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1 Motivation 

The development of the concepts of linear and nonlinear optimization mod-
els presumes that all of the data for the optimization model are known with 
certainty. However, uncertainty and inexactness of data and outcomes per-
vade many aspects of most optimization problems. As it turns out, when 
the uncertainty in the problem is of a particular (and fairly general) form, it 
is relatively easy to incorporate the uncertainty into the optimization model. 

2 Brief History of Optimization under Uncertainty 

•	 1950s, Dantzig and Beale started to work on linear optimization under 
uncertainty 

•	 1962, solution method developed by Benders 

•	 Many and varied applications in the linear, nonlinear, and discrete 
form 

–	 Electric utility capacity planning 

–	 Financial Planning and Control 

–	 Supply chain optimization 

–	 Airline Planning (fleet assignment) 

–	 Water Resource Modeling 

–	 Forestry Planning 

–	 Many others . . . 

3 Gemstone Tool Company 

Gemstone Tool Company (GTC) is a privately held company that competes 
in the consumer and industrial market for construction tools. In addition to 
its main manufacturing facility in Seattle, Washington, GTC also operates 
several other manufacturing plants located in the United States, Canada, 
and Mexico. For the sake of simplicity, let us suppose that the Winnipeg, 
Canada plant only produces wrenches and pliers. Wrenches and pliers are 
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made from steel, and the process involves molding the tools on a mold-
ing machine and then assembling the tools on an assembly machine. The 
amount of steel used in the production of wrenches and pliers and the daily 
availability of steel is given in the first line of the Table 1 below. On the 
next four lines are the machine utilization rates needed in the production of 
wrenches and pliers and the capacity of these machines as well. Finally, the 
last two rows of the table indicate the daily market demand for these tools, 
and their variable (per unit) contribution to earnings. 

Wrenches Pliers Availability (Capacity) 
Steel (lbs.) 1.5 1.0 27,000 lbs./day 
Molding machine (hours) 1.0 1.0 21,000 hours/day 
Assembly machine (hours) 0.3 0.5 9,000 hours/day 
Demand limit (tools/day) 15,000 16,000 
Contribution to earnings $130 $100 
($/1,000 units) 

Table 1: Data for the Gemstone Tool Company 

GTC would like to plan for the daily production of pliers and wrenches 
at its Winnipeg plant so as to maximize the contribution to earnings. The 
mathematical formulation of GTC’s linear programming problem is as fol-
lows: 

Maximize contribution = 130W + 100P 

subject to: 

Wrench demand: W ≤ 15 
Plier demand: P ≤ 16 
Steel availability: 1.5W + P ≤ 27 
Molding machine usage: W + P ≤ 21 
Assembly machine usage: 0.3W + 0.5P ≤ 9 

W ≥ 0 
P ≥ 0 
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∗ ∗The solution of this linear program is given by W = 12 ,  P = 9 , with  
∗a contribution to earnings of $2,460 = 130W ∗ + 100P . 

4 GTC Planning under Uncertainty 

For the current quarter, GTC had contracted with a steel supplier for the 
delivery of 27,000 lbs. of steel per day. This restriction was incorporated 
into the GTC linear optimization model as the steel availability constraint: 

1.5W + 1.0P ≤ 27. 

Now suppose that GTC is planning for next quarter, and that they would 
like to determine how much steel to contract for with local suppliers for 
the next quarter. Suppose that steel contracts are typically arranged for 
daily deliveries over the entire quarter, and that the market price for such 
contracts is $58.00/1,000 lbs. of steel. Let us define the decision variable: 

S = the amount of steel to contract for, for next quarter, in 1, 000 lbs./day. 

GTC would like to determine the optimal value of S. We suppose that 
the following aspects of the problem are known: 

•	 The market price of steel is $58.00/1,000 lbs. 

•	 The utilization of steel, assemby machine hours, and molding machine 
hours in wrenches and pliers is the same as given in the original prob-
lem. 

•	 The molding machine capacity is the same as in the original problem, 
namely 21,000 hours/day. 

•	 The demand for wrenches and pliers is the same as in the original 
problem, namely 15,000 wrenches per day and 16,000 pliers per day. 

•	 The unit contribution to earnings of production of pliers is the same 
as in the original problem, namely $100/1,000 units. 
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However, we also suppose that the following aspects of the problem are 
uncertain: 

•	 The assembly machine capacity for next quarter is uncertain. GTC has 
ordered new assembly machines to replace as well as to augment their 
existing assembly machines, but it is not known if these new machines 
will be delivered in time to be used next quarter. Let us suppose that 
the assembly machine capacity for next quarter will either be 8,000 
hours/day (with probability 0.5) or 10,000 hours/day (with probability 
0.5). 

•	 The unit contribution to earnings of production of wrenches next quar-
ter is uncertain, due to fluctuations in the market for wrenches. Supp-
pose that GTC estimates that the unit contribution to earnings of 
wrenches will be in the range between $90 and $160. For the sake of 
simplicity, let us suppose that this unit earnings contribution will be 
either $90 (with probability 0.5) or $160 (with probability 0.5). 

The data for this problem is summarized in Table 2. 

Wrenches Pliers Availability 

Steel (lbs.) 1.5 1.0 S 
(to be determined) 

Molding Machine (hours) 1.0 1.0 21,000 hours/day 
Assembly Machine (hours) 0.3 0.5 either 8,000 hours/day 

or 10,000 hours/day 
Demand Limit (tools/day) 15,000 16,000 
Contribution either $160 
to Earnings ($/1,000 units) or $90 $100 

Table 2: Data for the Gemstone Tool Company steel supply planning prob-
lem. 

GTC must soon decide how much steel per day to contract for, for next 
quarter. At the beginning of next quarter, the assembly machine capacity 
will become known. Also, at the beginning of next quarter, the unit earnings 
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contribution of wrenches will become known. This sequence of events is 
shown in Table 3. 

Time Event or Action  

Today: GTC must decide how much steel per day to contract for 
for the next quarter. 

Soon thereafter: • GTC will discover the actual assembly machine availability 
for next quarter (either 8,000 or 10,000 hours/day). 

• GTC will discover the actual unit earnings contribution 
of wrenches for next quarter (either $160 or $90/1,000 units). 

Next quarter: GTC must decide the production quantities 
of wrenches and pliers. 

Table 3: The sequence of events in the GTC steel supply planning problem. 

4.1 Stage-one and Stage-two 

We will divide up the flow of time in our problem into two stages, which 
we refer to as “stage-one” and “stage-two”, and where today (that is, the 
current quarter) is stage-one, and next quarter is stage-two. In our steel 
supply planning problem, there is only one decision to make in the stage-
one, namely the amount of steel S to contract for, for next quarter. The 
decisions that must be made next quarter are the stage-two decisions. The 
stage-two decisions for our steel supply planning problem are the quantities 
of wrenches and pliers to produce next quarter. Note that these decisions 
do not have to be made until next quarter. 

Note also that in this framework, there is uncertainty in stage-one about 
what the data for the problem will be in stage-two. That is, in stage-one, we 
do not yet know what the assembly machine capacity will be next quarter 
(either 8,000 hours/day or 10,000 hours per day), and we also do not know 
what the wrenches unit earnings contribution will be next quarter (either 
$160/1,000 units or $90/1,000 units). However, this uncertainty will be 
resolved prior to the start of stage-two. 
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4.2	 Formulation of the Problem as a Linear Optimization 
Model 

We begin the formulation of the steel supply planning problem by identifying 
the decision variables for stage-one. Recall that S is the amount of steel 
per day to contract for, for next quarter. The first-stage decision that GTC 
needs to make is the amount of steel per day to contract for, for next quarter, 
which is S. 

The next step in the formulation of the model is to identify the deci-
sion variables for stage-two of the problem. In order to identify these deci-
sion variables, we first need to enumerate all of the possible “states of the 
world” that might transpire next quarter. Table 4 shows the four possible 
states of the world that might transpire next quarter, with their associated 
probabilities. There are four possible states of the world for next quarter, 
corresponding to the two possible assembly machine capacity values, and 
the two possible unit earnings contributions of wrenches. For example, in 
Table 4, the first state of the world that might transpire is that the assembly 
machine capacity will be 8,000 hours/day and the unit earnings contribu-
tion of wrenches will be $160/1,000 units. If we presume that the assembly 
machine capacity uncertainty and the wrenches earnings contribution un-
certainty are independent, then the probability that the first state of the 
world will transpire is simply 

0.25 = 0.50 × 0.50 , 

because there is a 50% probability that the assembly machine capacity will 
be 8,000 hours/day and a 50% probability that the unit earnings contribu-
tion of wrenches will be $160. The probabilities of each of the four possible 
states of the world are shown in the fourth column of Table 4. 

We then proceed by creating a decision variable for each of next quarter’s 
decisions, for each possible state of the world. We therefore define: 
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State of 
the World 

Assembly Machine 
Capacity 

Unit Earnings 
Contribution of Wrenches Probability 

1 8,000 hours/day $160/1,000 units 0.25 
2 10,000 hours/day $160/1,000 units 0.25 
3 8,000 hours/day $90/1,000 units 0.25 
4 10,000 hours/day $90/1,000 units 0.25 

Table 4: The four possible states of the world for next quarter. 

W1 = the number of wrenches per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 1 transpires, 

P1 = the number of pliers per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 1 transpires, 

W2 = the number of wrenches per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 2 transpires, 

P2 = the number of pliers per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 2 transpires, 

W3 = the number of wrenches per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 3 transpires, 

P3 = the number of pliers per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 3 transpires, 

W4 = the number of wrenches per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 4 transpires, 

P4 = the number of pliers per day to produce next quarter, in 1, 000s, 
= if state − of − the − world 4 transpires. 

For example, the interpretation of P2 is that P2 is the quantity of pliers 
that GTC will produce next quarter if state-of-the-world 2 transpires, that 
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is, if assembly machine capacity is 10,000 hours and the wrench unit earnings 
contribution is $160. 

We are now ready to constuct the linear optimization model of the steel 
supply planning problem. The objective will be to maximize the expected 
contribution to earnings, over all possible states of the world that might 
transpire next quarter. The expression for the objective function is: 

Objective	 = 0.25 · (160W1 + 100P1) + 0.25 · (160W2 + 100P2) 
= +0.25 · (90W3 + 100P3) + 0.25 · (90W4 + 100P4) − 58.00S. 

The constraints of the model will be the steel availability, assembly and 
molding machine capacity, and demand constraints, for each possible state 
of the world that might transpire next quarter. The resulting linear opti-
mization model is as follows: 
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maximize


subject to :

Steel1 :
 1.5W1 + 1.0P1 − S ≤ 0 

21 

8 

15 

16 

21 

10 

15 

16 

21 

8 

15 

16 

21 

10 

15 

16 

Molding1 :
 1.0W1 + 1.0P1 ≤ 

Assembly1 :
 0.3W1 + 0.5P1 ≤ 

W − demand1 :
 W1 ≤ 

P − demand1 :
 P1 ≤ 

Steel2 :
 1.5W2 + 1.0P2 − S ≤ 0 

Molding2 :
 1.0W2 + 1.0P2 ≤ 

Assembly2 :
 0.3W2 + 0.5P2 ≤ 

W − demand2 :
 W2 ≤ 

P − demand2 :
 P2 ≤ 

Steel3 :
 1.5W3 + 1.0P3 − S ≤ 0 

Molding3 :
 1.0W3 + 1.0P3 ≤ 

Assembly3 :
 0.3W3 + 0.5P3 ≤ 

W − demand3 :
 W3 ≤ 

P − demand3 :
 P3 ≤ 

Steel4 :
 1.5W4 + 1.0P4 − S ≤ 0 

Molding4 :
 1.0W4 + 1.0P4 ≤ 

Assembly4 :
 0.3W4 + 0.5P4 ≤ 

W − demand4 :
 W4 ≤ 

P − demand4 :
 P4 ≤ 

Nonnegativity :
 S, W1, P1, W2, P2, W3, P3, W4, P4 ≥ 0. 

0.25 · (160W1 + 100P1) + 0.25 · (160W2 + 100P2)+ 

0.25 · (90W3 + 100P3) + 0.25 · (90W4 + 100P4) − 58.00S 

This linear optimization model is called a two-stage linear optimiza-
tion model under uncertainty, or  more  simply  a  two-stage model. 
This is because the model is constructed based on there being two time-
stages (today and next quarter), and because there is uncertainty about the 
data for stage-two (the assembly machine capacity next quarter will be ei-
ther 8,000 hours/day or 10,000 hours per day next quarter, and the wrenches 
unit earnings contribution will be either $160/1,000 units or $90/1,000 units 
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next quarter). 

4.3 Observations on the Two-Stage Model 

Let us make several observations about the two-stage model that we have 
just constructed. First, notice in this linear optimization model that the ob-
jective function consists of the expected contribution to earnings from the 
daily production of wrenches and pliers in each state of the world, minus 
the cost of steel. Secondly, for each state of the world, we have our usual 
constraints on steel utilization, molding machine capacity and assembly ma-
chine capacity, and demand for wrenches and pliers. However, the model 
uses different values of assembly machine capacity (either 8,000 or 10,000 
hours/day) corresponding to the different possible states of the world, con-
sistent with the description of the four different states of the world in Table 4. 
Similarly, the model uses different unit earnings contributions of wrenches 
(either $160 or $90) corresponding to the different possible states of the 
world, also consistent the description of the four states of the world in Table 
4. 

Notice as well that the model expresses the constraint that GTC cannot 
use more steel than it has contracted for delivery, in the four constraints: 

1.5W1 + 1.0P1 − S ≤ 0 

1.5W2 + 1.0P2 − S ≤ 0 

1.5W3 + 1.0P3 − S ≤ 0 

1.5W4 + 1.0P4 − S ≤ 0. 

These four constraints state that regardless of which state of the world will 
transpire next quarter, GTC cannot utilize more steel next quarter than 
they have contracted for. 

4.4 Interpreting the Solution of the Two-Stage Model 

The optimal solution of the two-stage model is shown in Table 5. According 
to Table 5, the optimal value of S is S = 27.25. This means that GTC 
should contract today for the purchase of 27,250 lb./day of steel for next 
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quarter. In order to interpret the optimal solution values of the decision 
variables W1, P1, W2, P2, W3, P3, W4, and  P4, let us re-organize the optimal 
values of these eight decision variables into the format shown in Table 6. 

Decision Optimal 
Variable Solution Value 

S 27.25 

W1 15.00 
P1 4.75 

W2 15.00 
P2 4.75 

W3 12.50 
P3 8.50 

W4 5.00 
P4 16.00 

Table 5: The optimal solution of the linear optimization model of the GTC 
steel supply planning problem. 

State of the world 
Production of 

Wrenches (units/day) 
Production of 

Pliers (units/day) 
Next Quarter Decision Variable Value Decision Variable Value 

1 W1 15,000 P1 4,750 
2 W2 15,000 P2 4,750 
3 W3 12,500 P3 8,500 
4 W4 5,000 P4 16,000 

Table 6: The optimal production plan for next quarter for the GTC steel 
supply planning problem. 

We can interpret the optimal solution values in Table 5 and Table 6 as 
follows: 
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•	 Today, GTC should contract for 27,250 lb./day of steel for next quar-
ter. 

•	 Next quarter, if assembly hour availability is 8,000 hours/day and the 
contribution of wrenches is $160, then GTC should produce 15,000 
wrenches per day and 4,750 pliers per day. 

•	 Next quarter, if assembly hour availability is 10,000 hours/day and 
the contribution of wrenches is $160, then GTC should produce 15,000 
wrenches per day and 4,750 pliers per day. 

•	 Next quarter, if assembly hour availability is 8,000 hours/day and 
the contribution of wrenches is $90, then GTC should produce 12,500 
wrenches per day and 8,500 pliers per day. 

•	 Next quarter, if assembly hour availability is 10,000 hours/day and 
the contribution of wrenches is $90, then GTC should produce 5,000 
wrenches per day and 16,000 pliers per day. 

4.5	 Flexibility of the Two-Stage Linear Optimization Mod­
eling Paradigm 

The modeling framework for a two-stage linear optimization under uncer-
tainty allows considerable flexibility in modeling uncertainty. Here we indi-
cate how we can model a variety of different issues that might arise in this 
context: 

Modeling different probabilities. We could have modeled different prob-
abilities for different possible states of the world. For example, suppose that 
we presume that the following probabilities hold for the problem: 

P (assembly machine hours = 8,000) = 0.8, 

P (assembly machine hours = 10,000) = 0.2 

and 

P (wrench contribution = $160) = 0.7, 

P (wrench contribution = $90) = 0.3. 

13 



State of 
the World 

Assembly Machine 
Capacity 

Unit Earnings 
Contribution of Wrenches Probability 

1 8,000 hours/day $160/1,000 units 0.56 = 0.8 × 0.7 
2 10,000 hours/day $160/1,000 units 0.14 = 0.2 × 0.7 
3 8,000 hours/day $90/1,000 units 0.24 = 0.8 × 0.3 
4 10,000 hours/day $90/1,000 units 0.06 = 0.2 × 0.3 

Table 7: The four possible states of the world for next quarter, with different 
probabilities of transpiring. 

Under these scenarios, the states of the world and their associated proba-
bilities would be as shown in Table 7. 

Modeling different numbers of states of the world. Suppose that 
there are seven different assembly machine capacity levels that might tran-
spire next quarter, and that there are six different wrench unit earnings 
contributions levels that might transpire next quarter. Then we would have 
42 = 7 × 6 possible states of the world, and would need 1 + 42 × 2 = 85  
decision variables, and 42 × 5 = 210 constraints in the model. Therefore, 
the number of distinct states of the world can increase the size of the model 
quite a lot. 

Modeling different numbers of stages. We might want to model more 
than two stages: today, next quarter, the next quarter after that, etc. The 
same modeling principles illustrated here would then apply, but the resulting 
linear optimization model can become much more complicated, as well as 
much larger. 

Block ladder structure. Notice that the model formulation has the block 
ladder structure depicted in Figure 1. There are special techniques that 
make use of this kind of structure to reduce the time and storage needed to 
solve large-scale problems of this type. One of these techniques is Benders’ 
decomposition method. 
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Stage-1 Stage-2 RHS 

Objectives 

State 1 

State 2 

State 3 

State k 

Variables Variables 

Figure 1: Block ladder structure of two-stage stochastic linear optimization. 

4.6	 Summary of the Method for Constructing a Two-Stage 
Linear Optimization Model under Uncertainty 

Although we have presented the two-stage linear optimization modeling 
technique in the context of a simple example, the methodology applies 
broadly for modeling linear optimization problems under uncertainty. Here 
we summarize the main steps in constructing a two-stage linear optimization 
model under uncertainty. 

Procedure for Constructing a 
Two-Stage Linear Optimization Model under Uncertainty 

1.	 Determine which decisions need to be made in stage-one (today), and 
which decisions need to be in stage-two (next period). 
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2.	 Enumerate the possible states of the world that might transpire next 
period, what the data will be in each possible state of the world, and 
what is the probability of each state of the world occurring. 

3. Creating the decision variables:	 Create one decision variable for 
each decision that must be made in stage-one. Create one decision 
variable for each decision that must be made in stage-two, for each 
possible state of the world. 

4. Constraints: Create the necessary constraints for each possible state 
of the world. 

5. Objective function: Account for the contribution of each of today’s 
decisions in the objective function. Account for the expected value of 
the objective function contribution of each of next period’s possible 
states of the world. 

In order to use two-stage models effectively, we must have a reasonably 
accurate estimate of the probabilities of the future states of the world. Also, 
in order to keep the size of the model from becoming too large, it is important 
to limit the description of the different possible future states of the world to 
a reasonably low number. 

There is great modeling power in two-stage linear optimization under 
uncertainty. Indeed, to the extent that the most important decisions that 
we need to make are concerned with optimally choosing actions today in the 
face of uncertainty about tomorrow, then the two-stage modeling framework 
is a core modeling tool. 

5 Two-Stage Linear Optimization in Matrix Form 

There are two sets of decisions, one for each of the two consecutive stages. 

The first-stage variables are x and are subject to constraints: 

Ax = b ,  x  ≥ 0 . 

TThe direct contribution of the x decisions on the objective function is c x 
for some vector  c. 
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The second-stage variables are y and are subject to constraints: 

Bx + Dy = d ,  y  ≥ 0 . 

The direct contribution of the y decisions on the objective function is fT y 
for some vector  f . 

If there were no uncertainty, then the problem would look like: 

Tminimizex,y c x + fT y 

s.t.  Ax  = b 

Bx + Dy = d 

x ≥ 0 y ≥ 0 

Under uncertainty, we assume that the values of the data B, D, d, f are 
uncertain. There are ω = 1, . . . , K  possible future scenarios, with scenario 
ω having a probability αω of being realized, for ω = 1, . . . , K. 

The data B, D, d, f takes on values Bω , Dω , dω , fω with probability αω 

for ω = 1, . . . , K. We only learn the values of this data after we have made 
our first-stage decisions x. Once the values of B, D, d, f are known, we then 
make our second-stage decisions y. 

Let yω denote the decisions y under the condition that scenario ω is 
realized, for ω = 1, . . . , K. 

The objective is to choose x and yω , ω  = 1, . . . , K,  so as to solve  the  
following optimization model: 
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Tminimize c x + α1f1 
T y1 + α2f2 

T y2 + · · ·  + αK f
T 
K yK


x, y1, . . . , yK


s.t.  Ax  = b 

B1x + D1y1 = d1 

B2x + D2y2 = d2 

. . . . . . . . . 

BK x + DK yK = dK 

x, y1, y2, . . . , yK ≥ 0 

Notice that this problem has the block-ladder structure shown in Figure 
1. 

6 Extensions of the Two-Stage Model 

• Multi-stage Stochastic Programs 

• Nonlinear Stochastic Programs 

• Integer Stochastic Programs 

7 A Powerplant Investment Problem 

The newly unified nation of Timoria must invest in a system of power plants 
to meet its current and future demand for electrical power. These plants 
are to be built for the first year only, and are expected to operate over the 
next 15 years. The budget for construction of power plants is $10 billion, 
which is to be allocated for four different types of plants: gas turbine, coal, 
nuclear power, and hydroelectric. The objective is to find the power plant 
allocation which minimizes the sum of the investment cost and the expected 
value of the operating cost over 15 years. The operating cost is stochastic 
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due to uncertainty in future demand as well as fuel prices. The model used 
for this problem is based on [1], which explores the power plant investment 
problem in a non-stochastic framework. 

Power plants are priced according to their electric capacity, measured in 
gigawatts (GW). Table 8 shows the investment cost per GW of capacity for 
each type of plant. 

Plant Cost per GW capacity 

Gas Turbine $110 million 
Coal $180 million 

Nuclear $450 million 
Hydroelectric $950 million 

Table 8: Investment cost per GW of capacity. 

Since hydroelectric energy depends on the availability of rivers which 
may be dammed, the geography of the country constrains the hydroelectric 
power capacity. In the case of Timoria, no more than 5.0 GW of power may 
be produced by hydroelectric plants. 

Demand for electric power is typically described using a load duration 
curve. Figure 2 shows the projected demand for power during the first year. 
The continuous curve is approximated by a quantized set of demands and 
durations, also shown in this figure. The quantized demand data is shown 
in Table 9. 

Demand Block Demand (GW) Duration (hours) 
#1 10.0 490 
#2 8.4 730 
#3 6.7 2,190 
#4 5.4 3,260 
#5 4.3 2,090 

Table 9: Power demand in the first year. 
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Figure 2: Projected load duration curve for the first year of demand. 
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As the country becomes further economically developed, the demand for 
electrical power is expected to grow each year. The value of the growth rate 
over the next 15 years is unknown, but economists have predicted the yearly 
growth rates shown in Table 10, with their corresponding probabilities. From 
this table, it is noted that the expected value of the growth rate is 3%. 

Growth Probability 

−1% 20% 
1% 20% 
3% 20% 
5% 20% 
7% 20% 

Table 10: Projected yearly growth in power demand 

Along with the investment cost, the cost of operating the proposed power 
plants over the next 15 years must also be considered. Any demand which 
cannot be satisfied by the existing plants must be met by purchasing power 
from a neighboring country at a substantial cost. The operating costs of 
each type of power plant, as well as the cost of purchasing power from an 
external source, are shown in Table 11, where the units are in cents per 
kilowatt-hour (KWH). Due to fluctuations in coal and natural gas prices, 
the actual operating costs of the gas turbines and coal plants are not known 
in advance. The expected values of these costs are shown in Table 11. The 
probability distributions of these costs are shown in Table 12 and Table 13. 

8 Stochastic Programming Formulation 

The problem presented above can be modelled as a two-stage stochastic lin-
ear optimization model. In the first stage, we must determine the amount 
of capacity of each of the four types of powerplants to build. We must make 
these decisions first, before we know what the growth rate in electricity de-
mand will be, and before we know what the prices of natural gas and coal 
will be. The first-stage decision variable is represented by a four-dimensional 
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Plant Cost per KWH 

Gas Turbine∗ 3.92 /c 
Coal∗ 2.44 /c 
Nuclear 1.40 /c 
Hydroelectric 0.40 /c 
External Source 15.0 /c 

∗Table 11: Operating cost of power generation. Gas turbine and coal plant 
operating costs are expected values. 

Cost per KWH Probability 

3.1 /c 10% 
3.3 /c 20% 
3.9 /c 40% 
4.5 /c 20% 
4.9 /c 10% 

Table 12: Probability distribution of gas turbine operating costs. 

vector x = (x1, x2, x3, x4), representing the gigawatts of capacity to be built 
for each type of plant. For consistency, the plant types are always assumed 
to have the same order (1. Gas turbine, 2. Coal, 3. Nuclear, 4. Hy-
droelectric), and the subscript notation x1, x2, x3, x4 references these types 
respectively. The cost vector c is also a four-dimensional vector representing 
the investment costs shown in Table 8. 

The second-stage decisions are the amount of electricity capacity used 
to produce electricity at each power plant for each demand block in each 
year. Specifically, let yijk denote the amount of electricity capacity used 
to produce electricity by power plant type i for demand block j in year k, 
for i = 1, . . . , 5, j = 1, . . . , 5, and k = 1, . . . , 15. Here y5jk is the amount of 
electricity capacity purchased from the external source. The units of the yijk 

variables are in GW. The five demand blocks are as shown in the Table 9. 
To illustrate, the variable y312 represents the amount of nuclear power used 
at peak demand time during the second year. 
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4 

Cost per KWH Probability 

1.7 /c 10% 
2.1 /c 20% 
2.4 /c 40% 
2.9 /c 20% 
3.1 /c 10% 

Table 13: Probability distribution of coal plant operating costs. 

It is evident that the optimal value of the second-stage variables depends 
on the stochastic problem data. Each possible value of the problem data is 
referred to as a scenario, which will be indexed by ω. In actuality, there are 
an infinite number of possible future scenarios. However, in the interests 
of tractability, only a finite number of such scenarios are considered here. 
For the power plant investment problem, there are five different possible 
demand growth rates (see Table 10), five possible operating costs for gas 
turbines (see Table 12) and five possible operating costs for coal plants (see 
Table 13), for a total of K = 5  × 5 × 5 = 125 scenarios. We therefore can 
think of ω as an index taking on values in the range ω = 1, . . . , 125. The 
second-stage variable is then written as a function of the scenario, as yijkω. 

The operating cost for the various electricity sources, in cents/KWH, 
are represented by the scalars fi(ω) (see Table 11, Table 12, and Table 13) 
for i = 1, . . . , 5 and  ω = 1, . . . , 125. The duration in hours of each demand 
block is the scalar hj for j = 1, . . . , 5 (see the third column in Table 9). The 
total expected cost (in $ million) is then written as: 

� 5 5 15 

cixi + E 
� � � 

(106 KW/GW) · (10−8 million $//c)· 
i=1 

� 

i=1 j=1 k=1 � 
c/KWH) · (hj hours) · (yijkω GW) 

where E is the expectation operator, taken over all possible scenarios ω. 

The stochastic programming formulation of the problem is then written 

(fi(ω) /
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as: 

4 125 5 5 15 � � � � � 
min 
x,y 

i=1 

cixi + 
ω=1 

αω 

i=1 j=1 k=1 

0.01fi(ω)hj yijkω 

4 � 
s.t. cixi ≤ 10, 000 (Budget constraint) 

i=1 

x4 ≤ 5.0 (Hydroelectric constraint) 
yijkω ≤ xi for i = 1, . . . , 4, all j, k, ω (Capacity constraints) 

5 � 
yijkω ≥ Djkω for all j, k, ω (Demand constraints) 

i=1 

x ≥ 0, y  ≥ 0 
(1) 

where αω is the probability of scenario ω, and  Djkω is the power demand in 
block j and year k under scenario ω. 

This problem is a standard linear program, although its size may present 
some difficulties for some LP solvers. There are 4 first-stage variables and 
5 × 5 × 15 × 125 second-stage variables, for a total of 46,879 variables. 
Furthermore, there is one budget constraint, one hydroelectric constraint, 
4 × 5 × 15 × 125 capacity constraints and 5 × 15 × 125 demand constraints 
for a total of 46,877 constraints. A problem of this size is not unrealistic 
for many of today’s computers and LP solvers. However, the addition of 
many more scenarios can quickly make this LP too unwieldy for even the 
most powerful computers currently available. For this reason, the problem 
is typically solved by Benders’ decomposition, which exploits the problem 
structure by decomposing it into a sequence of smaller problems. 

The optimal expected cost of the power plant investment problem is 
turns out to be $16.933 billion. The optimal capacity construction decisions 
are shown in the middle column of Table 14. The right-most column of 
Table 14 shows what the capacity construction decisions would have been 
if instead of using stochastic data, we instead had used expected demand 
data and expected cost data. In this case, the construction decision would 
yield total expected costs of $17.794 billion, which is 5.1% higher than the 
optimal expected cost. 
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Plant Optimal Construction Decision 
based on 

stochastic data 

Optimal Construction Decision 
based on 

expected demand and costs 
Gas Turbine 4.66 GW 1.92 GW 

Coal 4.57 GW 3.33 GW 
Nuclear 4.68 GW 4.0 GW 

Hydroelectric 5.0 GW 5.0 GW 

Expected Cost $16.933 billion $17.794 billion 

Table 14: Power plant capacity construction decisions. 

Table 15 shows a subset of the optimal second-stage variables, since 
it would not be practical to show all 46,875 variables. The table shows 
the actual power to be supplied by each plant during the 15th year, given 
the optimal capacity construction decisions were made, under a 7% growth 
rate scenario, 3.9/ c coal operating cost. c gas turbine operating cost, and 2.4/

The total operating cost for this year and scenario is $2.81 billion for the 
optimal capacity allocation. Similarly, Table 16 shows the actual power 
to be supplied by each plant during the 15th year in the case when the 
capacity construction decisions were based on expected demand and costs, 
under a 7% growth rate scenario, 3.9/c gas turbine operating cost, and 2.4c/
coal operating cost. The total operating cost for this year and scenario is 
$4.41 billion with the sub-optimal capacity construction decisions. 

9 Exercises 

You should download the files bender1.osc, eci bender1 opl master.mod, 
eci bender1 opl sub.mod, and eci opl.dat from the course website. These 
files are an OPLScript based model of the powerplant planning problem 
discussed in the lecture. 

•	 The file bender1.osc is the script file that runs the problem. 

•	 The file eci bender1 opl master.mod is the model file for the master 
problem. 
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Plant Demand Block 
#1 #2 #3 #4 #5 

Gas Turbine 4.66 4.66 3.02 0.00 0.00 
Coal 4.57 4.57 4.57 4.24 1.40 

Nuclear 4.68 4.68 4.68 4.68 4.68 
Hydroelectric 5.00 5.00 5.00 5.00 5.00 

External Source 6.87 2.74 0.00 0.00 0.00 

Cost (million $) 689.6 575.2 685.4 610.5 249.0 

Table 15: GW of power during 15th year, given the optimal capacity con-
struction decisions, assuming a 7% growth rate, 3.9/c gas turbine and 2.4c/
coal operating cost. 

•	 The file eci bender1 opl sub.mod is the model file for the sub prob-
lem. 

•	 The file eci opl.dat is the data file for the problem. 

1. The current model uses a five-point probability distribution for the gas 
turbine operating costs as well as for the coal plant operating costs. 
Modify the model and/or data file so that the stochastic program 
instead uses only the one-point average values for the gas turbine and 
coal plant operating costs. How does use of stochastic operating costs 
versus average operating costs impact the capacity allocation? Can 
you explain why? 

2. The first column of Table 17 shows the probability distribution of the 
economic growth rates in the current version of the model. The second, 
third, fourth, and fifth columns portray ever-cruder approximations of 
this distribution. Compute the optimal capacity allocation for each 
one of these distributions. Using these allocations, compute the ex-
pected costs assuming that the actual growth rate distribution is the 
original one given in the first column of Table 17. Compare these costs 
to the optimal expected cost. What do you observe? 

3. List the different ways this model can be made more realistic (e.g., 
suppose the power plants are not all built the same year). 
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Plant Demand Block 
#1 #2 #3 #4 #5 

Gas Turbine 1.92 1.92 1.92 1.59 0.00 
Coal 3.33 3.33 3.33 3.33 2.08 

Nuclear 4.00 4.00 4.00 4.00 4.00 
Hydroelectric 5.00 5.00 5.00 5.00 5.00 

External Source 11.53 7.40 3.02 0.00 0.00 

Cost (million $) 960.5 978.8 1497.5 710.5 263.2 

Table 16: GW of power during 15th year, given the capacity construction 
decisions based on expected demand and costs, assuming a 7% growth rate, 
3.9/ c coal operating cost. c gas turbine and 2.4/

#1 #2 #3 #4 #5 

Growth Prob. Growth Prob. Growth Prob. Growth Prob. Growth Prob. 
−1% 20% −0.6% 25% −0.2% 33.3% 0.6% 50% 3% 100% 
1% 20% 1.8% 25% 3% 33.3% 5.4% 50% 
3% 20% 4.2% 25% 6.2% 33.3% 
5% 20% 6.6% 25% 
7% 20% 

Table 17: Original and ever-cruder growth rate distributions. 
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