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Important Problems in Data Mining 

1. Finding patterns (correlations) in large datasets
 
-e.g. (Diapers → Beer). Use Apriori!
 

2. Clustering	 - grouping data into clusters that “belong” together - objects 
within a cluster are more similar to each other than to those in other clusters. 

•	 Kmeans, Kmedians 

•	 Input: {xi}mi=1, xi ∈ X ⊂ Rn 

•	 Output: f : X → {1, . . . , K} (K clusters) 

•	 clustering consumers for market research, clustering genes into families, 
image segmentation (medical imaging) 

3. Classification 

•	 Input: {(xi, yi)}m “examples,” “instances with labels,” “observations” i=1 

•	 xi ∈ X , yi ∈ {−1, 1} “binary” 

•	 Output: f : X → R and use sign(f) to classify. 

•	 automatic handwriting recognition, speech recognition, biometrics, doc­
ument classification 

•	 “LeNet” 

4. Regression 

1
 



•	 Input: {(xi, yi)}mi=1, xi ∈ X , yi ∈ R 

•	 Output: f : X → R 

•	 predicting an individual’s income, predict house prices, predict stock 
prices, predict test scores 

5. Ranking (later)	 - in between classification and regression. Search engines 
use ranking methods 

6. Density Estimation - predict conditional probabilities 

• {(xi, yi)}mi=1, xi ∈ X , yi ∈ {−1, 1} 

•	 Output: f : X → [0, 1] as “close” to P (y = 1|x) as possible. 
•	 estimate probability of failure, probability to default on loan 

Rule mining and clustering are unsupervised methods (no ground truth), 
and classification, ranking, and density estimation are supervised methods 
(there is ground truth). In all of these problems, we do not assume we know the 
distribution that the data are drawn from! 

Training and Testing (in-sample and out-of-sample) for supervised learning 

Training : training data are input, and model f is the output. 

{(xi, yi)}mi=1 =⇒ Algorithm =⇒ f. 

Testing : You want to predict y for a new x, where (x, y) comes from the same 
distribution as {(xi, yi)}m 

i=1. 

That is, (x, y) ∼ D(X , Y) and each (xi, yi) ∼ D(X , Y). 

Compute f(x) and compare it to y. How well does f(x) match y? Measure 
goodness of f using a loss function R : Y × Y → R: 

Rtest(f) = E(x,y)∼DR(f(x), y) 
= R(f(x), y)dD(x, y). 

(x,y)∼D 

2
 



Rtest is also called the true risk or the test error. 

Can we calculate Rtest? 

We want Rtest to be small, to indicate that f(x) would be a good predictor (“es­
timator”) of y. 

For instance 

R(f(x), y) = (f(x) − y)2 least squares loss, or 

R(f(x), y) = 1[sign(f(x)) (mis)classification error =y] 

Which problems might these loss functions correspond to?
 

How can we ensure Rtest(f) is small? 

Look at how well f performs (on average) on {(xi, yi)}i. 

mm1 
Rtrain(f) = R(f(xi), yi). 

m 
i=1 

Rtrain is also called the empirical risk or training error. For example, 

mm1 
Rtrain(f) = =yi].1[sign(f(xi)) m 

i=1 

(How many handwritten digits did f classify incorrectly?) 

Say our algorithm constructs f so that Rtrain(f) is small. If Rtrain(f) is small, 
hopefully Rtest(f) is too. 

We would like a guarantee on how close Rtrain is to Rtest . When would it be close 
to Rtest? 

• If m is large. 

• If f is “simple.” 
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Illustration
 

In one of the figures in the illustration, f : 

• was overfitted to the data 

• modeled the noise 

• “memorized” the examples, but didn’t give us much other useful information 

• doesn’t “generalize,” i.e., predict. We didn’t “learn” anything! 

Computational Learning Theory, a.k.a. Statistical Learning Theory, a.k.a., 
learning theory, and in particular, Vapnik’s Structural Risk Minimization 
(SRM) addresses generalization. Here’s SRM’s classic picture: 

Which is harder to check for, overfitting or underfitting?
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Computational learning theory addresses how to construct probabilistic guaran­
tees on the true risk. In order to do this, it quantifies the class of “simple models.” 

Bias/Variance Tradeoff is related to learning theory (actually, bias is related to 
learning theory). 

Inference Notes - Bias/Variance Tradeoff
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Regularized Learning Expression
 

Structural Risk Minimization says that we need some bias in order to learn/generalize 
(avoid overfitting). Bias can take many forms:   

• “simple” models f(x) = λjx
(j) where IλI2 = λ2 < C j 2 j j 

• “prior” in Bayesian statistics 

• connectivity of neurons in the brain 

Regularized Learning Expression: m 
R(f(xi), yi) + CRreg(f) 

i 

This expression is kind of omnipresent. This form captures many algorithms: 
SVM, boosting, ridge regression, LASSO, and logistic regression. 

In the regularized learning expression, the loss R(f(xi), yi) could be: 

• “least squares loss” (f(xi) − yi)2 

• “misclassification error” 1[yi f(xi))] = 1[yif(xi)≤0]  
– Note that minimizing 1[yif(xi)≤0] is computationally hard. i 

  −yif(xi)• “logistic loss” log2 1 + e ⇐= logistic regression 
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•	 “hinge loss” max(0, 1 − yif(xi)) ⇐= SVM
 

−yif(xi) ⇐
• “exponential loss” e = AdaBoost 

In the regularized learning expression, we define a couple of options for Rreg(f). 
Usually f is linear, f(x) = j λjx

(j). We choose Rreg(f) to be either: 

• IλI22 = j λj 
2 ⇐= ridge regression, SVM 

• IλI1 = |λj| ⇐=	 LASSO, approximately AdaBoost j 

7
 

∑
∑
∑



 

 
 
 

MIT OpenCourseWare
http://ocw.mit.edu

15.097 Prediction: Machine Learning and Statistics
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



