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Airline route maps
Chip design
Facility location
Even TSP!
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LP relaxations yield 
lower bounds
Addition of cuts can 
tighten bounds

Cut away solutions to 
the LP relaxation but 
leave all feasible 
integer points
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Set S 
of nodes

DST = total demand (nodes in S to nodes in T)
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Pup MatchingPup Matching

Instance:  A directed network G = (N,A), a 
set of K pairs of elements from N, and a 
cost function c: A→R+.

Problem: Find the minimum cost loading 
of G permitting unit flow from the first to 
the second node of each of the K pairs 
such that 1 unit or 2 units together can 
traverse an arc for each unit of loading.  
One unit of loading on a ∈A costs c(a).
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Several days 
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can prove only 
that the 
objective is at 
least 184 (LP 
lower bound = 
182).  Can we do 
better?
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Heuristics for Upper BoundsHeuristics for Upper Bounds

Matching Heuristic
permits each pup to be paired with at most 
one other pup
solved with a weighted matching routine

Shortest Path Heuristics
three variations

Each heuristic provides a 2-approximation 
to the NLP formulation
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Odd Flows on the City BlockOdd Flows on the City Block
Each of the 56 nodes 

must be incident to at 
least one arc with    
unit of spare capacity

solution requires at 
least 

cabs’
worth of empty 
capacity

LP relaxation of 182 
gives lower bound on 
required used 
capacity

196 is optimal
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Trials Using Realistic DataTrials Using Realistic Data

Node set given in (latitude, longitude) 
format based on a real logistics network
Defined problems by choosing a subset of 
nodes, calculating arc lengths, and 
randomly selecting O-D pairs
30 problems, about half single origin
Complete graphs, 12-25 nodes, 6-50 pups
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ResultsResults

Branch and Bound limited to 2 hours CPU 
time and a 220M tree
With all 3 cut families, 67% were solved to 
optimality with an average gap reduction 
of 18.8% to 6.4%
Without odd flow cuts, 30% were solved, 
and the gap was reduced to 7.8% on 
average
With no cuts, 17% were solved
Among solved problems, average 
heuristic error was 1.3%
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Conclusions and ExtensionsConclusions and Extensions

Extensions apply to compartmentalized 
problems
Cuts seem critical to provably solving the 
PM problem
Odd flow inequalities define what seems 
an important set of facets

generalize to arbitrary capacity
can generalize to several facilities?

Are there other cuts based on even-odd 
type arguments?
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Network loading for 
compartmentalized capacity

airline capacity planning, tanker trucks
Network survivability
Network restoration
Hierarchical designs
…
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applications
Problem is a large-scale integer 
program
Introduction to cutting planes 
(polyhedral combinatorics) 
Cutting planes valuable in tightening 
formulations and in problem solving 
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