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Comparing the performance of propensity scores and support vector machines at 

estimating the effect of treatment on outcomes in observational data 
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Propensity scores have become a popular method for removing bias in the estimation of 
treatment effect when working with observational data.  However, there are many issues and 
limitations associated with propensity scores.  This project compares the performance of pairs 
of support vector machines (SVMs) as an alternative, and aims to evaluate whether these 
paired SVMs can perform better than propensity scores when estimating the effect of treatment 
on outcomes in non-randomized data.  Both problems were evaluated using synthetically 
generated datasets that modeled 20 different models for the degree of the relationships between 
baseline variables, treatment, and outcomes.  Although neither method performed particularly 
well at recovering the true treatment effect, it was possible to learn when the different methods 
fail by looking at the data for the different scenarios.   
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Most medical studies seek to determine the effect of a certain intervention or treatment on 
clinical outcomes. One measure is the average treatment effect (ATE), which is the effect of 

moving a population from being untreated to being treated.  Considering the case where � 

patients, each with a set of �� baseline variables, are each assigned to either the treatment 

group, � � � �� , or the control group, � �� , the average treatment effect is: 
 

��� � � � � � � � �� � � �� � � �  (1) 

 
Ideally, to measure the ATE, one conducts a randomized controlled trial (RCT).  In the RCT 
experimental setup, experimenters randomly assign subjects to either the treatment or the 
control group.  This eliminates the confounding effect of measured and unmeasured baseline 
variables on the treatment status.[1]   

Unfortunately, it is often either infeasible or unethical to conduct a RCT.  For example, 
consider the case where the treatment under evaluation is a surgical intervention.  Due to the 
invasive nature of the treatment, one would only assign patients to the treatment group if their 
medical condition necessitated the surgery.  Another example would be a study of the effect of 
psychotherapy on drug addiction.  Again, the treatment group would be composed of people 
who are already addicted to the drug, because it would be unethical to expose other individuals 
to addictive, harmful, and often illegal substances. In both these scenarios, an individual’s 
treatment group assignment is now conditionally dependent on their past history and baseline 
variables (Figure 1).  

Figure 1: Comparison of randomized and observational clinical trials.  Note how treatment assignment � is 

conditionally independent and dependent of the baseline covariates �� for randomized and observational studies, 
respectively.    

  
Thinking back on the surgical study example, one might imagine that only the sickest 

patients would be given the invasive surgery.  In the case where the treatment group has a 
much lower rate of survival than the control group, it is difficult to determine whether the 
discrepancy in survival rates occurred because the surgery had an adverse effect on survival.  
The same discrepancy could have also arisen because the patients in the treatment group were 
inherently sicker than the patients in the control group.  How, then, can the true effect of the 
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surgery on an outcome like survival be assessed?  When working with non-randomized 

observational data, one must first remove the confounding effect of the baseline covariates �� 

on the association between the treatment ��and the outcome � in order to determine the true 
treatment effect.    

In their 1983 papers, Rosembaum and Rubin proposed using the method of propensity 
score analysis to reduce bias in observational studies.[2]  They defined the propensity scores as 
the probability that a patient receives a treatment given the distribution baseline covariates.  
Since being introduced in 1983, propensity scores have become a widely used tool for the 
evaluation of non-randomized observational studies in medicine and surgery.  Despite the 
method’s growing popularity, however, there remain various disadvantages that might limit its 
usefulness and appropriateness.  The inevitability and importance of observational studies 
makes it imperative that either these shortcomings are addressed, or that a better alternative be 
proposed.  This project proposes using pairs of support vector machines (SVMs) as such an 
alternative, and aims to evaluate whether these paired SVMs can perform better than 
propensity score when estimating the effect of treatment on outcomes in non-randomized data.   
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A propensity score represents the probability of being assigned to the treatment group given a 
patient’s baseline variables.  Formally, this is represented as:  
 

� � � � � � � ��� �  (2) 
 

In Equation 2 �� is the propensity score, � is the binary treatment assignment, and �� is the 
vector of baseline variables.  The propensity score is most commonly calculated via logistic 
regression, which uses baseline variables to predict the probability between 0 and 1 that a 
person is assigned to the treatment group (� � �) as opposed to the control group �� � �).[3] 
These propensity scores can then be used as a balancing score that accounts for the 
confounding effect of the baseline variables so that the outcomes of the treatment and control 
groups can be compared.  The underlying idea is that among subjects with the same propensity 
score, the same distribution of observed baseline variables will be the same between treated 
and untreated subjects.  Three methods exist that help achieve this “balance” between the 
treatment and control groups: matching on the propensity score, stratification on the 
propensity score, and inverse probability of treatment weighting (IPTW) using the propensity 
score.[1]   

Matching on the propensity score involves paring each treated subject to a control 
subject such that the both members of the matched pair have identical or highly similar values 
of the propensity scores.  In contrast, stratification on the propensity score assigns subjects to 
one of various ranges, or strata, of the propensity score.  For example, the subjects could be 
classified into the quintiles of the propensity score.  Once the propensity scores have been used 
either to match or to stratify patients, the effect of treatment on outcome can be estimated as 
the difference in the fraction of patients experiencing a certain outcome in the treatment group 
versus in the control groups in within the pairs or strata.[1,4]  Inverse probability of treatment 
weighting (IPTW) differs from either matching or stratification in that IPTW uses the 
propensity score to weight the treatment and control subjects so that the final distribution of 



5 

baseline covariates is independent of treatment assignment.[1,5]  The ATE can then be estimated 
using these weights as described in section 4.b.   
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Despite the prevalent use and growing popularity of propensity scores, several limitations and 
issues exist regarding their implementation and calculation. One of the major problems regards 
the assumption of strongly ignorable treatment assignment described by Rosembaum and 
Rubin in their original paper.  They defined treatment assignment to be “strongly ignorable” if  

(a) the treatment assignment � is independent of the outcome Y given the baseline variables, 
and (b) any subject has a nonzero probability of being assigned to either treatment.  For 
propensity score methods to be admissible for the unbiased estimation of treatment effects, the 
assumption of strongly ignorable treatment assignment described must be satisfied. [1,2] 
However, some users overlook this requirement when using propensity scores, and instead 
“interpret the mathematical proof of Rosembaum and Rubin as a guarantee that, in each strata 
of the [propensity score], matching treated and untreated subjects somehow eliminates 
confounding from the data and contributes therefore to overall bias reduction.” [6]   

Other problems stems from the prevailing use of the logistic regression to calculate 
propensity scores.  The popularity of logistic regression for this purpose stems from its 
convenient generation of probability values within the range [0,1] and from its accessibility and 
familiarity to users.  However, the requirements of logistic regression create the inconvenience 

that, for studies involving rare outcomes, there needs to be a high number of � � � events per 
baseline variable to avoid imbalance in the data.  When working with high-dimensional data 

with many baseline variables, the minimum number of � � � events could become 
prohibitively large.[4]  More problematic is many users’ failure to account for the underlying 
assumptions of proper logistic regression modeling, including that of the linearity of the risk 
with respect to the log-odds parametric transformation.  It also seems that the common 
implementation of the logistic regression fails to include higher order and interaction terms 
that would be necessary for accurate model fit.[3]   To eliminate these issues, Westreich et. al. 
suggested that machine learning methods that make fewer assumptions might be suitable 
alternatives for logistic regression in the calculation of propensity scores.  Of the methods they 
evaluated, they concluded that boosting, a method whereby many weak classifiers are 
combined to make a strong classifier, showed the most promise.   
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The propensity scores and support vector machines were calculated using synthetic data 
datasets.  Their performances were then evaluated using average treatment effect estimation 
based on the inverse probability of treatment weighting, and the net reclassification index, 
respectively.   
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Synthetic datasets were used for experimentation so that the true effect of the treatment 
variable on the outcome variable would be known.  This then allow for the adequate 
assessment of whether the performance of propensity scores or support vector machines had 
closely estimated the true effect of treatment on outcomes.  The approach for synthetic dataset 
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generation was based from the framework outlined by Setoguchi et. al.[7]  To summarize their 
approach: 

• They generated 10 baseline covariates from independent standards normal random 
variables whose relationships were defined by a correlation matrix.  Four of the 
variables were left as continuous variables, and 6 were binarized.  Of the 10 variables, 3 
were only associated with the treatment assignment only, 3 were only associated with 
the outcome only, and four were associated with both the treatment assignment and the 
outcome.   

• They used a fixed set of covariate coefficients to model 7 different scenarios with 
different degrees of non-linearity and non-additivity in the associations between the 
covariates and the treatment assignment.  These models generated true propensity 

scores, from which treatment labels � were derived using Monte-Carlo simulations.   

• Their outcome was modeled using logistic regression as a function of the baseline 
covariates and the treatment labels, where the coefficient for the treatment label was the 

true effect of treatment � � ����.  Once more, these models generated outcome 

probabilities, from which outcome labels � were derived using Monte-Carlo 
simulations.   

 

Their synthetic generation framework was adapted to the needs of this study.  The 
methodology for generating the covariates was emulated exactly.  However, rather than using 

the � variable-treatment relationship scenarios, only Setoguchi’s first scenario was used.  In 

this scenario, the true propensity score given the covariates, ��� � ��� �� , was modeled by a 
linear and additive relationship between the covariates: 

 
��

� � � � � � � � ��� � � � �� � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �  (3) 
 

After obtaining the treatment labels � from the Monte-Carlo simulations, the outcome was 
modeled using the following equation:   
 

��
� � � � ��� � � � ��� � � � �� � � �� � � � � � � � � � � � � � � � � � � �  � � � � � � � � � � � � � � � �� � (4) 
 

Instead of using Setoguchi et. al’s coefficients, I created ���different scenarios for the covariate 
coefficients.  These scenarios use scenarios use extremes of the coefficients to study the 
intuitive effect of having low/high effect of covariates on probability of treatment assignment; 
low/high correlation between the baseline covariates and outcome; and varying degrees of 
effect of treatment on outcome.  This would help to determine whether propensity scores or 
SVMs would fail to estimate treatment effect in any of these scenarios.  The combinations of 
coefficients are described in Figure 2.    
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Figure 2: Coefficient combinations for the generation of 20 datasets.  The betas correspond to the coefficients in true 

propensity score model (equation 3) that specify the effect of the covariates on the probability of treatment assignment.  

Similarly, the alphas correspond to the coefficients for the covariates in the outcome model (equation 4) that specify the 

effect of those covariates on the outcome probabilities.  Within each scenario, all of the alpha coefficients will be the 
same; the same is true for the beta coefficients.  The alphas and betas can either take on low or high values.  Finally, the 

gammas correspond to the coefficient for the treatment label Z in the outcome model (equation 3) that specifies effect of 

treatment on outcome.  This coefficient can take on any value within the set {-0.9, -0.5, 0, 0.5, 0.9}.   

All of the above steps were followed to create a 20 dataset, each with n = 20,000 data points.  
The information and composition of each dataset are outlined in Table 1.   

 

Table 1: Synthetic datasets profiles.   
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After considering the limitations of logistic regression for the calculation of propensity scores, 
the propensity scores were instead calculated using boosting.  Specifically, R’s AdaBoost 
function, ada, was applied to each data example to obtain it’s probability of treatment class 
membership, i.e. � � � � �� � .  This value is equivalent to the propensity score ��.  The 
propensity scores were then used to estimate the average treatment effect (ATE) using the 
following formula for inverse probability of treatment weighting [1]:  
 

� �

� � � � ��� � ��  
� � � �

����� � � ��   
� � � �� �� �
��� ��� (5) 

 
This formula uses the propensity score to give higher weight to the data examples that were 
assigned to the control group despite having a high propensity score, or vice versa. Once 
estimated, the ATE was then compared to the known treatment effect to calculate the percent 
bias of the estimator.   
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To determine the effect of treatment on outcome, the performance of pairs of SVMs at 
predicting outcomes from the data was compared.  The framework for the training and testing 
the SVMs was as follows:    

• One of the SVMs in the pair was trained to predict outcomes using solely the baseline 
covariates as features, whereas the second SVM was trained to predict outcomes using 
both the baseline covariates and the treatment labels as features.  These will be called 
the “without-SVM” and the “with-SVM,” respectively.   

• Using the svm() function from the R e1071 package, a pair of SVMs was generated for 
each of the 21 scenarios described in the dataset generation section.   

• After a preliminary evaluation of the performance of the algorithm on the “real” 

dataset, the SVM’s cost parameter was set to ���.  The radial basis (Gaussian) kernel 
function was used with gamma parameter left as the default value of 

������������������� 

• In each of these cases, the SVMs were trained on the first half of the data, and tested on 
the remaining half.   

 
The general idea is that if the treatment affects outcomes, then the treatment labels 

contain information that is important for prediction.  Therefore, adding the treatment labels to 
the group of features would be expected to improve the classifier’s performance.  To compare 
the two SVMs and learn how much information the treatment contributes to the prediction of 
outcome, the net reclassification improvement (NRI) metric was used.  The NRI summarizes 
the reclassification table, which itself shows how many data examples would be reclassified 
into higher or lower risk or outcome categories upon the addition of new information into a 
prediction model.  Once the reclassification table has been computed, the NRI can be 
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calculated as the difference in the proportions of data examples that are moving up and down 
between the treatment and control groups[8]: 

 
��� � � �� � � ��� � ���� � � � � � � �� � � ��� � ���� � � �  (6) 

 

For the case where the outcomes are � � �����, this expression can be rewritten as:   
 

��� � � � � �� � � � � ��� � � � � � � � � � (7) 

� � � � � � � � � � ��� � � � � � � � � �  
 
where the label on the left hand side of the arrow is that given by the “without-SVM,” and the 
label on the right hand side of the arrow is that given by the “with-SVM.” 
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The results from the propensity score tests described in section 3.b. are summarized in Table 2.  
Overall, the known treatment effect from the data generation models was not recovered by the 
propensity score estimate of the ATE.  This is not wholly unexpected, since the outcomes in 
the data could have resulted from many different models of the relationship between the 
covariates and the treatment assignment.  In order to better visualize these results, a plot of the 
ATE against the true treatment effect gamma was generated (Figure 3).   

  
Table 2: Average treatment effect, estimated using the propensity score.  For each combination of betas and alphas, 

and for each value of gamma, the ATE (left) and the percent bias (right) are shown.    
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From looking at the plot, it is evident that the ATE estimates did not follow a consistent pattern 

within the different beta/alpha combination scenarios.  However, there was an interesting failure of 

the low beta/high alpha case, which remained insensitive to the variations in the true treatment 

effect.  This is most likely because the low betas lead to an approximately random chance of being 

assigned to either treatment.  This random chance then confounds the ATE formula captures when 

there is strong correlation between the treatment and the outcome, i.e. for extremes of the gamma 

value.  Therefore, in the case when the betas are low but the alphas are high, the propensity score 

will work well when the true treatment effect �����, but will fail when � � � . 
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The results from the SVM tests described in section 3.c. are summarized in Tables 3 and 4.  
From Table 3, it is evident that in almost every case there was a positive net reclassification 
improvement.  This indicates that the information added by the treatment label variable 
improve classification.  Moreover, sensitivity almost always increased from the “without-
SVM” to the “with-SVM.”  However, the magnitude of the improvement in NRI and in 
sensitivity was relatively small, especially if you consider that the initial “without-SVM” 
performance was not impressive.  In order to better visualize these results, the NRI was plotted 
against the true treatment effect (Figure 4).   
 
Table 3: Net reclassification improvement (NRI) for the SVM pairs.  Shown for each combination of betas and alphas 

against each value of gamma.   
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Figure 3: Plot of the average treatment effect for different true treatment effects under different scenarios. 

Note how the beta=low/alpha=high case fails to capture the change in the true treatment effect.  �
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Table 4: Change in sensitivity from the “without-SVM” to the “with-SVM”.  Shown for each combination of betas 

and alphas against each value of gamma.   
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Noticing trends in the data, it is evident that when the betas are low, meaning that the effect of 
the covariates on treatment assignment is small, the improvement was larger than when the 
betas were high.  This finding is important because it corroborates the idea that when there is a 
high correlation between the covariates and the treatment assignment, the treatment 
information is almost redundant with the covariate information.  Therefore, for cases such as 
those with high betas, the net reclassification improvement will not be a useful metric for 
determining treatment effect on outcome because the improvement might be small despite the 
treatment effect being large (as is the case when beta is high, alpha is low, and gamma = 0.9).  �
�
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Figure 4: Plot of the net reclassification improvement for different true treatment effects under different 

scenarios.  Note how the NRI was higher for the datasets with low betas than it was for the datasets with 

high betas.   
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After evaluating the results, it seems that neither method performed particularly well at the 
estimation of treatment effect in these scenarios where the datasets were constructed using 
coefficients with extreme values.  However, even though the magnitude of the improvements 
was small, the SVMs showed a consistent positive NRI across all cases whereas the patter on 
the ATE estimations from the propensity score applied to different models was erratic.   
The extreme value cases were also informative in that they demonstrated how the estimation 
of the ATE using IPTW with the propensity score fails to capture the variation in treatment 
effect when the covariates have a low correlation with the treatment assignment but a high 
correlation with the outcome.  Likewise, the results showed that using paired SVMs evaluated 
with the NRI fails when the baseline covariates are highly correlated with the treatment 
assignment.  
 To learn more from these results, further experimentation and validation would be 
necessary.  These future studies could address some of the limitations of this current project.  
In particular, one of the greatest limitations of this study was insufficient computation power 
for performing the parameter sweeps necessary for the optimization of the SVMs’ 
performance.  Had the SVMs been tuned more meticulously, their performance might have 
been much better than that which was observed.  Another improvement would be to develop a 
better metric for capturing the treatment effect from the result of the SVM pairs.  Moreover, 
even though other methods for generating synthetic datasets could be explored, it would 
probably be most useful to perform these tests on real data to validate the results of the 
experiment.   
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%%%%%%%%%%%NOTE: This procedure for synthetic dataset generation modified 
%%%%%%%%%%%from Setoguchi et. al., 2008.   
 

ndatasets = 1;  
ncohort1 = 20000;  
     
i = 0; 
setStore = cell(ndatasets,2);  
  
while i < ndatasets 
    [real_set, this_set] = generateSyntheticDatasets(ncohort1);  
    setStore{i+1,1} = real_set; 
    setStore{i+1,2} = this_set;  
    i = i+1;  
end  
  
% Save the dataset as a .mat file 
save('project097_dataset.mat', 'setStore') 
 
% Concatenate all of the dimensions of the structure into one array  
dataset = setStore{1,2};  
data_mat = [dataset.W, dataset.TPS, dataset.A, dataset.pY, dataset.Y]; 
  
realset = setStore{1,1}; 
real_mat = [realset.W, realset.TPS, realset.A, realset.pY, realset.Y];  
 
% Save the array as a .csv function for (that can be loaded into R) 
 
fname1 = 
['/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProject/SynthData/datas
et_097.csv']; 
csvwrite(fname1, data_mat);  
  
fname2 = 
['/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProject/SynthData/reals
et_097.csv'];  
csvwrite(fname2, real_mat); 
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function [realdata, dataset] = generateSyntheticDatasets(ncohort) 
  
n_cov = 10; % number of covariates in model 
  
ncohort1 = ncohort;  
  
% A. Create the correlation matrix for the covariates 
  
corr_mat = zeros(n_cov,n_cov); 
  
for i = 1:n_cov 
    corr_mat(i,i) = 1;  
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end  
  
corr_mat(5,1) = 0.2; 
corr_mat(1,5) = 0.2; 
corr_mat(6,2) = 0.9; 
corr_mat(2,6) = 0.9; 
corr_mat(8,3) = 0.2;  
corr_mat(3,8) = 0.2; 
corr_mat(9,4) = 0.9;  
corr_mat(4,9) = 0.9;  
  
% B. Generate the covariates, store in a ncohort x n_covariate matrix 
  
V = zeros(ncohort1,n_cov); % matrix of base covariates 
W = NaN(ncohort1, n_cov); % matrix of final covariates 
  
i_base = [1,2,3,4,5,6,8,9]; 
i_final = [7,10]; 
i_binary = [1,3,5,6,8,9]; 
  
    % 1. Generate 8 base covariates V_i (i = 1...6, 8,9)  and two final 
    % covariates W_i (i=7,10) as independent standard normal r.v. ~ N(µ=0,var=1) 
     
        for i = 1:length(i_base) 
            V(1:ncohort1, i_base(i)) = random('Normal',0,1,ncohort1,1);  
        end  
        for i = 1:length(i_final) 
            W(1:ncohort1, i_final(i)) = random('Normal',0,1,ncohort1,1);  
        end  
  
    % 2. Model the final 8 covariates W_i for i = 1...6,8,9 from linear 
    % combinations of the V_i, using the correlations from the correlation 
    % matrix.  Also, binarize variables i = 1,3,5,6,8,9 
     
        for i = 1:ncohort1 
            for j = 1:length(i_base) 
            W(i, i_base(j)) = dot(V(i,:), corr_mat(i_base(j),:), 2);  
            end  
        end  
         
        var_medians = median(W, 1); 
         
        for i = 1:ncohort1 
            for j = 1:length(i_binary) 
                var_id = i_binary(j); 
                if W(i,var_id) > var_medians(var_id) 
                    W(i,i_binary(j)) = 1 ;  
                else  
                    W(i,i_binary(j)) = 0 ;  
                end  
            end  
        end 
  
% C.  Model the binary exposure for each of seven scenarios 
     
    [truePropScore, exposureA] = calculateTruePropensityScores2(W, ncohort1);  
     
% D. Model the binary outcome Y.  
  
    [tpY_real, outcomeY_real trueProbY, outcomeY] = 
calculateTrueOuctomeProb2(W,exposureA, ncohort1);  
     
% Store this dataset's information in a struct object 
  
    realdata.W = W;  
    realdata.TPS = truePropScore(:,1); 
    realdata.A = exposureA(:,1);  
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    realdata.pY = tpY_real; 
    realdata.Y = outcomeY_real;  
     
    dataset.W = W; 
    dataset.TPS = truePropScore(:,2:3); 
    dataset.A = exposureA(:,2:3);  
    dataset.pY = trueProbY;  
    dataset.Y = outcomeY; 
end  
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function [TPS, A] = calculateTruePropensityScores2(W, ncohort) 
     
    % Set coefficient values for three different cases:  the Setoguchi 
    % et.al. coefficients from real experimental studies, low coefficients, 
    % and high coefficients.   
    b0 = 0;  
    b_real = [0.8, -0.25, 0.6, -0.4, -0.8, -0.5, 0.7]; 
    b_low = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05];  
    b_high = [0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95]; 
     
    TPS = NaN(ncohort,3); % P(A|W_i), true propensity score calculated from model 
    A = NaN(ncohort,3);   % binary exposure A 
     
    % Calculate the true propensity scores (TPS) (i.e. P(A|W_i) ) and the dichotomous 
    % exposure A for each of the three scenarios.  All scenarios are linear 
    % and additive.  
     
    for i = 1:ncohort 
        %Scenario A , with the "real" world coefficients.   
        TPS(i,1) = (1 + exp( -( b0 + b_real(1)*W(i,1) + b_real(2)*W(i,2) + 
b_real(3)*W(i,3) + ... 
                 b_real(4)*W(i,4) + b_real(5)*W(i,5) + b_real(6)*W(i,6) + 
b_real(7)*W(i,7) )))^-1;  
        %Scenario B, with "low" coefficients for all of the covariates.   
        TPS(i,2) = (1 + exp( -( b0 + b_low(1)*W(i,1) + b_low(2)*W(i,2) + 
b_low(3)*W(i,3) + ... 
                 b_low(4)*W(i,4) + b_low(5)*W(i,5) + b_low(6)*W(i,6) + 
b_low(7)*W(i,7) )))^-1;  
        %Scenario C, with "high" coefficients for all of the covariates.   
        TPS(i,3) = (1 + exp( -( b0 + b_high(1)*W(i,1) + b_high(2)*W(i,2) + 
b_high(3)*W(i,3) + ... 
                 b_high(4)*W(i,4) + b_high(5)*W(i,5) + b_high(6)*W(i,6) + 
b_high(7)*W(i,7) )))^-1;  
  
    end  
     
    for i = 1:ncohort 
        for j = 1:3 
            % generate a random number between [0,1] from the uniform 
            % distribution 
            rand_num = random('Uniform',0,1);     
            if rand_num < TPS(i,j) 
                A(i,j) = 1;  
            else  
                A(i,j) = 0;  
            end  
        end 
    end 
end  
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function [pY_real, Y_real, pY, Y] = calculateTrueOuctomeProb2(W, A, ncohort) 
  
    % Here, A has values for real, low, and high beta coeff cases.  
     
    % Number of sets of values for betas, alphas, and gamma.   
    num_b = 2;  
    num_a = 2;  
    num_g = 5; 
     
    % Set coefficient values:  
    % The alpha (a0...a7) coefficients are for the outcome model 
    a0 = -3.85; 
    a_real = [0.3, -0.36, -0.73, -0.2, 0.71, -0.19, 0.26];  
    a_low = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05];  
    a_high = [0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95]; 
     
    % The treatment labels for the three "beta" cases 
    A_real = A(:,1);  
    A_low = A(:,2); 
    A_high = A(:,3);  
     
    % The gamma (g) coefficient is the effect of exposure on the outcome  
    g_real = [-0.4]; 
    g_range = [-0.9, -0.5, 0, 0.5, 0.95];  
     
    % Instantiate arrays to hold the results of the calculations below 
     
    pY_real = NaN(ncohort,1); % P(Y|W_i, A), probability of the outcome for real 
valued coeff scenario 
    Y_real = NaN(ncohort, 1); % binary outcome Y for real valued coeff scenario 
     
    pY = NaN(ncohort,num_b*num_a*length(g_range)); % P(Y|W_i, A), probability of the 
outcome ...  
                                                    % given the covariates and the 
exposure 
    Y = NaN(ncohort,num_b*num_a*length(g_range));  % binary outcome Y 
    
    % calculate the pY and Y values for the "real" Setoguchi coefficient 
    % case 
    for i = 1:ncohort 
            pY_real(i) = (1 + exp( - (a0 + a_real(1)*W(i,1) + a_real(2)*W(i,2) + ... 
                                    a_real(3)*W(i,3) + a_real(4)*W(i,4) + 
a_real(5)*W(i,8) + ... 
                                    a_real(6)*W(i,9) + a_real(7)*W(i,10) + 
g_real*A_real(i) )))^-1 ;  
            % generate a random number between [0,1] from the uniform 
            % distribution 
            rand_num = random('Uniform',0,1);  
             
            if rand_num < pY_real(i) 
                Y_real(i) = 1;  
            else  
                Y_real(i) = 0;  
            end  
    end 
     
    % Calculate the pY and Y values for the low and high alpha coeff case, 
    % with each of the gamma values:  
    for i = 1:ncohort 
        for gamma = 1:length(g_range) 
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            % beta_low and alpha_low 
            pY(i,gamma) = (1 + exp( - (a0 + a_low(1)*W(i,1) + a_low(2)*W(i,2) + ... 
                    a_low(3)*W(i,3) + a_low(4)*W(i,4) + a_low(5)*W(i,8) + ... 
                    a_low(6)*W(i,9) + a_low(7)*W(i,10) + 
g_range(gamma)*A_low(i) )))^-1 ; 
            % beta_low and alpha_high 
            pY(i,(gamma+5)) = (1 + exp( - (a0 + a_high(1)*W(i,1) + a_high(2)*W(i,2) 
+ ... 
                    a_high(3)*W(i,3) + a_high(4)*W(i,4) + a_high(5)*W(i,8) + ... 
                    a_high(6)*W(i,9) + a_high(7)*W(i,10) + 
g_range(gamma)*A_low(i) )))^-1 ; 
            % beta_high and alpha_low 
            pY(i,(gamma+5*2)) = (1 + exp( - (a0 + a_low(1)*W(i,1) + a_low(2)*W(i,2) 
+ ... 
                    a_low(3)*W(i,3) + a_low(4)*W(i,4) + a_low(5)*W(i,8) + ... 
                    a_low(6)*W(i,9) + a_low(7)*W(i,10) + 
g_range(gamma)*A_high(i) )))^-1 ;          
            % beta_low and alpha high 
            pY(i,(gamma+5*3)) = (1 + exp( - (a0 + a_high(1)*W(i,1) + a_high(2)*W(i,2) 
+ ... 
                    a_high(3)*W(i,3) + a_high(4)*W(i,4) + a_high(5)*W(i,8) + ... 
                    a_high(6)*W(i,9) + a_high(7)*W(i,10) + 
g_range(gamma)*A_high(i) )))^-1 ;             
        end 
    end 
     
    for i = 1:ncohort 
        for j = 1:(size(pY,2)) 
             
            %generate a random number between [0,1] from the uniform 
            %distribution 
            rand_num = random('Uniform',0,1);  
             
            if rand_num < pY(i,j) 
                Y(i,j) = 1;  
            else  
                Y(i,j) = 0;  
            end  
        end 
    end 
end  
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# Use SVMs to generate and apply two classifiers:  

# minus and plus treatment variables 

 

#Load the necessary packages 

library(e1071) 

 

################ 

# Function for calculating the net reclassification improvement (NRI) 

 

calculateNRI <- function(model1_labels, model2_labels, true_labels){ 

 # This function calculates the net reclassification improvement, which is a summary 

statistic 

 # that describes the reclassification, thus allowing us to compare the clinical impact 
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of two models by  # determining how many individuals would be reclassified with new 

baseline informaiton.   

  

 # NOTE: Here, cases are those examples with outcome Y=1 and noncases are examples with 

Y=0, 

 # as defined by the true (original) labels  

  

 num_cases <- sum(true_labels ==1) 

 num_noncases <- sum(true_labels == 0) 

  

 case_ix <- (true_labels ==1) 

 noncase_ix <- (true_labels ==0) 

  

 case_ix <- case_ix - 10000 

 noncase_ix <- noncase_ix - 10000 

 # Look at the reclassification movement.   

 # the "movement" vector will have values in {-1,0,1} 

 # -1 : "down" movement, reclassified from 1 to 0 with treatment info 

 #  0 : no reclassification 

 # +1 : "up" movement, reclassified from 0 to 1 with treatment info 

  

 movement <- model2_labels - model1_labels 

  

 pUp_cases <- sum(movement[case_ix]==1)/num_cases # = P(up|Y=1) 

 pDown_cases <- sum(movement[case_ix] == -1)/num_cases # P(down|Y=1) 

  

 pUp_noncases <- sum(movement[noncase_ix]==1)/num_noncases # P(up|Y=0) 

 pDown_noncases <- sum(movement[noncase_ix] == -1)/num_noncases # P(up|Y=0) 

  

 netgains_cases <- pUp_cases - pDown_cases 

 netgains_noncases <- pUp_noncases - pDown_noncases 

  

 NRI = netgains_cases - netgains_noncases 

  

  

 sensitivity1 <- sum(model1_labels == test_outcome & test_outcome == 1)/sum(test_outcome 

== 1)  

 specificity1 <- sum(model1_labels == test_outcome & test_outcome == 0)/sum(test_outcome 

== 0) 

 

 sensitivity2 <- sum(model2_labels == test_outcome & test_outcome == 1)/sum(test_outcome 

== 1)  

 specificity2 <- sum(model2_labels == test_outcome & test_outcome == 0)/sum(test_outcome 

== 0) 

  

 delta_sens <- sensitivity2-sensitivity1 

 delta_spec <- specificity2-specificity1 

 

 return(c(NRI, netgains_cases, netgains_noncases, delta_sens, delta_spec)) 

} 

 

################ 

# Read a practice synthetic dataset 

dataset <- 

as.data.frame(read.csv("/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProj
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ect/SynthData/dataset_097.csv", header = FALSE)) 

 

n_data <- nrow(dataset)  

half_data <- n_data/2 # half of the data will be used for training and half for testing 

n_beta <- 2 

n_scenario <- 20 

 

# These are the indeces for the different types of data 

covariate_ix <- c(1:10) 

tps_ix <- c(11:12) 

treatmentA_ix <- c(13:14) 

pY_ix <- c(15:34) 

outcome_ix <- c(35:54) 

 

# Set aside the training data 

train_features <- dataset[1:(half_data), covariate_ix] 

train_TPS <- dataset[1:(half_data), tps_ix ] 

train_treatment <-  dataset[1:(half_data), treatmentA_ix ] 

train_pOutcome <-  dataset[1:(half_data), pY_ix ] 

train_outcome <-  dataset[1:(half_data), outcome_ix ] 

 

# Set aside the test data 

test_features <- dataset[(half_data+1):n_data, covariate_ix] 

test_TPS <- dataset[(half_data+1):n_data, tps_ix ] 

test_treatment <-  dataset[(half_data+1):n_data, treatmentA_ix ] 

test_pOutcome <-  dataset[(half_data+1):n_data, pY_ix ] 

test_outcome <-  dataset[(half_data+1):n_data, outcome_ix ] 

 

############## 

### Generate SVM models  

 

# We want to train 40 SVMs, with each of the 20 scenarios having two SVMs:  

# Model 1 will correspond to the SVMs trained on the baseline covariates (X_is) to 

predict the outcome Y 

# Model 2 will correspond to the SVMs trained on BOTH the baseline covariates (X_is) and 

the treatment labels (Z_is) to predict the outcome Y.  

 

# Make lists to hold the svm models 

model1_holder <- vector(mode = "list", length = n_scenario) 

model2_holder <- vector(mode = "list", length = n_scenario) 

performance_stats <- NULL # will fill up later with performance statistics 

 

 

beta_low_ix <- c(1,2,5,6,9,10,13,14,17,18) 

beta_high_ix <- c(3,4,7,8,11,12,15,16,19,20) 

C = 100 

 

for (i in 1:n_scenario){ 

 # train the model that uses only the baseline covariates as features 

 X1 <- train_features #features are the n=10 covariates 

 Y1 <- train_outcome[1:nrow(train_outcome),i] # outcome 

 svm_model_1 <- svm(X1, Y1, scale = FALSE, kernel = "radial", cost = C, decision.values = 

FALSE)  

 model1_holder[[i]] <- svm_model_1 
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 # train the model that uses both the covariates and the treatment labels as features 

 if (sum(beta_low_ix == i) == 1){ 

  X2 <- cbind(train_features, train_treatment[1:nrow(train_treatment), 1]) 

  test_features2 <- cbind(test_features, test_treatment[1:nrow(test_treatment), 1]) 

  print("im here") 

 } 

 if (sum(beta_high_ix == i) == 1){ 

  X2 <- cbind(train_features, train_treatment[1:nrow(train_treatment), 2]) 

  test_features2 <- cbind(test_features, test_treatment[1:nrow(test_treatment), 2]) 

  print("now I'm there") 

 } 

 Y2 <- train_outcome[1:nrow(train_outcome),i] 

 svm_model_2 <- svm(x = X2, y=Y2, scale = FALSE, kernel = "radial", cost = C, 

decision.values = FALSE)  

 model2_holder[[i]] <- svm_model_2 

  

 # Apply the SVM classifiers to the test data to obtain predicted labels 

  

 model1_labels <- sign(predict(svm_model_1,newdata = test_features, probability = FALSE)) 

 model2_labels <- sign(predict(svm_model_2,newdata = test_features2, probability = 

FALSE)) 

  

 # Convert the +1/-1 labeling convention to +1/0  so that it matches the original labels 

 model1_labels[model1_labels == 1] <- 0 

 model2_labels[model2_labels == 1] <- 0 

 

 model1_labels[model1_labels == -1] <- 1 

 model2_labels[model2_labels == -1] <- 1 

  

 # Calculate the NRI and other performance statistics 

 stats <- calculateNRI(model1_labels, model2_labels, test_outcome) 

 performance_stats <- rbind(performance_stats, stats) 

 print(stats) 

  

 write.table(performance_stats, file = "svm_NRI.csv", sep = ",", col.names = NA, qmethod 

= "double")  

} 
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# Perform adaBoost to calculate the propensity scores 

 

library(rpart) 

library(ada) 

 

# Read a practice synthetic dataset 

dataset <- 

as.data.frame(read.csv("/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProj

ect/SynthData/dataset_097.csv", header = FALSE)) 

 

n_data <- nrow(dataset)  

half_data <- n_data/2 # half of the data will be used for training and half for testing 
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n_beta <- 2 

n_scenario <- 20 

 

# These are the indeces for the different types of data 

covariate_ix <- c(1:10) 

tps_ix <- c(11:12) 

treatmentA_ix <- c(13:14) 

pY_ix <- c(15:34) 

outcome_ix <- c(35:54) 

 

# Set aside the training data 

train_features <- dataset[1:(half_data), covariate_ix] 

train_TPS <- dataset[1:(half_data), tps_ix ] 

train_treatment <-  dataset[1:(half_data), treatmentA_ix ] 

train_pOutcome <-  dataset[1:(half_data), pY_ix ] 

train_outcome <-  dataset[1:(half_data), outcome_ix ] 

 

# Set aside the test data 

test_features <- dataset[(half_data+1):n_data, covariate_ix] 

test_TPS <- dataset[(half_data+1):n_data, tps_ix ] 

test_treatment <-  dataset[(half_data+1):n_data, treatmentA_ix ] 

test_pOutcome <-  dataset[(half_data+1):n_data, pY_ix ] 

test_outcome <-  dataset[(half_data+1):n_data, outcome_ix ] 

 

############## 

### Propensity Score calculation using boosting 

 

# We want to train 7 boosting classifiers for calculating the propensity score (i.e. 

probability of receiving treatment), one for each of the scenarios 

model_holder <- vector(mode = "list", length = 2) 

for (i in 1:n_beta){ 

 X <- train_features #features are the n=10 covariates 

 Y <- train_treatment[1:nrow(train_treatment),i] #the "outcome" is treamtment label 

 boost_model_i <- ada(x=X, y=Y) 

 model_holder[[i]] <- boost_model_i 

} 

 

# Make a matrix for storing the propensity scores for each individual under  

# The matrix dimensions (n x m) will be : n = number of instances ; m = number of beta 

scenarios 

# Each entry (i,j) will denote the propensity score of instance i in scenario j  

prop_scores <- NULL 

for (i in 1:n_beta) { # Loop over the two beta coefficient cases 

 # the predict function will return a vector with the probability of class membership 

 class_prob <- predict(model_holder[[i]], newdata = test_features, type = "prob") 

 prop_scores <- cbind(prop_scores,class_prob[1:nrow(class_prob), 2]) 

} 

 

beta_low_PS <- prop_scores[1:nrow(prop_scores),1] 

beta_high_PS <- prop_scores[1:nrow(prop_scores),2] 

 

 

############## 

### Now, use the propensity scores to calculate the ATE for the 20 outcome scenarios 
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beta_low_ix <- c(1,2,5,6,9,10,13,14,17,18) 

beta_high_ix <- c(3,4,7,8,11,12,15,16,19,20) 

holderATE <- c(from = 0, to = 0, length.out = n_scenario ) 

 

for (i in 1: n_scenario){ #Loop over the 20 scenarios 

  

 # Select the outcome coefficients for scenario i out of the 20 scenarios.   

 outcome <- test_outcome[1:nrow(test_outcome),i] 

  

 # Case where the low beta coefficients were used for the treatment and outcome models 

 if (sum(beta_low_ix == i) == 1){  

  treatment <- test_treatment[1:nrow(test_treatment),1] 

  holderATE[i] <- (1/half_data)*sum((treatment*outcome)/beta_low_PS) - 

(1/half_data)*sum(((1-treatment)*outcome)/(1-beta_low_PS)) 

 } 

 # Case where the high beta coefficients were used for the treatment and outcome models 

 else{ 

  treatment <- test_treatment[1:nrow(test_treatment),2] 

  holderATE[i] <- (1/half_data)*sum((treatment*outcome)/beta_high_PS) - 

(1/half_data)*sum(((1-treatment)*outcome)/(1-beta_high_PS)) 

 } 

} 

 

write.table(holderATE, file = "averageTreatemntEffect.csv", sep = ",", col.names = NA, 

qmethod = "double") 
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