λτ

λτ



© 2005 Guillaume Roels

M/G/k/k Queue:  Loss Probability

• Loss Probability = P(L=k)
Probability that all servers are busy.  The 
rate of customers that observe this state of 
the system, λ P(L=k), will balk.

• If small loss probability, good 
approximation with M/G/∞.
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Example
An average of 20 ambulance calls per hour are 

received by Gotham City Hospital.  An 
ambulance requires an average of 20 minutes to 
pick up a patient and take the patient to the 
hospital.  The ambulance is then available to 
pick up another patient.  

How many ambulances should the hospital have to 
ensure that there is at most 1% probability of not 
being able to respond immediately to an 
ambulance call?  Assume that interarrival times 
are exponentially distributed.
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Example cont’d

M/G/k/k model with λ=20 and τ=1/3.
Consider k=13.

Consider k=14.  P(L=14)=.005019

01059.0
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GI/G/k Queue -- Approximation

General (and independent) arrival process, general 
service time distribution. Assume ρ<1.

SCVa=squared coefficient of variation for interarrival
times

SCVs=squared coefficient of variation for service 
times

Q=λ D, W=D+1/µ, L=λ W

2
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µρ
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Utilization 
Rate Scale Variability
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GI/G/k Network of Queues

The departure process from one queue is 
the arrival process to the next one.

Approximate the SCV of the departure 
process as:

SCVd = (1-ρ2) SCVa + ρ2 SCVs
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Conclusions

• Various models
– Closed-form solutions only for simplistic 

models
– If complex models, use

• Approximations
• Simulation

• Descriptive models
– Building block for optimization models:  size of 

waiting room, capacity, comparison of 
technology…
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