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2 Physical Laws of a Truss System 

A truss is a structure in d = 2  or  d = 3 dimensions, formed by n nodes and 
m bars joining these nodes. Figure 1 shows an example of a truss. 
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Figure 1: Example of a truss in d = 2 dimensions, with n = 6 nodes and 
m = 13  bars.  

Examples of trusses include bridges, cranes, and the Eiffel Tower. 
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The data used to describe a truss is: 

•	 a set of nodes (given in physical space) 

•	 a set of bars joining pairs of nodes with associated data for each bar: 

–	 the length Lk of bar k 

–	 the Young’s modulus Ek of bar k 

–	 the volume tk of bar k 

•	 an external force vector F on the nodes 

Nodes can be static (fixed in place) or free (movable when the truss 
is stressed). The allowable movements of the nodes defines the degrees of 
freedom (dof) of the truss. We say that the truss has N degrees of freedom. 
Of course, N ≤ nd. 

Movements of nodes in the truss will be represented by a vector u of 
Ndisplacements, where u ∈ � . 

NThe external force on the truss is given by a vector F ∈ � . 

Displacements of the nodes in the truss cause internal forces of compres-
sion and/or expansion to appear in the bars in the truss. Let fk denote the 
internal force of bar k. The vector f ∈ �m is the vector of forces of the bars. 

Figure 2 shows an example of a truss problem. In the figure, there is a 
single external force applied to node 3 in the direction indicated. This will 
result in internal forces along the bars in the truss and will simultaneously 
cause small displacements in all of the nodes. 

In Figure 2, nodes 1 and 5 are fixed, and the other nodes are free. To 
simplify notation we will label the 13 different bars by the nodes that hey 
link to: in general the bar k will join nodes i and j. The bars will be: 12, 
13, . . ., 56. 

The internal force fk of bar k can be positive or negative: 

•	 If fk ≥ 0, bar k has been expanded and its internal force counteracts 
the expansion with compression, see Figure 3. 
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Figure 2: A truss problem.


∆ > 0 Lk 

Figure 3: A bar under expansion. 

Lk 

∆ < 0 

Figure 4: A bar under compression. 
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•	 If fk ≤ 0, bar k has been compressed and its internal force counteracts 
the compression with expansion, see Figure 4. 

2.1 Physical Laws 

2.1.1 Force Balance Equations 

In a static truss the internal forces will balance the external forces in every 
degree of freedom. That is, the forces around each free node must balance. 
This is a law of conservation of forces. (This is akin to material balance 
equations in networks, for example.) 

For example, consider the balance of forces on node 3: 

x coordinate: −f13 −f23 cos(π/4) +f35 +f36 cos(π/4) = −F3x 

y coordinate: +f23 sin(π/4) +f34 +f36 sin(π/4) = −F3y 

For the entire truss we write N linear equations that represent the bal-
ance of forces in each degree of freedom. 

In matrix notation this can be written as 

Af = −F 

where A is an N × m matrix, and where each column of A, denoted as ak , 
is the projection of the bar onto the degrees of freedom of the nodes that 
bar k meets. 

In our example, we have: 
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12 13 14 16 23 24 25 34 35 36 45 46 56


1√ 1
 2√ 
 

0 0 0 0 


0 0 0 0 0 0 2x52 	    −1 0 0 0 − 1√ 0 − 1√ 
52 

0 0 0 0 0 0  2y 	    0 −1 0 0 − 1√ 0 0 0 1
 1√ 
22 

0 0 0  3x 	  
1√ 0 0 1 0
 1√0 0 0 0
 0 0 0  3y 

A =  
22 	  

1√ 0 0 −1 0 0 0 0
 1√0 0

1 0  4x 

  −

22  

 
1√ 0 0 0 0 −1 0  0  − 1√0 0



0 0  4y−  22    2√ 0 0 0 0 0 − 1√0 0 0  6x0 −1 0− 

25  	  
1√ 0 0 0 0 0 − 1√0 0 0 − 0 0 −1 6y25 

2.1.2	 Constitutive Relationship between Forces and Distortion 
of a Bar 

If bar k has length Lk and cross-sectional area Ac 
k , Young’s modulus Ek , 

and its length is changed by ∆k , then the internal force fk is given by: 

∆k
fk = EkA

c .k Lk 

However, for our purposes it will be easier to work instead with the 
volume tk of bar k, which is: 

kLk .tk = Ac 

We therefore can write the constitutive relationship as: 

Ek
fk = 

L2 tk∆k . 
k 
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2.1.3 Distortion and Displacements 

Displacements in the nodes will cause the lengths of the bars to change. 
Suppose that L12 = L13 = L35 = 1.0, with all other bars measured propor-
tionally. In Figure 5, we show a displacement of: 

u = (−ε, −ε, 0, 0, 0, 0, 0, 0) . 

F3 
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Figure 5: Example of a small displacement in a node. 

Table 1 shows the new lengths of the bars under the displacement u = 
(−ε, −ε, 0, 0, 0, 0, 0, 0). The third column of the table shows the linearization 
(first-order Taylor approximation) of the lengths of the bars, and the last 
column shows the computation of the inner product: 

(ak )T u .  

Note that if ε is small, then the distortion of bar k is nicely approximated 
by the linear expression: 

∆k = −(ak )T u .  
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Bar k Old Length New Length Linearized Length Linearized Change ∆k (ak )T u 

12 1 
√ 

1 + 2ε(ε − 1) 1 − ε −ε ε 
13 1 1 1 0 0 
14 1√ 1√ 1√ 0 0 
16 
23 

5√ 
2 

5√ 
2 + 2ε2 

5√ 
2 

0 
0 

0 
0 √ 

24 
25 

1√ 
5 

1 + 2ε(ε + 1)  √ 
5 + 2ε(ε + 1)  

1 +  ε√ 
5 +  1√ 

5 
ε 

ε 
1√ 
5 
ε 

−ε 
1−√ 
5 
ε 

34 1 1 1 0 0 
35 1√ 1√ 1√ 0 0 
36 2√ 2√ 2√ 0 0 
45 2 2 2 0 0 
46 1 1 1 0 0 
56 1 1 1 0 0 

Table 1: Changes in the lengths of the bars under nodal displacement 

We therefore write the internal force on bar k due to a feasible displace-
ment u as: 

Ek
fk = − 2 tk (ak )T u 

Lk 

Let the matrix B be the following diagonal matrix: 

 
L2 

1 
E1t1 

0 
  E1t1 

L2 
1 

0 
 

B = 
   . . . 

   , B−1 = 
   

. . . 
   . 

0 L2 
m 

Emtm 
0 Emtm 

L2 
m 

Then we can write the above relationship as: 

f = −B−1AT u ,  

which is: 

Bf + AT u = 0  . 
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2.1.4 Equilibrium Conditions and Compliance 

Now we can write the physical laws of the truss system as: 

Af = −F (conservation of forces) 

Bf +AT u = 0 (forces, distortions, and displacements) 

The compliance of the truss is the work (or energy) performed by the 
truss, which is the sum of the forces times displacements: 

1 
F T u .

2 

“ 1 

nience. 

Notice that the larger the compliance, the more work or displacement 
that the truss undergoes under the load F . Ideally, we would like the com-
pliance to be a small number. 

Combining the equilibrium conditions, we write: 

We really do not need the fraction 2”, but we will keep it for conve-

F = −Af 

= AB−1AT u 

= Ku 

where the matrix K is defined to be: 

K = AB−1AT . 

The matrix K is called the stiffness matrix of the truss. Note that K is an 
SPSD matrix. 
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Using this, we can write the compliance as: 

1 1 
F T u = u T Ku . 

2 2 

Note from this that the compliance will always be a nonnegative quantity, 
as intuition suggests. More generally, of course, we would expect the stiffness 
matrix K to be SPD, and so the compliance will generally be a positive 
quantity. 

2.1.5 Solving the Equations and Computing the Compliance 

We solve the equation system: 

Ku = F 

to obtain the nodal displacements u, and then obtain the forces on the bars 
by computing: 

f = −B−1AT u .  

For each bar k, this last expression is simply: 

Ek
fk = − 2 tk (ak )T u .  

Lk 

The compliance is then computed as: 

1 1 
F T u = u T Ku . 

2 2 

2.2	 Viewing the Equilibrium Conditions as the Solution to 
an Optimization Problem 

We can also view the truss equilibrium conditions as the solution to an 
optimization problem. Consider the following optimization problem: 
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∑ 

∑ 

∑ 

m ∑ 1 1 L2 

OP : minimize f̃
k f̃2 

2 tk Ek
k 

k=1 

m 

s.t.	 ak f̃k = −F .  
k=1 

Problem OP seeks a force vector f̃ that satisfies the force balance equa-
tions: 

m 

−F = ak f̃k = Af̃ ,  
k=1 

and that minimizes the weighted sum of squares of the forces: 

m 1 L2 ∑ 1 k f̃2 

2 tk Ek
k . 

k=1 

Problem OP is a convex quadratic problem. The KKT optimality con-
ditions for this problem are: 

m 

ak fk = −F

k=1


L2 
Tk fk + ak u = 0  for  k = 1, . . . , m.  

tk Ek 

Notice that we can rewrite these optimality conditions as: 

Af = −F 

Bf + AT u = 0  , 

which are precisely the equilibrium conditions for the truss system. This 
shows that the truss system is nature’s solution to an optimization problem. 
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∑ 

∑ 

The optimal objective function value of the optimization problem OP is: 
m ∑ 1 1 L2 1 1 1 1k f2 = fT Bf = − fT AT u = − u T Af = F T u ,

2 tk Ek
k 2 2 2 2 

k=1 

which is the compliance of the truss. Therefore we see that the optimal 
objective value of OP is the compliance of the truss system. 

3 The Truss Design Problem 

Let us now consider the volumes tk of the bars k to be design parameters 
that we wish to determine. We can write the system of equations: 

F = Ku 

as: 

F = Ku 

= AB−1AT u 

m ( ) 
B−1AT= (ak ) u 

k 
k=1 

m 

= −(ak )fk 
k=1 

m ∑ Ek = tk 
L2 (ak )(ak)T u 

k=1 k 

= K(t)u 

where the stiffness matrix is now written as: 

m ∑ Ek
K(t) =  tk 

L2 (ak )(ak )T . 
k=1 k 
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∑ 

Note in this expression that K = K(t) is a weighted sum of rank-one matri-
ces (weighted by the volumes tk ). Put another way, K = K(t) is a weighted 
sum of outer-product matrices. 

In designing the truss, we must choose the volumes tk of the bars subject 
to linear constraints on the volumes of the bars: 

Mt  ≤ d 

t ≥ 0 , 

where typically these constraints include upper and lower bounds on the 
volumes of certain bars, as well as an overall cost or volume constraint: 

m 

tk ≤ V .  
k=1 

The criterion in truss design is to choose the volumes tk of the bars so 
as to minimize the compliance of the truss, namely: 

1
minimizet,u F T u .

2


Such a truss will be the most resistant to the external force F .


The single-load truss design problem can be stated as:


1
(TDP1) : minimizet,u F T u

2 

s.t.	 K(t)u = F 

Mt  ≤ d 

t ≥ 0 

mu ∈ �N , t  ∈ � . 
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[	 ] ∑ 

[	 ] ∑ 

∑ 

which is the same as: 

1
(TDP1) : minimizet,u F T u

2 

m 
s.t. tk

Ek (ak )(ak )T u = F
L2 

k=1 k 

Mt  ≤ d 

t ≥ 0 

mu ∈ �N , t  ∈ � . 

The decision variables here are u and t. However, one should really think 
of the decision variables as t only, since once t is chosen, u will be determined 
by the solution to the system of equations: 

m 

tk 
Ek (ak )(ak )T u = F .  
L2 

k=1 k 

Note that as written, the truss design problem TDP is not a convex 
problem. 

4 A Convex Version of the Truss Design Problem 

Recall that for given volumes tk on the bars of the truss, that the compliance 
of the truss is the optimal objective value of the quadratic problem: 

m ∑ 1 1 L2 

OP : minimize f̃
k f̃2 

2 tk Ek
k 

k=1 

m 

s.t.	 ak f̃k = −F .  
k=1 
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∑ 

The truss design problem is then to choose the values of the volumes 
t = (t1, . . . , tm) on the bars so that the optimal solution of OP (which we 
have shown is the compliance of the truss) is minimized, subject to the 
constraints on t: 

Mt  ≤ d 

t ≥ 0 . 

We write this all as: 

∑ 1 1 L2 
k f2(TDP2) : minimizef,t 2 tk Ek

k 
tk>0 

s.t.	 ak fk = −F 
tk>0 

Mt  ≤ d 

t ≥ 0 

mf ∈ �m, t  ∈ � . 

Notice here that we have made two modifications to the optimization 
problem. First, we have modified the summation in the objective function, 
so that bars with zero volume (tk = 0) are no longer counted, since they will 
not exist. Second, we changed the notation, using f instead of f̃ . Because 
the summations with the tk > 0 is rather awkward mathematically, we 
further re-write TDP2 as follows: 
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∑ 

∑ 

m1
(TDP2) : minimizef,t,s 2 

sk

k=1


m 

s.t.	 ak fk = −F 
k=1 

Mt  ≤ d 

L2 
k f2 ≤ tk sk for k = 1, . . . mEk k 

t ≥ 0, s  ≥ 0 

mf, t, s ∈ � . 

In this problem, we have replaced the quantity


1 L2

k f2 

tk Ek
k 

with the new variable sk subject to the condition: 

L2 
k f2 

Ek
k ≤ tk sk . 

We can further re-write this now as: 
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∑ 

( ) 

m1
(TDP2) : minimizef,t,s 2 

sk

k=1


s.t. Af = −F 

Mt  ≤ d 

L2 
k f2 ≤ tk sk for k = 1, . . . mEk k 

t ≥ 0, s  ≥ 0 

mf, t, s ∈ � . 

This last problem has a linear objective function, and linear constraints 
except for the constraints: 

L2 
k f2 

Ek
k ≤ tk sk . 

However, it is pretty easy to show that the constraints: 

L2 
k f2 ≤ tk sk, tk ≥ 0, sk ≥ 0 

Ek
k 

describe a convex region, and so this formulation is actually a convex opti-
mization problem. 

5 Second-Order Cone Optimization 

A second-order cone optimization problem (SOCP) is an optimization prob-
lem of the form: 

TSOCP : minx c x 

s.t. Ax = b 

‖Qix + di‖ ≤  gi
T x + hi , i  = 1, . . . , k  .  
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( ) 

In this problem, the norm ‖v‖ is the standard Euclidean norm: 

√ 
‖v‖ := vT v .

The norm constraints in SOCP are called “second-order cone” con-
straints. 

Notice first that SOCP is a convex problem, since the function: 

‖Qix + di‖ −  gi
T x + hi 

is a convex function. 

Notice also that linear optimization is a special case of SOCP, if we set 
Qi = 0, di = 0, hi = 0,  and  gi to be the ith unit vector for i = 1, . . . , n. 

Also notice that any convex quadratic constraint can be converted into 
a second-order constraint. To see this, suppose we have a constraint: 

1 
x T Qx + q T x + r ≤ 0 ,

2 

where Q is SPSD. We can factor 

Q = MT M 

for some matrix M , and then write our constraint as: 

∥ ∥ ∥ ∥ ∥ 

( 
1 √ 
2 
Mx  ,  

qtx + r + 1  
2 

) ∥ ∥ ∥ ∥ ∥ 
≤ 

−qtx − r + 1  
2 

. 

If you square both sides and collect terms, you will see that this is indeed 
equivalent to the original convex quadratic constraint. 
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∑ 

Finally, note that we can always formulate a convex quadratic problem 
as an SOCP, since we can create a new variable xn+1 and write our quadratic 
problem as: 

minx,xn+1 xn+1 

s.t. 
. . . 

T1xT Qx + q x ≤ xn+1 ,2

which can be further re-written as an SOCP. 

6	 Truss Design and Second-Order Cone Optimiza­
tion 

We now present a second-order cone optimization problem that is equivalent 
to the truss design problem TDP2. Recall this version of the truss design 
problem: 

m1
(TDP2) : minimizef,t,s 2 

sk

k=1


s.t. Af = −F 

Mt  ≤ d 

L2 
k f2 ≤ tk sk for k = 1, . . . mEk	 k 

t ≥ 0, s  ≥ 0 

mf, t, s ∈ � . 

Let us now make the simple change of variables: 
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√ 

∥ ∥ 

∥ ∥ 

( ) 

∥ ∥ ( ) ∥ ∥ 

1 wk = 2 tk + 1 sk2

yk = −1 tk + 1 sk2 2

Then sk = wk + yk and tk = wk − yk , and  so:  

2 2tk sk = (wk − yk )(wk + yk ) =  wk − yk , 

and so the constraint 
L2 

k f2 
k ≤ tk sk

Ek 

becomes: 
L2 

k f2 2 

Ek
k ≤ wk − y 2 .k 

We can rearrange this and take square roots to obtain: 

L2 
k f2 + y2 ≤ wk ,

Ek
k k 

which we can in turn write as: 

∥ Lk ∥ ∥ yk , √ fk 
∥ ≤ wk . 

Ek 

Therefore we can re-write TDP2 as: 

1
(CTDP): minimizef,w,y e T (w + y)

2 

s.t. Af = −F 

∥ yk , √Lk fk ∥ ≤ wk , k  = 1, . . . , m
Ek 

M(w − y) ≤ d 

mw, y, f ∈ � . 

20 



∑ 

Notice that CTDP is a second-order cone problem. The objective func-
tion and the first and third set of constraints are linear equations and in-
equalities. The second set of constraints are second-order-cone constraints, 
since the LHS is the norm of a 2-dimensional vector: 

‖(v1, v2)‖ := 
∥ ∥ ∥ yk , 
∥ ( 

Lk√ 
Ek 

( ) 

fk 

) ∥ ∥ ∥ ∥ , 

and the RHS is the linear expression: 

wk . 

Proposition 6.1 Suppose that (f, w, y) is a feasible or optimal solution of 
CTDP. Let: 

t = w − y and s = w + y. 

Then (f, t, s) is the corresponding feasible or optimal solution of TDP2. 

6.1	 Other Formulations and Formats for the Truss Design 
Problem 

We have just seen how to formulate the truss design problem as the convex 
optimization problem TDP2 and more specially as the second-order cone 
optimization problem CTDP. In addition to these two formulations of the 
problem, there is a way to formulate the truss design problem as an instance 
of a more general type of convex problem called a “semi-definite optimization 
problem” (SDO for short). The topic of SDO and its application to truss 
design is discussed herein in Sections 8 and 9. 

Finally, when the only constraints on the volume variables t1, . . . , tm are 
nonnegativity conditions and a total-volume constraint of the form: 

m 

tk ≤ V ,  
k=1 

then the truss design problem can actually be converted to a linear opti-
mization problem. This is shown herein in Section 10. 
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7 Some Computational Results 

In this section we report some computational results on solving truss design 
problems. We solved three different types of truss design problems. The first 
type is a basic bridge design, and is illustrated in Figure 6. In the figure, 
the arrows collectively comprise the force vector F applied to the structure, 
and the circles (in the left lower and right lower corners) are the fixed nodes 
of the structure. The stars in the figures are the other nodes in the truss 
structure. Figure 7 shows the set of bars that can be used to construct the 
bridge. These bars were generated by considering bars between any two 
nodes whose “distance” from one another was three nodes or less. 
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Figure 6: The forces and nodes for the basic bridge design model. 

The second type of problem that we solved is the problem of designing a 
hanging support for a load such as a traffic sign, and is illustrated in Figure 
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Figure 7: The set of possible bars for the basic bridge design problem.
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8. The circles on the left part of the figure correspond to the fixed nodes, and
the arrow on the right side is a force that will be applied (the gravitational
force of the traffic sign).
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Figure 8: The forces and nodes for the hanging sign design model.

The third type of problem that we solved is the problem of designing
a crane to handle a gravitational load, and is illustrated in Figure 9. The
circles on the bottom of the figure correspond to the fixed nodes, and the
arrow on the right side is a force that will be applied (the gravitational force
of the traffic sign).

For the problems shown in Figures 6, 8, and 9, the truss design model
solutions are shown in Figures 10, 11, and 12. In these figures, the thickness
of the image of the bars is drawn proportional to the volumes of the bars in
the optimal solutions.

24



40 

35


30


25


20


15


10


5


0 

0 2 4 6 8 10 12 14 16 18 20


Figure 9: The forces and nodes for the crane design model. 
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Figure 10: Optimal solution to the basic bridge design problem. 
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Figure 11: Optimal solution to the hanging sign design problem. 
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Figure 12: Optimal solution to the crane design problem. 
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Notice in Figure 10 that the basic bridge design does not automatically 
include horizontal bars for a “road surface” on the base of the structure. In 
order to force there to be such a road surface, we must add lower bounds 
on the volumes of those bars on the base of structure. If we add such lower 
bounds, the optimal bridge design is as shown in Figure 13. 
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Figure 13: Optimal solution of the bridge design problem, with lower bounds 
on the “road surface” bar volumes. 

7.1 Details of Problems Solved 

For the bridge design problem, we included lower-bound constraints on the 
volumes of the road-surface bars as well as a constraint on the total volume 
of the structure. With the lower-bound constraints in the model, the model 
must be solved either as a second-order cone problem (SOCP) or as a semi-
definite optimization problem (SDO). For the hanging sign design problem 
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Name Size of grid Nodes Arcs Degrees of freedom Maximum Volume 
n m N 

Bridge-16×7 16×7 136 1,547 268 1,600 
Bridge-20×10 20×10 231 2,878 458 2,000 
Bridge-30×10 30×10 341 4,368 678 4,000 
Sign-10×20 10×20 231 2,878 444 1,000 
Sign-20×30 20×30 651 9,058 1,280 2,000 
Sign-30×40 30×40 1,271 18,438 2,512 3,000 
Crane-10×20 10×20 96 818 188 2,000 
Crane-20×40 20×40 291 3,188 578 5,000 
Crane-30×40 30×40 401 4,678 798 10,000 

Table 2: Dimensions of the truss design problems. 

as well as for the crane design problem, the only constraint on the volumes 
was a constraint on the total volume of the truss structure. This made it 
possible to solve these problems using linear optimization. 

We solved three different instances of each of the bridge, hanging sign, 
and crane design problems, with different numbers of nodes corresponding 
to different meshes. Table 2 shows details of the models that we solved. The 
right-most column in the table shows the value of the volume constraint on 
the volume of the truss structure. 

Table 3 shows the number of variables and the number of inequalities in 
these problems, and Table 4 shows the number of variables and the number 
of equations/constraints/matrix dimension of these problems. 

Table 5 shows the compliance of the optimal truss design for the nine 
problems that were solved. 

Table 6 shows the iterations of the interior-point algorithms that were 
used to solve the truss design problems. For the linear problems and the 
second-order cone problems, we used LOQO to solve the model. For the 
semi-definite optimization models, we used an SDO algorithm called SDPa. 
The running times of these methods is shown in Table 7. 
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Problem 
LP Model SOCP Model 

Variables Inequalities Variables Inequalities 
2m 2m 3m m + 1 + LBs  

Bridge-16×7 † † 4,641 1,564 
Bridge-20×10 † † 8,634 2,899 
Bridge-30×10 † † 13,104 4,399 
Sign-10×20 5,756 5,756 8,634 2,879 
Sign-20×30 18,116 18,116 27,174 9,059 
Sign-30×40 36,876 36,876 55,314 18,439 
Crane-10×20 1,636 1,636 2,454 819 
Crane-20×40 6,376 6,376 9,564 3,189 
Crane-30×40 9,356 9,356 14,034 4,679 

Table 3: Number of variables and inequalities in the truss design problems. 
†The linear optimization model cannot be used for the modified bridge de-
sign model. 

Problem 
LP Model SOCP Model SDO Model 

Variables Equations Variables Constraints Matrix Dimension 
2m N 3m N + m + 1 + LBs N + m + 2  

Bridge-16×7 † † 4,641 1,832 1,685 
Bridge-20×10 † † 8,634 3,357 3,111 
Bridge-30×10 † † 13,104 5,077 4,711 
Sign-10×20 5,756 444 8,634 3,323 3,111 
Sign-20×30 18,116 1,280 27,174 10,339 9,711 
Sign-30×40 36,876 2,512 55,314 20,951 19,711 
Crane-10×20 1,636 188 2,454 1,007 916 
Crane-20×40 6,376 578 9,564 3,767 3,481 
Crane-30×40 9,356 798 14,034 5,477 5,081 

Table 4: Number of variables and equations in the truss design problems. 
†The linear optimization model cannot be used for the modified bridge de-
sign model. 
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Problem LP SOCP SDP 

Bridge-16×7 † 27.43365 27.15510 
Bridge-20×10 † 52.58314 52.10850 
Bridge-30×10 † 132.46038 ‡ 
Sign-10×20 0.77279 0.77293 0.77279 
Sign-20×30 2.52003 2.52056 ‡ 
Sign-30×40 4.08573 4.08681 ‡ 
Crane-10×20 28.67827 28.67840 28.67753 
Crane-20×40 286.24854 286.24954 286.19340 
Crane-30×40 596.73177 596.73324 596.63740 

Table 5: Compliance of the optimized truss design for the truss design prob-
lems. †The linear optimization model cannot be used for the modified bridge 
design model. ‡The data to run the SDO model could not be prepared for 
this instance due to memory restrictions. 

Problem LP SOCP SDO 

Bridge-16×7 † 38 36 
Bridge-20×10 † 55 43 
Bridge-30×10 † 47 ‡ 
Sign-10×20 18 61 37 
Sign-20×30 21 47 ‡ 
Sign-30×40 24 53 ‡ 
Crane-10×20 17 52 34 
Crane-20×40 31 158 58 
Crane-30×40 31 144 60 

Table 6: Number of iterations of the interior-point algorithm to solve the 
truss design problems. †The linear optimization model cannot be used for 
the modified bridge design model. ‡The data to run the SDO model could 
not be prepared for this instance due to memory restrictions. 
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Problem LP SOCP SDO 

Bridge-16×7 † 93.90 257.01 
Bridge-20×10 † 460.96 1,088.09 
Bridge-30×10 † 904.86 ‡ 
Sign-10×20 3.33 513.37 1,081.54 
Sign-20×30 32.08 4,254.08 ‡ 
Sign-30×40 111.03 26,552.74 ‡ 
Crane-10×20 0.52 41.12 446.98 
Crane-20×40 6.46 1,299.12 33,926.20 
Crane-30×40 10.67 1,599.85 95,131.49 

Table 7: Running time (in seconds) of the interior-point algorithm to solve 
the truss design problems. †The linear optimization model cannot be used 
for the modified bridge design model. ‡The data to run the SDO model 
could not be prepared for this instance due to memory restrictions. 

8 Semi-Definite Optimization 

If S is a k × k matrix, then S is a symmetric positive semi-definite (SPSD) 
matrix if S is symmetric (Sij = Sji for any i, j = 1, . . . , k) and  

v T Sv ≥ 0 for any v ∈ �k . 

If S is a k× k matrix, then S is a symmetric positive definite (SPD) matrix 
if S is symmetric and 

v T Sv > 0 for any v ∈ �k , v  �= 0. 

Let Sk denote the set of symmetric k × k matrices, and let Sk denote the + 

set of symmetric positive semi-definite (SPSD) k× k matrices. Similarly let 
Sk denote the set of symmetric positive definite (SPD) k × k matrices.++ 
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Let S and X be any symmetric matrices. We write “S 	 0” to denote 
that S is symmetric and positive semi-definite, and we write “S 	 X” to  
denote that S − X 	 0. We write “S 
 0” to denote that S is symmetric 
and positive definite, etc. 

Remark 1 Sk = {S ∈ Sk | S 	 0} is a convex set in �k2 
.+ 

Proof: Suppose that S, X ∈ Sk 
+. Pick any scalars α, β ≥ 0 for which 

α + β = 1. For any v ∈ �k , we have:  

v T (αS + βX)v = αvT Sv + βvT Xv  ≥ 0, 

whereby αS + βX ∈ Sk 
+. This shows that Sk is a convex set. + 

q.e.d. 

A semi-definite optimization problem is an optimization problem of the 
following type: 

SDO : minimizey bT y 

m 
s.t. C + yiAi 	 0 

i=1 

My  ≥ g .  

where the matrices C, A1, . . . , Am are symmetric matrices. One convenient 
way of thinking about this problem is as follows. Given values of the m 
scalar variables y1, . . . , ym, the objective is to minimize the linear function: 

m 

biyi . 
i=1 

The constraints of SDO state that the variables y = (y1, . . . , ym) must satisfy 

the linear inequalities: 

My  ≥ g 

34 



∑ 

∑ 

as well as the condition that the matrix S, defined by: 

m 

S := C + yiAi , 
i=1 

must be positive semi-definite. That is, 
m 

S := C + yiAi 	 0. 
i=1 

We illustrate this construction with the following example:


SDO : minimizey1,y2 11y1 + 19y2


     
1 2 3  1 0 1  0 2 8  

s.t.	  2 9 0   + y1  0 3 7   + y2  2 6 0   = S 	 0 
3 0 7  1 7 5  8 0 4  

3y1 + 7y2 ≤ 12 

2y1 + y2 ≤ 6 . 

which we can rewrite in the following form: 

SDO : minimize	 11y1 + 19y2 

s.t. 	  
1 + 1y1 + 0y2 2 + 0y1 + 2y2 3 + 1y1 + 8y2 	   2 + 0y1 + 2y2 9 + 3y1 + 6y2 0 + 7y1 + 0y2  	 0 
3 + 1y1 + 8y2 0 + 7y1 + 0y2 7 + 5y1 + 4y2 

3y1 + 7y2 ≤ 12 

2y1 + y2 ≤ 6 . 
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( ) ( ) 

Remark 2 SDO is a convex minimization problem. 

Proof: The objective function of SDO is a linear function, which is convex. 
y and ˜Suppose that ¯ y are two feasible solutions of SDO, and let y = αȳ+ βỹ, 

where α, β ≥ 0 and  α + β = 1. Then: 

m 

S := C + ȳiAi 	 0 
i=1 

and 
m 

X := C + ỹiAi 	 0 . 
i=1 

Therefore, 

m m 
C + 

∑ 
yiAi = C + 

∑ 
(αȳ + β ̃y) Ai 

i=1 i=1 

m m 
= α C + ȳiAi + β C + ỹiAi 

i=1 i=1 

= αS + βX 	 0 . 

This shows that the feasible region of SDO is a convex set. 
q.e.d. 

Semi-definite optimization is a unifying model in optimization. Linear 
optimization, quadratic optimization, second-order cone optimization, as 
well as certain other convex optimization problems, can all be shown to 
be special cases of semi-definite optimization. Furthermore, semi-definite 
optimization has applications that span convex optimization, discrete opti-
mization, and control theory. In fact, semi-definite optimization may very 
well become the canonical way that optimizers will think about optimization 
in the next decade. 
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9 Truss Design and Semi-Definite Optimization 

We now present an SDO problem that is equivalent to the truss design 
problem TDP. This problem is: 

(STDP): minimizet,θ θ 

s.t. 
θ [ F T ] 

m 
F tk

Ek (ak )(ak )T 	 0 
L2 

k=1 k 

Mt  ≤ d 

t ≥ 0 

mθ ∈ �, t  ∈ � . 

Notice that STDP is a semi-definite optimization problem. The equiva-
lence of TDP and STDP is a consequence of the following two propositions: 

Proposition 9.1 Suppose that (t, u) is a feasible solution of TDP. Let: 

θ = F T u .  

Then (t, θ) is a feasible solution of STDP, and θ = F T u. 

Proposition 9.2 Suppose that (t, θ) is a feasible solution of STDP. Then 
there exists a vector u for which (t, u) is feasible for TDP, and in fact: 

F T u ≤ θ .  

Together, Propositions 9.1 and 9.2 demonstrate that any solution of 
STDP translates into a solution to TDP. Therefore, in order to solve TDP, 
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[ ] 

[ ] (  ) 

[ ] (  ) 

∗ ∗we can solve STDP for (t , θ ) and then solve the following linear equation 
∗system for u : 

m ∑ t ∗ 
k Ek T ∗ 

L2 ak a u = F .k 
k=1 k 

As a means to prove Propositions 9.1 and 9.2, we first show the following: 

Remark 3 Given a vector v, a square matrix M , and a scalar  θ, then: 

θ vT 
Q := 	 0 

v M  

if and only if: 

TM 	 0 , there exists u satisfying Mu  = v , and  θ ≥ v u .  

Proof of Remark 3: To see why this is true, let us first suppose that Q 	 0. 
Then clearly M 	 0, since M is formed by a subset of the components that 
form Q. Now, let us suppose that there is no u such that Mu  = v. This 
implies that there exists λ such that λT M = 0 and λT v >  0. Then: 

−ε
(−ε, λT ) 

θ vT 
= θε2 − 2v T λε + λT Mλ  = θε2 − 2v T λε < 0 

v M  λ 

for ε small enough, which is a contradiction. Therefore there exists u 
such that Mu  = v. Furthermore, for such a u, we have:  

−1 T0 ≤ (−1, u  T ) 
θ vT 

= θ − 2v T u + u T Mu  = θ − v u 
v M  u 

Twhich shows that θ ≥ v u. 

Now let us prove the reverse of these implications. Suppose that M 	 0, 
there exists u satisfying Mu  = v, and  θ ≥ vT u. Since  M 	 0 we only have  
to prove that: 
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−1 Tδ(x) := (−1, x  T ) 
θ vT 

= θ − 2v x + x T Mx  ≥ 0 ∀x .  
v M  x 

But notice that δ(x) is a convex quadratic function of x (since in partic-
ular M 	 0), and therefore 

∇δ(x) =  −2v + 2Mx  = 0  

is a necessary and sufficient condition for the unconstrained minimization 
of δ(x). Since u satisfies this condition, it is true that 

T Tδ(x) ≥ δ(u) =  θ − 2v u + u T Mu  = θ − v u ≥ 0 ∀x .  

q.e.d. 

Now let us prove the propositions. 

Proof of Proposition 9.1: Suppose that (t, u) is a feasible solution of 
TDP. Let: 

θ = F T u ,  

and let [ ] 
m ∑ Ek

M = tk 
L2 (ak )(ak )T , 

k=1 k 

and let v = F . Then 

m ∑ Ek
Mu  = tk 

L2 (ak)(ak )T u = F ,  
k=1 k 

and notice as well that 
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M 	 0 

because M is the nonnegative sum of rank-one SPSD matrices. From 
Remark 3, 

  
θ F T [ ] θ vT  m  
F tk

Ek (ak)(ak )T v M  
	 0 . 

L2

k=1 k


Therefore (t, θ) is feasible for STDP with objective function value θ = 
F T u. 
q.e.d. 

Proof of Proposition 9.2: Suppose that (t, θ) is a feasible solution of 
STDP. Then from Remark 3, there exists a vector u for which: 

m 

tk 
Ek (ak )(ak )T u = F ,
L2 

k=1 k 

and θ ≥ F T u. Therefore (t, u) is feasible for TDP and θ ≥ F T u. 
q.e.d. 

10 Truss Design and Linear Optimization 

Consider the following special, but not unusual, instance of the truss design 
problem: 
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(TDP): minimizet,u F T u 

m 
s.t. tk

Ek (ak)(ak )T u = F
L2 

k=1 k 

m 
tk ≤ V 

k=1 

t ≥ 0 

mu ∈ �N , t  ∈ � . 

In this problem, the only constraint on the volumes of the bars tk is a 
volume constraint limiting the total volume of the bars to not exceed the 
given value V . Substituting the notation: 

m ∑ Ek
K(t) :=  tk 

L2 (ak )(ak )T , 
k=1 k 

we can also conveniently write our problem as: 

(TDP): minimizet,u F T u 

s.t. K(t)u = F 

m 
tk ≤ V 

k=1 

t ≥ 0 

mu ∈ �N , t  ∈ � . 

In this section, we show that when TDP has this particularly simple 
form, then it can be solved via linear optimization. Before doing so, we first 
write down a dual problem associated with TDP in this form: 
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(DTDP): maximizev,z −2F T v − V z  

s.t. ( )2 L2 
T kak v ≤ Ek 

z ,  k  = 1, . . . , m  

y ∈ �N . 

In order for DTDP to be an honest dual of TDP, we now present a weak 
duality result: 

Proposition 10.1 Suppose that (t, u) is feasible for TDP and that (v, z) is 
feasible for DTDP. Then: 

F T u ≥ −2F T v − V z  .  

Proof: For k = 1, . . . , m, we have  

Ek Ttk ≥ 0 and  
L2 (ak v)2 ≤ z. 

k 

Multiplying and summing terms, we obtain: 

m 
T T v T K(t)v = 

∑ tk Ek (v ak ) (ak v) ≤ 
m 

tk z ≤ V z.  
L2 

k=1 k k=1 

Also, 

0 ≤ (u + v)T K(t)(u + v) =  u T K(t)u + 2u T K(t)v + v T K(t)v 

= F T u + 2v T F + v T K(t)v 

≤ F T u + 2v T F + V z.  

Therefore F T u ≥ −2F T v − V z. 
q.e.d. 

Consider the following pair of primal and dual linear optimization mod-
els: 
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m ( ) 
√Lk(LP): minimizef +,f − 

Ek 
fk 

+ + fk 
− 

k=1 

s.t. A(f+ − f−) =  −F 

f+ ≥ 0 , f− ≥ 0 

mf+, f− ∈ � . 

(LD): maximizey −F T y 

s.t. 
T−√Lk ≤ ak y ≤ √Lk , k = 1, . . . , m

Ek Ek 

y ∈ �N . 

We will prove the following important result that shows how to use 
solutions of LP and LD to construct solutions to TDP: 

¯Proposition 10.2 Suppose that (f̄+ , f−) is an optimal solution of LP and 
that ȳ is an optimal solution of LD, and consider the following assignment 
of variables: 

m ( ) 
¯ R = 

∑ √ 
Lk 

f̄+ + fk 
− 

Ek
k 

k=1 

t̄  k = 
V √ 

Lk ¯ f̄+ + fk 
− k = 1, . . . , m,  

R Ek
k 

R
ū = − ȳ

V

R


v̄ = ȳ
V

R2


z̄ =

V 2 
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( 

V 

Then (¯ u) solves TDP and (¯ z) solves DTDP. t, ¯ v, ¯

Proof: Note that by the complementary slackness property of linear opti-
mization, we have: 

T + Lk + 
ak yf = √ fk , k  = 1, . . . , m,  k Ek 

T − −Lk − 
ak yf = √ fk , k  = 1, . . . , m.k Ek 

m 
We first show that (t, u) is feasible for TDP. Note that t ≥ 0 and  tk = 

k=1 

R = V . Also  
R 

R 
K(t)u = − K(t)y

V ∑ tk EkR m
T= − 

V L2 ak ak y 
k=1 k ∑ Lk − T= − 

R V m 

√ 
Ek (f 

+ + fk )ak ak ykV R Ek L2 
k=1 k √m Ek + T − T= − ak (fk ak y + fk ak y)

Lkk=1

m
∑ −= − ak (f 

+ − f 
− 
k ) =  −A(f 

+ − f ) =  F.k 
k=1 

We next show that (v, z) is feasible for DTDP. To see this, observe that for 
k = 1, . . . , m, we have:  

R2 R2 L2 
T T(ak v)2 = 

V 2 
(ak y)2 ≤ √ 

Lk 
)2 

= z k ,
V 2 Ek Ek 

and so (v, z) is feasible. 
Finally, we show that these solutions exhibit strong duality: 

−2R 2R2 R2 R2 R −2F T v−V z = F T y− 
V R2 

= − = = 
R

R = (−F T y) =  F T u. 
V V 2 V V V V V 

q.e.d. 
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11 Extensions of the Truss Design Problem 

•	 Multiple Loads. We consider a finite set of external loads on the 
truss: 

F = {F1, F2, . . . , FJ } ⊂ IRN . 

In this case we might consider solving two types of design problems. 
The first is to design the truss structure conservatively, so as to mini-
mize the maximum compliance: 

{ } 
minimizet maxj=1,...,J F T 

j uj 

Mt  ≤ d, 
t ≥ 0  s.t.  K(t)uj = Fj . 

Alternatively, we might consider the “average-case” design problem: 
let λj denote the relative frequency or importance associated with the 

J 
truss structure undergoing the external force Fj , where λj = 1.0. 

j=1 

The following optimization model minimizes the average compliance 
of the truss structure: 

J 
minimizet λj Fj

T uj 
j=1 

Mt  ≤ d, 
t ≥ 0  s.t.  K(t)uj = Fj . 

•	 Self-weights. The truss design problem that we have formulated pre-
sumes that the truss structure itself is not affected by its own weight. 
To correct for this, we can simply add an external force corresponding 
to the gravitational force associated with bar k, and linearly propor-
tional to tk for k = 1, . . . , m. Let us denote by gk ∈ IRN the vector that 
projects the gravitational force of bar k onto the appropriate nodes. 
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Then we can write the TDP of a truss under a single external load 
vector F as: 

( )Tm 
(TDP): minimizet,u F + tk gk u 

k=1 

m 
s.t.	 K(t)u = F + tk gk 

k=1 

Mt  ≤ d 

t ≥ 0 

mu ∈ �N , t  ∈ � . 

It is straightforward to convert this problem into a convex problem, 
just as for the base case considered earlier. 

•	 Reinforcement. In this problem, we are given an existing truss struc-
ture, and we must determine how to strengthen it. To solve this prob-
lem, we simply add lower bounds on the volumes of the existing bars 
equal to the current volumes of the bars: 

(TDP): minimizet,u F T u 

s.t. K(t)u = F 

Mt  ≤ d 

t ≥ 0 

tk ≥ tk , k  = 1, . . . , m  

mu ∈ �N , t  ∈ � . 
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•	 Robustness of Solutions. The optimal solution of the TDP might 
yield a truss design that is not rigid for a different external force than 
the one used, and could change considerably even under a small change 
in the external force. To obtain a robust solution, we must consider 
multiple external loads that will contain the possible loads that the 
truss will be subject to. This can be modeled by convex optimization 
as well. 

•	 Buckling Constraints. The truss design problem that we have pre-
sented ignores the fact that if a bar is under great compression it might 
actually collapse instead of counteracting that external force with its 
internal force. For this we have to add lower bounds on the allowable 
internal forces in terms of the design variables tk and the geometry 
of the bars. These constraints cause the resulting problem to lose its 
convex structure. 

•	 Other Considerations . . . . 
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