
Jacqueline Söegaard
15.097 –Prediction: Machine Learning and Statistics

Prof. Cynthia Rudin
Course Project
May 17, 2012

�������	
����
������������
������������
Comparing the performance of propensity scores and support vector machines at

estimating the effect of treatment on outcomes in observational data

�

�

�

�

�

�

�

�

�

����������

Propensity scores have become a popular method for removing bias in the estimation of
treatment effect when working with observational data. However, there are many issues and
limitations associated with propensity scores. This project compares the performance of pairs
of support vector machines (SVMs) as an alternative, and aims to evaluate whether these
paired SVMs can perform better than propensity scores when estimating the effect of treatment
on outcomes in non-randomized data. Both problems were evaluated using synthetically
generated datasets that modeled 20 different models for the degree of the relationships between
baseline variables, treatment, and outcomes. Although neither method performed particularly
well at recovering the true treatment effect, it was possible to learn when the different methods
fail by looking at the data for the different scenarios.

2

���
�������	��	���

�
0. Abstract 1
1. Introduction 3
2. Overview of Propensity Scores 4

a. Calculation and use as a balancing score 4
b. Issues and limitations 5

3. Methodology 5
3.a. Synthetic data generation 5
3.b. Propensity scores 8
3.c. Support vector machines 8

4. Results 9�
4.a. Propensity scores 9
4.b. Support vector machines 10

5. Conclusion 12�
6. References 13�

�
• Appendix I: Code

�

�	��������������	��

�
1. Average treatment effect (ATE) 3
2. Propensity score 4
3. True propensity score model 6
4. Outcome model 6
5. Estimate of the ATE using inverse probability of treatment weighting (IPTW) 8
6. Net reclassification improvement 9
7. Net reclassification improvement, two-class formulation 9

�	���������
�����

�
1. Comparison of randomized and observational medical trials 3
2. Coefficient combinations for the generation of 20 datasets 7
3. Plot of average treatment effect for different true treatment effects under different

scenarios 10
4. Plot of the net reclassification improvement for different true treatment effects under

different scenarios 11

�	����������
����

�
1. Synthetic dataset profiles 7
2. Average treatment effect, estimated using the propensity score 9
3. Net reclassification improvement for the SVM pairs 10
4. Change in sensitivity for the SVM pairs 10

�

�� �����	
�����

Most medical studies seek to determine the effect of a certain intervention or treatment on
clinical outcomes. One measure is the average treatment effect (ATE), which is the effect of

moving a population from being untreated to being treated. Considering the case where �

patients, each with a set of �� baseline variables, are each assigned to either the treatment

group, � � � �� , or the control group, � �� , the average treatment effect is:

��� � � � � � � � �� � � �� � � � (1)

Ideally, to measure the ATE, one conducts a randomized controlled trial (RCT). In the RCT
experimental setup, experimenters randomly assign subjects to either the treatment or the
control group. This eliminates the confounding effect of measured and unmeasured baseline
variables on the treatment status.[1]

Unfortunately, it is often either infeasible or unethical to conduct a RCT. For example,
consider the case where the treatment under evaluation is a surgical intervention. Due to the
invasive nature of the treatment, one would only assign patients to the treatment group if their
medical condition necessitated the surgery. Another example would be a study of the effect of
psychotherapy on drug addiction. Again, the treatment group would be composed of people
who are already addicted to the drug, because it would be unethical to expose other individuals
to addictive, harmful, and often illegal substances. In both these scenarios, an individual’s
treatment group assignment is now conditionally dependent on their past history and baseline
variables (Figure 1).

Figure 1: Comparison of randomized and observational clinical trials. Note how treatment assignment � is

conditionally independent and dependent of the baseline covariates �� for randomized and observational studies,
respectively.

Thinking back on the surgical study example, one might imagine that only the sickest

patients would be given the invasive surgery. In the case where the treatment group has a
much lower rate of survival than the control group, it is difficult to determine whether the
discrepancy in survival rates occurred because the surgery had an adverse effect on survival.
The same discrepancy could have also arisen because the patients in the treatment group were
inherently sicker than the patients in the control group. How, then, can the true effect of the

3

Randomized Controlled Trials
(RCT)�

Study Subjects, w/ baseline

variables X
i

Treatment

Group (Z = 1)

Y=0 Y=1

Control

Group (Z = 0)

Y=0 Y=1

Non-randomized
Observational Trials�

���������	�
�����	��
���
�����
����
����
��
��	�

���������	�������	��
���
�����
����
����
��
��	�

4

surgery on an outcome like survival be assessed? When working with non-randomized

observational data, one must first remove the confounding effect of the baseline covariates ��

on the association between the treatment ��and the outcome � in order to determine the true
treatment effect.

In their 1983 papers, Rosembaum and Rubin proposed using the method of propensity
score analysis to reduce bias in observational studies.[2] They defined the propensity scores as
the probability that a patient receives a treatment given the distribution baseline covariates.
Since being introduced in 1983, propensity scores have become a widely used tool for the
evaluation of non-randomized observational studies in medicine and surgery. Despite the
method’s growing popularity, however, there remain various disadvantages that might limit its
usefulness and appropriateness. The inevitability and importance of observational studies
makes it imperative that either these shortcomings are addressed, or that a better alternative be
proposed. This project proposes using pairs of support vector machines (SVMs) as such an
alternative, and aims to evaluate whether these paired SVMs can perform better than
propensity score when estimating the effect of treatment on outcomes in non-randomized data.

! "������#����$����	���%��������

���������	��
��
��
��	������������
��
��������

A propensity score represents the probability of being assigned to the treatment group given a
patient’s baseline variables. Formally, this is represented as:

� � � � � � � ��� � (2)

In Equation 2 �� is the propensity score, � is the binary treatment assignment, and �� is the
vector of baseline variables. The propensity score is most commonly calculated via logistic
regression, which uses baseline variables to predict the probability between 0 and 1 that a
person is assigned to the treatment group (� � �) as opposed to the control group �� � �).[3]
These propensity scores can then be used as a balancing score that accounts for the
confounding effect of the baseline variables so that the outcomes of the treatment and control
groups can be compared. The underlying idea is that among subjects with the same propensity
score, the same distribution of observed baseline variables will be the same between treated
and untreated subjects. Three methods exist that help achieve this “balance” between the
treatment and control groups: matching on the propensity score, stratification on the
propensity score, and inverse probability of treatment weighting (IPTW) using the propensity
score.[1]

Matching on the propensity score involves paring each treated subject to a control
subject such that the both members of the matched pair have identical or highly similar values
of the propensity scores. In contrast, stratification on the propensity score assigns subjects to
one of various ranges, or strata, of the propensity score. For example, the subjects could be
classified into the quintiles of the propensity score. Once the propensity scores have been used
either to match or to stratify patients, the effect of treatment on outcome can be estimated as
the difference in the fraction of patients experiencing a certain outcome in the treatment group
versus in the control groups in within the pairs or strata.[1,4] Inverse probability of treatment
weighting (IPTW) differs from either matching or stratification in that IPTW uses the
propensity score to weight the treatment and control subjects so that the final distribution of

5

baseline covariates is independent of treatment assignment.[1,5] The ATE can then be estimated
using these weights as described in section 4.b.

��������	����
������
�
��
��

Despite the prevalent use and growing popularity of propensity scores, several limitations and
issues exist regarding their implementation and calculation. One of the major problems regards
the assumption of strongly ignorable treatment assignment described by Rosembaum and
Rubin in their original paper. They defined treatment assignment to be “strongly ignorable” if

(a) the treatment assignment � is independent of the outcome Y given the baseline variables,
and (b) any subject has a nonzero probability of being assigned to either treatment. For
propensity score methods to be admissible for the unbiased estimation of treatment effects, the
assumption of strongly ignorable treatment assignment described must be satisfied. [1,2]
However, some users overlook this requirement when using propensity scores, and instead
“interpret the mathematical proof of Rosembaum and Rubin as a guarantee that, in each strata
of the [propensity score], matching treated and untreated subjects somehow eliminates
confounding from the data and contributes therefore to overall bias reduction.” [6]

Other problems stems from the prevailing use of the logistic regression to calculate
propensity scores. The popularity of logistic regression for this purpose stems from its
convenient generation of probability values within the range [0,1] and from its accessibility and
familiarity to users. However, the requirements of logistic regression create the inconvenience

that, for studies involving rare outcomes, there needs to be a high number of � � � events per
baseline variable to avoid imbalance in the data. When working with high-dimensional data

with many baseline variables, the minimum number of � � � events could become
prohibitively large.[4] More problematic is many users’ failure to account for the underlying
assumptions of proper logistic regression modeling, including that of the linearity of the risk
with respect to the log-odds parametric transformation. It also seems that the common
implementation of the logistic regression fails to include higher order and interaction terms
that would be necessary for accurate model fit.[3] To eliminate these issues, Westreich et. al.
suggested that machine learning methods that make fewer assumptions might be suitable
alternatives for logistic regression in the calculation of propensity scores. Of the methods they
evaluated, they concluded that boosting, a method whereby many weak classifiers are
combined to make a strong classifier, showed the most promise.

& ��������	��
����'���
�
%��

The propensity scores and support vector machines were calculated using synthetic data
datasets. Their performances were then evaluated using average treatment effect estimation
based on the inverse probability of treatment weighting, and the net reclassification index,
respectively.

�������

��
�����
����
���
��
�

�
Synthetic datasets were used for experimentation so that the true effect of the treatment
variable on the outcome variable would be known. This then allow for the adequate
assessment of whether the performance of propensity scores or support vector machines had
closely estimated the true effect of treatment on outcomes. The approach for synthetic dataset

6

generation was based from the framework outlined by Setoguchi et. al.[7] To summarize their
approach:

• They generated 10 baseline covariates from independent standards normal random
variables whose relationships were defined by a correlation matrix. Four of the
variables were left as continuous variables, and 6 were binarized. Of the 10 variables, 3
were only associated with the treatment assignment only, 3 were only associated with
the outcome only, and four were associated with both the treatment assignment and the
outcome.

• They used a fixed set of covariate coefficients to model 7 different scenarios with
different degrees of non-linearity and non-additivity in the associations between the
covariates and the treatment assignment. These models generated true propensity

scores, from which treatment labels � were derived using Monte-Carlo simulations.

• Their outcome was modeled using logistic regression as a function of the baseline
covariates and the treatment labels, where the coefficient for the treatment label was the

true effect of treatment � � ����. Once more, these models generated outcome

probabilities, from which outcome labels � were derived using Monte-Carlo
simulations.

Their synthetic generation framework was adapted to the needs of this study. The
methodology for generating the covariates was emulated exactly. However, rather than using

the � variable-treatment relationship scenarios, only Setoguchi’s first scenario was used. In

this scenario, the true propensity score given the covariates, ��� � ��� �� , was modeled by a
linear and additive relationship between the covariates:

��

� � � � � � � � ��� � � � �� � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � (3)

After obtaining the treatment labels � from the Monte-Carlo simulations, the outcome was
modeled using the following equation:

��
� � � � ��� � � � ��� � � � �� � � �� � � � � � � � � � � � � � � � �� � (4)

Instead of using Setoguchi et. al’s coefficients, I created ���different scenarios for the covariate
coefficients. These scenarios use scenarios use extremes of the coefficients to study the
intuitive effect of having low/high effect of covariates on probability of treatment assignment;
low/high correlation between the baseline covariates and outcome; and varying degrees of
effect of treatment on outcome. This would help to determine whether propensity scores or
SVMs would fail to estimate treatment effect in any of these scenarios. The combinations of
coefficients are described in Figure 2.

7

Figure 2: Coefficient combinations for the generation of 20 datasets. The betas correspond to the coefficients in true

propensity score model (equation 3) that specify the effect of the covariates on the probability of treatment assignment.

Similarly, the alphas correspond to the coefficients for the covariates in the outcome model (equation 4) that specify the

effect of those covariates on the outcome probabilities. Within each scenario, all of the alpha coefficients will be the
same; the same is true for the beta coefficients. The alphas and betas can either take on low or high values. Finally, the

gammas correspond to the coefficient for the treatment label Z in the outcome model (equation 3) that specifies effect of

treatment on outcome. This coefficient can take on any value within the set {-0.9, -0.5, 0, 0.5, 0.9}.

All of the above steps were followed to create a 20 dataset, each with n = 20,000 data points.
The information and composition of each dataset are outlined in Table 1.

Table 1: Synthetic datasets profiles.

�������	

�

�������	
�

���������

���������

���������

�����

���������

���������

���������

�����

����

���������

������

���������

���

!���	��

"�
�

�
��������

���

!���	��
"

��

�
 ��������	
�����
�����	
� ������ ���� ����� ���� ���

#
 ��������	
�����
����
��
� ������ ���� ����� ���� ���

$
 �������
��
�����
�����	
� ������ ���� ����� ���� ���

%
 �������
��
�����
����
��
� ������ ���� ����� ���� ���

&
 ��������	
�����
�����	
� ������ ���� ����� ���� ���

'
 ��������	
�����
����
��
� ������ ���� ����� ����� ����

(
 �������
��
�����
�����	
� ������ ���� ����� ����� ����

)
 �������
��
�����
����
��
� ������ ���� ����� ����� ����

*
 ��������	
�����
�����	
� ������ ���� �� ����� ����

�+
 ��������	
�����
����
��
� ������ ���� �� ����� ����

��
 �������
��
�����
�����	
� ������ ���� �� ���� ���

�#
 �������
��
�����
����
��
� ������ ���� �� ���� ���

�$
 ��������	
�����
�����	
� ������ ���� ���� ���� ���

�%
 ��������	
�����
����
��
� ������ ���� ���� ���� ���

�&
 �������
��
�����
�����	
� ������ ���� ���� ����� ���

�'
 �������
��
�����
����
��
� ������ ���� ���� ����� ����

�(
 ��������	
�����
�����	
� ������ ���� ���� ����� ����

�)
 ��������	
�����
����
��
� ������ ���� ���� ����� ����

�����	
��������

 ����	
��������
!���"����#�����#�
�#����#����$�

 ���
��
�������
� ��"����#�����#�
�#����#����$�

����
��
�������

 ����	
��������
!���"����#�����#�
�#����#����$�

 ���
��
�������
!���"����#�����#�
�#����#����$�

srani7
Line

srani7
Line

srani7
Line

srani7
Line

srani7
Line

srani7
Line

srani7
Line

srani7
Line

8

�*
 �������
��
�����
�����	
� ������ ���� ���� ����� ����

#+
 �������
��
�����
����
��
� ������ ���� ���� ����� ����

����������
��
����������
����������
���
��

������
�

After considering the limitations of logistic regression for the calculation of propensity scores,
the propensity scores were instead calculated using boosting. Specifically, R’s AdaBoost
function, ada, was applied to each data example to obtain it’s probability of treatment class
membership, i.e. � � � � �� � . This value is equivalent to the propensity score ��. The
propensity scores were then used to estimate the average treatment effect (ATE) using the
following formula for inverse probability of treatment weighting [1]:

� �

� � � � ��� � ��
� � � �

����� � � ��
� � � �� �� �
��� ��� (5)

This formula uses the propensity score to give higher weight to the data examples that were
assigned to the control group despite having a high propensity score, or vice versa. Once
estimated, the ATE was then compared to the known treatment effect to calculate the percent
bias of the estimator.

������	����
����
��������
����
��
���
�
�������������
��
��
����

To determine the effect of treatment on outcome, the performance of pairs of SVMs at
predicting outcomes from the data was compared. The framework for the training and testing
the SVMs was as follows:

• One of the SVMs in the pair was trained to predict outcomes using solely the baseline
covariates as features, whereas the second SVM was trained to predict outcomes using
both the baseline covariates and the treatment labels as features. These will be called
the “without-SVM” and the “with-SVM,” respectively.

• Using the svm() function from the R e1071 package, a pair of SVMs was generated for
each of the 21 scenarios described in the dataset generation section.

• After a preliminary evaluation of the performance of the algorithm on the “real”

dataset, the SVM’s cost parameter was set to ���. The radial basis (Gaussian) kernel
function was used with gamma parameter left as the default value of

�������������������

• In each of these cases, the SVMs were trained on the first half of the data, and tested on
the remaining half.

The general idea is that if the treatment affects outcomes, then the treatment labels

contain information that is important for prediction. Therefore, adding the treatment labels to
the group of features would be expected to improve the classifier’s performance. To compare
the two SVMs and learn how much information the treatment contributes to the prediction of
outcome, the net reclassification improvement (NRI) metric was used. The NRI summarizes
the reclassification table, which itself shows how many data examples would be reclassified
into higher or lower risk or outcome categories upon the addition of new information into a
prediction model. Once the reclassification table has been computed, the NRI can be

9

calculated as the difference in the proportions of data examples that are moving up and down
between the treatment and control groups[8]:

��� � � �� � � ��� � ���� � � � � � � �� � � ��� � ���� � � � (6)

For the case where the outcomes are � � �����, this expression can be rewritten as:

��� � � � � �� � � � � ��� � � � � � � � � � (7)

� � � � � � � � � � ��� � � � � � � � � �

where the label on the left hand side of the arrow is that given by the “without-SVM,” and the
label on the right hand side of the arrow is that given by the “with-SVM.”

()���
���

�

����������
��
����������

�
The results from the propensity score tests described in section 3.b. are summarized in Table 2.
Overall, the known treatment effect from the data generation models was not recovered by the
propensity score estimate of the ATE. This is not wholly unexpected, since the outcomes in
the data could have resulted from many different models of the relationship between the
covariates and the treatment assignment. In order to better visualize these results, a plot of the
ATE against the true treatment effect gamma was generated (Figure 3).

Table 2: Average treatment effect, estimated using the propensity score. For each combination of betas and alphas,

and for each value of gamma, the ATE (left) and the percent bias (right) are shown.

 ,��-�.���

 ����� ����� �� ���� ����

/����0	�-�01 ��0	�
 ������� ����� ������ ������ ������ ������ ������ ������ ������ �����

/����0	�-�01 �� ��
 ������� ����� ������� ����� ������ ������� ������� ������ ������ �����

/���� �� -�01 ��0	�
 ������ ������ ������ ������ ������� ������ ������ ����� ������ �����

/���� �� -�01 �� ��
 ������ ������ ������ ������ ������� ������ ������ ����� ������ �����

10

From looking at the plot, it is evident that the ATE estimates did not follow a consistent pattern

within the different beta/alpha combination scenarios. However, there was an interesting failure of

the low beta/high alpha case, which remained insensitive to the variations in the true treatment

effect. This is most likely because the low betas lead to an approximately random chance of being

assigned to either treatment. This random chance then confounds the ATE formula captures when

there is strong correlation between the treatment and the outcome, i.e. for extremes of the gamma

value. Therefore, in the case when the betas are low but the alphas are high, the propensity score

will work well when the true treatment effect �����, but will fail when � � � .

������	����
����
��������
����

The results from the SVM tests described in section 3.c. are summarized in Tables 3 and 4.
From Table 3, it is evident that in almost every case there was a positive net reclassification
improvement. This indicates that the information added by the treatment label variable
improve classification. Moreover, sensitivity almost always increased from the “without-
SVM” to the “with-SVM.” However, the magnitude of the improvement in NRI and in
sensitivity was relatively small, especially if you consider that the initial “without-SVM”
performance was not impressive. In order to better visualize these results, the NRI was plotted
against the true treatment effect (Figure 4).

Table 3: Net reclassification improvement (NRI) for the SVM pairs. Shown for each combination of betas and alphas

against each value of gamma.

 2��

 ����� ����� �� ���� ����

/����0	�-�01 ��0	�
 ������ ������ ������ ������ ������

/����0	�-�01 �� ��
 ������ ������ ������ ������ ������

/���� �� -�01 ��0	�
 ������ ������� ������ ������ ������

/���� �� -�01 �� ��
 ������ ������ ������ ������ ������

-
0
.1

0
.0

0
.1

0
.2

0
.3

Average Treatment Effect (from Propensity Scores)

A
T

E

beta=low/alpha=low

beta=low/alpha=high

beta=high/alpha=low

beta=high/alpha=high

-0.5 0.0 0.5

True Effect of Treatment

Figure 3: Plot of the average treatment effect for different true treatment effects under different scenarios.

Note how the beta=low/alpha=high case fails to capture the change in the true treatment effect. �

11

�
Table 4: Change in sensitivity from the “without-SVM” to the “with-SVM”. Shown for each combination of betas

and alphas against each value of gamma.

 3 ����
��
����������4

 ����� ����� �� ���� ����

/����0	�-�01 ��0	�
 ����� ����� ����� ����� �����

/����0	�-�01 �� ��
 ����� ����� ����� ����� �����

/���� �� -�01 ��0	�
 ������ ������ ������ ����� �����

/���� �� -�01 �� ��
 ����� ����� ����� ����� �����

�

�

�

Noticing trends in the data, it is evident that when the betas are low, meaning that the effect of
the covariates on treatment assignment is small, the improvement was larger than when the
betas were high. This finding is important because it corroborates the idea that when there is a
high correlation between the covariates and the treatment assignment, the treatment
information is almost redundant with the covariate information. Therefore, for cases such as
those with high betas, the net reclassification improvement will not be a useful metric for
determining treatment effect on outcome because the improvement might be small despite the
treatment effect being large (as is the case when beta is high, alpha is low, and gamma = 0.9). �
�

�

�

�

�

-0.5 0.0 0.5

-
0

.0
0

5
0

.0
0

5
0

.0
1

0
0

.0
1

5
0

.0
2

0
0

.0
2

5

Net Reclassification Improvement (from SVMs)

N
R

I

beta=low/alpha=low

beta=low/alpha=high

beta=high/alpha=low

beta=high/alpha=high

True Effect of Treatment

Figure 4: Plot of the net reclassification improvement for different true treatment effects under different

scenarios. Note how the NRI was higher for the datasets with low betas than it was for the datasets with

high betas.

12

* ��	�
����	�

�
After evaluating the results, it seems that neither method performed particularly well at the
estimation of treatment effect in these scenarios where the datasets were constructed using
coefficients with extreme values. However, even though the magnitude of the improvements
was small, the SVMs showed a consistent positive NRI across all cases whereas the patter on
the ATE estimations from the propensity score applied to different models was erratic.
The extreme value cases were also informative in that they demonstrated how the estimation
of the ATE using IPTW with the propensity score fails to capture the variation in treatment
effect when the covariates have a low correlation with the treatment assignment but a high
correlation with the outcome. Likewise, the results showed that using paired SVMs evaluated
with the NRI fails when the baseline covariates are highly correlated with the treatment
assignment.
 To learn more from these results, further experimentation and validation would be
necessary. These future studies could address some of the limitations of this current project.
In particular, one of the greatest limitations of this study was insufficient computation power
for performing the parameter sweeps necessary for the optimization of the SVMs’
performance. Had the SVMs been tuned more meticulously, their performance might have
been much better than that which was observed. Another improvement would be to develop a
better metric for capturing the treatment effect from the result of the SVM pairs. Moreover,
even though other methods for generating synthetic datasets could be explored, it would
probably be most useful to perform these tests on real data to validate the results of the
experiment.

13

+ �)�����	����

1. Austin PC. An introduction to propensity score methods for reducing the effects of
confounding in observational studies. Multivariate Behavioral Research 46, 399–424

(2011).
2. Rosembaum PR, Rubin DB. Reducing bias in observational studies using

subclassification on the propensity score. Journal of the American Statistical Association 79,

516-524 (1984).
3. Westreich D, Lessler J, Jonsson-Funk M. Propensity score estimation: neural

networks, support vector machines, decision trees (CART), and meta-classifiers as
alternatives to logistic regression. Journal of Clinical Epidemiology 63, 826-833 (2010).

4. Adamina M, Guller U, Weber WP, Oertli D. Propensity scores and the surgeon.
British Journal of Surgery 93, 389-394 (2006).

5. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine
learning. Statistics in Medicine 29, 337-346 (2010).

6. Pearl J. Understanding propensity scores. Causality: Models, Reasoning, and Inference,

Second Edition. Cambridge University Press, p. 348-352 (2009).
7. Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of

data mining techniques in propensity score estimation: a simulation study.
Pharmacoepidimemiology and Drug Safety 17, 546-555 (2008).

8. Cook, NR. Statistical evaluation of prognostic versus diagnostic models: Beyond the
ROC curve. Clinical Chemistry 54, 17-23 (2008).

14

����	�����,������

��������	
����

���������
���������

�

����������		
��������
�

%%%%%%%%%%%NOTE: This procedure for synthetic dataset generation modified
%%%%%%%%%%%from Setoguchi et. al., 2008.

ndatasets = 1;
ncohort1 = 20000;

i = 0;
setStore = cell(ndatasets,2);

while i < ndatasets
 [real_set, this_set] = generateSyntheticDatasets(ncohort1);
 setStore{i+1,1} = real_set;
 setStore{i+1,2} = this_set;
 i = i+1;
end

% Save the dataset as a .mat file
save('project097_dataset.mat', 'setStore')

% Concatenate all of the dimensions of the structure into one array
dataset = setStore{1,2};
data_mat = [dataset.W, dataset.TPS, dataset.A, dataset.pY, dataset.Y];

realset = setStore{1,1};
real_mat = [realset.W, realset.TPS, realset.A, realset.pY, realset.Y];

% Save the array as a .csv function for (that can be loaded into R)

fname1 =
['/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProject/SynthData/datas
et_097.csv'];
csvwrite(fname1, data_mat);

fname2 =
['/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProject/SynthData/reals
et_097.csv'];
csvwrite(fname2, real_mat);

�����������������
��������
�

function [realdata, dataset] = generateSyntheticDatasets(ncohort)

n_cov = 10; % number of covariates in model

ncohort1 = ncohort;

% A. Create the correlation matrix for the covariates

corr_mat = zeros(n_cov,n_cov);

for i = 1:n_cov
 corr_mat(i,i) = 1;

15

end

corr_mat(5,1) = 0.2;
corr_mat(1,5) = 0.2;
corr_mat(6,2) = 0.9;
corr_mat(2,6) = 0.9;
corr_mat(8,3) = 0.2;
corr_mat(3,8) = 0.2;
corr_mat(9,4) = 0.9;
corr_mat(4,9) = 0.9;

% B. Generate the covariates, store in a ncohort x n_covariate matrix

V = zeros(ncohort1,n_cov); % matrix of base covariates
W = NaN(ncohort1, n_cov); % matrix of final covariates

i_base = [1,2,3,4,5,6,8,9];
i_final = [7,10];
i_binary = [1,3,5,6,8,9];

 % 1. Generate 8 base covariates V_i (i = 1...6, 8,9) and two final
 % covariates W_i (i=7,10) as independent standard normal r.v. ~ N(µ=0,var=1)

 for i = 1:length(i_base)
 V(1:ncohort1, i_base(i)) = random('Normal',0,1,ncohort1,1);
 end
 for i = 1:length(i_final)
 W(1:ncohort1, i_final(i)) = random('Normal',0,1,ncohort1,1);
 end

 % 2. Model the final 8 covariates W_i for i = 1...6,8,9 from linear
 % combinations of the V_i, using the correlations from the correlation
 % matrix. Also, binarize variables i = 1,3,5,6,8,9

 for i = 1:ncohort1
 for j = 1:length(i_base)
 W(i, i_base(j)) = dot(V(i,:), corr_mat(i_base(j),:), 2);
 end
 end

 var_medians = median(W, 1);

 for i = 1:ncohort1
 for j = 1:length(i_binary)
 var_id = i_binary(j);
 if W(i,var_id) > var_medians(var_id)
 W(i,i_binary(j)) = 1 ;
 else
 W(i,i_binary(j)) = 0 ;
 end
 end
 end

% C. Model the binary exposure for each of seven scenarios

 [truePropScore, exposureA] = calculateTruePropensityScores2(W, ncohort1);

% D. Model the binary outcome Y.

 [tpY_real, outcomeY_real trueProbY, outcomeY] =
calculateTrueOuctomeProb2(W,exposureA, ncohort1);

% Store this dataset's information in a struct object

 realdata.W = W;
 realdata.TPS = truePropScore(:,1);
 realdata.A = exposureA(:,1);

16

 realdata.pY = tpY_real;
 realdata.Y = outcomeY_real;

 dataset.W = W;
 dataset.TPS = truePropScore(:,2:3);
 dataset.A = exposureA(:,2:3);
 dataset.pY = trueProbY;
 dataset.Y = outcomeY;
end

��	��	�������������������������
�

function [TPS, A] = calculateTruePropensityScores2(W, ncohort)

 % Set coefficient values for three different cases: the Setoguchi
 % et.al. coefficients from real experimental studies, low coefficients,
 % and high coefficients.
 b0 = 0;
 b_real = [0.8, -0.25, 0.6, -0.4, -0.8, -0.5, 0.7];
 b_low = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05];
 b_high = [0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95];

 TPS = NaN(ncohort,3); % P(A|W_i), true propensity score calculated from model
 A = NaN(ncohort,3); % binary exposure A

 % Calculate the true propensity scores (TPS) (i.e. P(A|W_i)) and the dichotomous
 % exposure A for each of the three scenarios. All scenarios are linear
 % and additive.

 for i = 1:ncohort
 %Scenario A , with the "real" world coefficients.
 TPS(i,1) = (1 + exp(-(b0 + b_real(1)*W(i,1) + b_real(2)*W(i,2) +
b_real(3)*W(i,3) + ...
 b_real(4)*W(i,4) + b_real(5)*W(i,5) + b_real(6)*W(i,6) +
b_real(7)*W(i,7))))^-1;
 %Scenario B, with "low" coefficients for all of the covariates.
 TPS(i,2) = (1 + exp(-(b0 + b_low(1)*W(i,1) + b_low(2)*W(i,2) +
b_low(3)*W(i,3) + ...
 b_low(4)*W(i,4) + b_low(5)*W(i,5) + b_low(6)*W(i,6) +
b_low(7)*W(i,7))))^-1;
 %Scenario C, with "high" coefficients for all of the covariates.
 TPS(i,3) = (1 + exp(-(b0 + b_high(1)*W(i,1) + b_high(2)*W(i,2) +
b_high(3)*W(i,3) + ...
 b_high(4)*W(i,4) + b_high(5)*W(i,5) + b_high(6)*W(i,6) +
b_high(7)*W(i,7))))^-1;

 end

 for i = 1:ncohort
 for j = 1:3
 % generate a random number between [0,1] from the uniform
 % distribution
 rand_num = random('Uniform',0,1);
 if rand_num < TPS(i,j)
 A(i,j) = 1;
 else
 A(i,j) = 0;
 end
 end
 end
end

17

��	��	������������
�������
�

function [pY_real, Y_real, pY, Y] = calculateTrueOuctomeProb2(W, A, ncohort)

 % Here, A has values for real, low, and high beta coeff cases.

 % Number of sets of values for betas, alphas, and gamma.
 num_b = 2;
 num_a = 2;
 num_g = 5;

 % Set coefficient values:
 % The alpha (a0...a7) coefficients are for the outcome model
 a0 = -3.85;
 a_real = [0.3, -0.36, -0.73, -0.2, 0.71, -0.19, 0.26];
 a_low = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05];
 a_high = [0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95];

 % The treatment labels for the three "beta" cases
 A_real = A(:,1);
 A_low = A(:,2);
 A_high = A(:,3);

 % The gamma (g) coefficient is the effect of exposure on the outcome
 g_real = [-0.4];
 g_range = [-0.9, -0.5, 0, 0.5, 0.95];

 % Instantiate arrays to hold the results of the calculations below

 pY_real = NaN(ncohort,1); % P(Y|W_i, A), probability of the outcome for real
valued coeff scenario
 Y_real = NaN(ncohort, 1); % binary outcome Y for real valued coeff scenario

 pY = NaN(ncohort,num_b*num_a*length(g_range)); % P(Y|W_i, A), probability of the
outcome ...
 % given the covariates and the
exposure
 Y = NaN(ncohort,num_b*num_a*length(g_range)); % binary outcome Y

 % calculate the pY and Y values for the "real" Setoguchi coefficient
 % case
 for i = 1:ncohort
 pY_real(i) = (1 + exp(- (a0 + a_real(1)*W(i,1) + a_real(2)*W(i,2) + ...
 a_real(3)*W(i,3) + a_real(4)*W(i,4) +
a_real(5)*W(i,8) + ...
 a_real(6)*W(i,9) + a_real(7)*W(i,10) +
g_real*A_real(i))))^-1 ;
 % generate a random number between [0,1] from the uniform
 % distribution
 rand_num = random('Uniform',0,1);

 if rand_num < pY_real(i)
 Y_real(i) = 1;
 else
 Y_real(i) = 0;
 end
 end

 % Calculate the pY and Y values for the low and high alpha coeff case,
 % with each of the gamma values:
 for i = 1:ncohort
 for gamma = 1:length(g_range)

18

 % beta_low and alpha_low
 pY(i,gamma) = (1 + exp(- (a0 + a_low(1)*W(i,1) + a_low(2)*W(i,2) + ...
 a_low(3)*W(i,3) + a_low(4)*W(i,4) + a_low(5)*W(i,8) + ...
 a_low(6)*W(i,9) + a_low(7)*W(i,10) +
g_range(gamma)*A_low(i))))^-1 ;
 % beta_low and alpha_high
 pY(i,(gamma+5)) = (1 + exp(- (a0 + a_high(1)*W(i,1) + a_high(2)*W(i,2)
+ ...
 a_high(3)*W(i,3) + a_high(4)*W(i,4) + a_high(5)*W(i,8) + ...
 a_high(6)*W(i,9) + a_high(7)*W(i,10) +
g_range(gamma)*A_low(i))))^-1 ;
 % beta_high and alpha_low
 pY(i,(gamma+5*2)) = (1 + exp(- (a0 + a_low(1)*W(i,1) + a_low(2)*W(i,2)
+ ...
 a_low(3)*W(i,3) + a_low(4)*W(i,4) + a_low(5)*W(i,8) + ...
 a_low(6)*W(i,9) + a_low(7)*W(i,10) +
g_range(gamma)*A_high(i))))^-1 ;
 % beta_low and alpha high
 pY(i,(gamma+5*3)) = (1 + exp(- (a0 + a_high(1)*W(i,1) + a_high(2)*W(i,2)
+ ...
 a_high(3)*W(i,3) + a_high(4)*W(i,4) + a_high(5)*W(i,8) + ...
 a_high(6)*W(i,9) + a_high(7)*W(i,10) +
g_range(gamma)*A_high(i))))^-1 ;
 end
 end

 for i = 1:ncohort
 for j = 1:(size(pY,2))

 %generate a random number between [0,1] from the uniform
 %distribution
 rand_num = random('Uniform',0,1);

 if rand_num < pY(i,j)
 Y(i,j) = 1;
 else
 Y(i,j) = 0;
 end
 end
 end
end

�

�������
��	���
��	����
���	�������
����

�

������������
�
�

Use SVMs to generate and apply two classifiers:

minus and plus treatment variables

#Load the necessary packages

library(e1071)

################

Function for calculating the net reclassification improvement (NRI)

calculateNRI <- function(model1_labels, model2_labels, true_labels){

 # This function calculates the net reclassification improvement, which is a summary

statistic

 # that describes the reclassification, thus allowing us to compare the clinical impact

19

of two models by # determining how many individuals would be reclassified with new

baseline informaiton.

 # NOTE: Here, cases are those examples with outcome Y=1 and noncases are examples with

Y=0,

 # as defined by the true (original) labels

 num_cases <- sum(true_labels ==1)

 num_noncases <- sum(true_labels == 0)

 case_ix <- (true_labels ==1)

 noncase_ix <- (true_labels ==0)

 case_ix <- case_ix - 10000

 noncase_ix <- noncase_ix - 10000

 # Look at the reclassification movement.

 # the "movement" vector will have values in {-1,0,1}

 # -1 : "down" movement, reclassified from 1 to 0 with treatment info

 # 0 : no reclassification

 # +1 : "up" movement, reclassified from 0 to 1 with treatment info

 movement <- model2_labels - model1_labels

 pUp_cases <- sum(movement[case_ix]==1)/num_cases # = P(up|Y=1)

 pDown_cases <- sum(movement[case_ix] == -1)/num_cases # P(down|Y=1)

 pUp_noncases <- sum(movement[noncase_ix]==1)/num_noncases # P(up|Y=0)

 pDown_noncases <- sum(movement[noncase_ix] == -1)/num_noncases # P(up|Y=0)

 netgains_cases <- pUp_cases - pDown_cases

 netgains_noncases <- pUp_noncases - pDown_noncases

 NRI = netgains_cases - netgains_noncases

 sensitivity1 <- sum(model1_labels == test_outcome & test_outcome == 1)/sum(test_outcome

== 1)

 specificity1 <- sum(model1_labels == test_outcome & test_outcome == 0)/sum(test_outcome

== 0)

 sensitivity2 <- sum(model2_labels == test_outcome & test_outcome == 1)/sum(test_outcome

== 1)

 specificity2 <- sum(model2_labels == test_outcome & test_outcome == 0)/sum(test_outcome

== 0)

 delta_sens <- sensitivity2-sensitivity1

 delta_spec <- specificity2-specificity1

 return(c(NRI, netgains_cases, netgains_noncases, delta_sens, delta_spec))

}

################

Read a practice synthetic dataset

dataset <-

as.data.frame(read.csv("/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProj

20

ect/SynthData/dataset_097.csv", header = FALSE))

n_data <- nrow(dataset)

half_data <- n_data/2 # half of the data will be used for training and half for testing

n_beta <- 2

n_scenario <- 20

These are the indeces for the different types of data

covariate_ix <- c(1:10)

tps_ix <- c(11:12)

treatmentA_ix <- c(13:14)

pY_ix <- c(15:34)

outcome_ix <- c(35:54)

Set aside the training data

train_features <- dataset[1:(half_data), covariate_ix]

train_TPS <- dataset[1:(half_data), tps_ix]

train_treatment <- dataset[1:(half_data), treatmentA_ix]

train_pOutcome <- dataset[1:(half_data), pY_ix]

train_outcome <- dataset[1:(half_data), outcome_ix]

Set aside the test data

test_features <- dataset[(half_data+1):n_data, covariate_ix]

test_TPS <- dataset[(half_data+1):n_data, tps_ix]

test_treatment <- dataset[(half_data+1):n_data, treatmentA_ix]

test_pOutcome <- dataset[(half_data+1):n_data, pY_ix]

test_outcome <- dataset[(half_data+1):n_data, outcome_ix]

##############

Generate SVM models

We want to train 40 SVMs, with each of the 20 scenarios having two SVMs:

Model 1 will correspond to the SVMs trained on the baseline covariates (X_is) to

predict the outcome Y

Model 2 will correspond to the SVMs trained on BOTH the baseline covariates (X_is) and

the treatment labels (Z_is) to predict the outcome Y.

Make lists to hold the svm models

model1_holder <- vector(mode = "list", length = n_scenario)

model2_holder <- vector(mode = "list", length = n_scenario)

performance_stats <- NULL # will fill up later with performance statistics

beta_low_ix <- c(1,2,5,6,9,10,13,14,17,18)

beta_high_ix <- c(3,4,7,8,11,12,15,16,19,20)

C = 100

for (i in 1:n_scenario){

 # train the model that uses only the baseline covariates as features

 X1 <- train_features #features are the n=10 covariates

 Y1 <- train_outcome[1:nrow(train_outcome),i] # outcome

 svm_model_1 <- svm(X1, Y1, scale = FALSE, kernel = "radial", cost = C, decision.values =

FALSE)

 model1_holder[[i]] <- svm_model_1

21

 # train the model that uses both the covariates and the treatment labels as features

 if (sum(beta_low_ix == i) == 1){

 X2 <- cbind(train_features, train_treatment[1:nrow(train_treatment), 1])

 test_features2 <- cbind(test_features, test_treatment[1:nrow(test_treatment), 1])

 print("im here")

 }

 if (sum(beta_high_ix == i) == 1){

 X2 <- cbind(train_features, train_treatment[1:nrow(train_treatment), 2])

 test_features2 <- cbind(test_features, test_treatment[1:nrow(test_treatment), 2])

 print("now I'm there")

 }

 Y2 <- train_outcome[1:nrow(train_outcome),i]

 svm_model_2 <- svm(x = X2, y=Y2, scale = FALSE, kernel = "radial", cost = C,

decision.values = FALSE)

 model2_holder[[i]] <- svm_model_2

 # Apply the SVM classifiers to the test data to obtain predicted labels

 model1_labels <- sign(predict(svm_model_1,newdata = test_features, probability = FALSE))

 model2_labels <- sign(predict(svm_model_2,newdata = test_features2, probability =

FALSE))

 # Convert the +1/-1 labeling convention to +1/0 so that it matches the original labels

 model1_labels[model1_labels == 1] <- 0

 model2_labels[model2_labels == 1] <- 0

 model1_labels[model1_labels == -1] <- 1

 model2_labels[model2_labels == -1] <- 1

 # Calculate the NRI and other performance statistics

 stats <- calculateNRI(model1_labels, model2_labels, test_outcome)

 performance_stats <- rbind(performance_stats, stats)

 print(stats)

 write.table(performance_stats, file = "svm_NRI.csv", sep = ",", col.names = NA, qmethod

= "double")

}

����������
�	���
���	�������
����

�

���������������������
�

Perform adaBoost to calculate the propensity scores

library(rpart)

library(ada)

Read a practice synthetic dataset

dataset <-

as.data.frame(read.csv("/Users/jacquelinesoegaard/Documents/Spring2012/15.097/CourseProj

ect/SynthData/dataset_097.csv", header = FALSE))

n_data <- nrow(dataset)

half_data <- n_data/2 # half of the data will be used for training and half for testing

22

n_beta <- 2

n_scenario <- 20

These are the indeces for the different types of data

covariate_ix <- c(1:10)

tps_ix <- c(11:12)

treatmentA_ix <- c(13:14)

pY_ix <- c(15:34)

outcome_ix <- c(35:54)

Set aside the training data

train_features <- dataset[1:(half_data), covariate_ix]

train_TPS <- dataset[1:(half_data), tps_ix]

train_treatment <- dataset[1:(half_data), treatmentA_ix]

train_pOutcome <- dataset[1:(half_data), pY_ix]

train_outcome <- dataset[1:(half_data), outcome_ix]

Set aside the test data

test_features <- dataset[(half_data+1):n_data, covariate_ix]

test_TPS <- dataset[(half_data+1):n_data, tps_ix]

test_treatment <- dataset[(half_data+1):n_data, treatmentA_ix]

test_pOutcome <- dataset[(half_data+1):n_data, pY_ix]

test_outcome <- dataset[(half_data+1):n_data, outcome_ix]

##############

Propensity Score calculation using boosting

We want to train 7 boosting classifiers for calculating the propensity score (i.e.

probability of receiving treatment), one for each of the scenarios

model_holder <- vector(mode = "list", length = 2)

for (i in 1:n_beta){

 X <- train_features #features are the n=10 covariates

 Y <- train_treatment[1:nrow(train_treatment),i] #the "outcome" is treamtment label

 boost_model_i <- ada(x=X, y=Y)

 model_holder[[i]] <- boost_model_i

}

Make a matrix for storing the propensity scores for each individual under

The matrix dimensions (n x m) will be : n = number of instances ; m = number of beta

scenarios

Each entry (i,j) will denote the propensity score of instance i in scenario j

prop_scores <- NULL

for (i in 1:n_beta) { # Loop over the two beta coefficient cases

 # the predict function will return a vector with the probability of class membership

 class_prob <- predict(model_holder[[i]], newdata = test_features, type = "prob")

 prop_scores <- cbind(prop_scores,class_prob[1:nrow(class_prob), 2])

}

beta_low_PS <- prop_scores[1:nrow(prop_scores),1]

beta_high_PS <- prop_scores[1:nrow(prop_scores),2]

##############

Now, use the propensity scores to calculate the ATE for the 20 outcome scenarios

23

beta_low_ix <- c(1,2,5,6,9,10,13,14,17,18)

beta_high_ix <- c(3,4,7,8,11,12,15,16,19,20)

holderATE <- c(from = 0, to = 0, length.out = n_scenario)

for (i in 1: n_scenario){ #Loop over the 20 scenarios

 # Select the outcome coefficients for scenario i out of the 20 scenarios.

 outcome <- test_outcome[1:nrow(test_outcome),i]

 # Case where the low beta coefficients were used for the treatment and outcome models

 if (sum(beta_low_ix == i) == 1){

 treatment <- test_treatment[1:nrow(test_treatment),1]

 holderATE[i] <- (1/half_data)*sum((treatment*outcome)/beta_low_PS) -

(1/half_data)*sum(((1-treatment)*outcome)/(1-beta_low_PS))

 }

 # Case where the high beta coefficients were used for the treatment and outcome models

 else{

 treatment <- test_treatment[1:nrow(test_treatment),2]

 holderATE[i] <- (1/half_data)*sum((treatment*outcome)/beta_high_PS) -

(1/half_data)*sum(((1-treatment)*outcome)/(1-beta_high_PS))

 }

}

write.table(holderATE, file = "averageTreatemntEffect.csv", sep = ",", col.names = NA,

qmethod = "double")

MIT OpenCourseWare
http://ocw.mit.edu

15.097 Prediction: Machine Learning and Statistics
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

