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1	 Outline 

•	 A Bisection Line-Search Algorithm for 1-Dimensional Optimization 

•	 The Conditional-Gradient Method for Constrained Optimization (Frank-
Wolfe Method) 

•	 Subgradient Optimization 

•	 Application of Subgradient Optimization to the Lagrange Dual Prob
-
lem


2	 A Bisection Line-Search Algorithm for 1-Dimensional 
Optimization 

Consider the optimization problem: 

P	 : minimizex f(x) 

ns.t. x ∈ � . 

Let us suppose that f(x) is a differentiable convex function. In a typical 
algorithm for solving P we have a current iterate value x̄ and we choose a 

¯direction d̄  by some suitable means. The direction d is usually chosen to be 
a descent direction, defined by the following property: 

x + εd̄) < f(¯f(¯ x) for all ε > 0 and sufficiently small . 

We then typically also perform the 1-dimensional line-search optimization: 

α := arg min f(¯¯ x + αd̄) . 
α 

Let 
h(α) :=  f(x̄ + αd̄), 

whereby h(α) is a convex function in the scalar variable α, and our problem 
is to solve for 

ᾱ := arg min h(α). 
α 
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We therefore seek a value ᾱ for which 

h (ᾱ) = 0. 

It is elementary to show that 

x + αd)T ¯ h (α) =  ∇f (¯ ¯ d. 

Property: If d ̄ is a descent direction at x̄, then h 
� 
(0) < 0. 

Because h(α) is a convex function of α, we also have:  

Property: h 
� 
(α) is a monotone increasing function of α. 

Figure 1 shows an example of convex function of two variables to be 
optimized. Figure 2 shows the function h(α) obtained by restricting the 
function of Figure 1 to the line shown in that figure. Note from Figure 2 that 
h(α) is convex. Therefore its first derivative h 

� 
(α) will be a monotonically 

increasing function. This is shown in Figure 3. 

Because h 
� 
(α) is a monotonically increasing function, we can approxi-

α, the point that satisfies h 
� 
(¯mately compute ¯ α) = 0, by a suitable bisection 

α that h 
� 
(ˆmethod. Suppose that we know a value ˆ α) > 0. Since h 

� 
(0) < 0 

αα) > 0, the mid-value ˜and h 
� 
(ˆ α = 0+ ˆ is a suitable test-point. Note the 2 

following: 

• If h 
� 
(α̃) = 0, we are done. 

• If h 
� 
(˜ α in the interval (0, ˜α) > 0, we can now bracket ¯ α). 

α) < 0, we can now bracket ¯ α, ˆ• If h 
� 
(˜ α in the interval ( ̃ α). 

This leads to the following bisection algorithm for minimizing h(α) =  f (x̄ + 
¯ αd) by solving the equation h 

� 
(α) ≈ 0. 

Step 0. Set k = 0.  Set  αl := 0 and αu := α̂. 

α = αu+αl and compute h 
� 
(˜Step k. Set ˜ α).2 

• If h 
� 
(˜ α. Set  k ← k + 1.  α) > 0, re-set αu := ˜

• If h 
� 
(˜ α. Set  k ← k + 1.  α) < 0, re-set αl := ˜
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Figure 1: A convex function to be optimized.
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•	 If h 
� 
(α̃) = 0, stop. 

Property: After every iteration of the bisection algorithm, the current 
interval [αl, αu] must contain a point ¯ α) = 0.  α such that h 

� 
(¯

Property: At the kth iteration of the bisection algorithm, the length of 
the current interval [αl, αu] is  

( )k1 
L = (α̂).

2 

Property: A value of α such that |α − ᾱ| ≤ ε can be found in at most 

α̂
log2 

steps of the bisection algorithm. 

ˆ	 α) > 02.1 Computing α for which h (ˆ

α for which h 
� 
(ˆSuppose that we do not have available a convenient value ˆ α) > 

0. One way to proceed is to pick an initial “guess” of ˆ	 α). 
α) > 0, then proceed to the bisection algorithm; if h 

� 
(ˆ

α and compute h 
� 
(ˆ

If h 
� 
(ˆ α) ≤ 0, then 

re-set ˆ α and repeat the process. α ← 2ˆ

2.2 Stopping Criteria for the Bisection Algorithm 

In practice, we need to run the bisection algorithm with a stopping criterion. 
Some relevant stopping criteria are: 

¯ •	 Stop after a fixed number of iterations. That is, stop when k = K, 
¯where K is specified by the user. 

•	 Stop when the interval becomes small. That is, stop when αu −αl ≤ ε, 
where ε is specified by the user. 

•	 Stop when |h 
� 
(˜ α)| ≤  ε,α)| becomes small. That is, stop when |h 

� 
(˜

where ε is specified by the user. 

This third stopping criterion typically yields the best results in practice. 
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2.3	 Modification of the Bisection Algorithm when the Do­
main of f (x) is Restricted 

The discussion and analysis of the bisection algorithm has presumed that 
our optimization problem is 

P : minimizex f (x) 

ns.t. x ∈ � . 

Given a point x̄ and a direction d̄, the line-search problem then is 

LS : minimizeα h(α) :=  f (x̄ + αd̄) 

s.t. α ∈ �. 

nSuppose instead that the domain of definition of f (x) is an open set  X ⊂ � . 
Then our optimization problem is: 

P : minimizex f (x) 

s.t. x ∈ X, 

and the line-search problem then is 

LS : minimizeα h(α) :=  f (x̄ + αd̄) 

¯¯s.t. x + αd ∈ X. 

In this case, we must ensure that all iterate values of α in the bisection al-
x + αd ∈ X. As an example, consider the following problem: gorithm satisfy ¯ ¯ 

m 
P : minimizex f (x) :=  − ln(bi − Aix) 

i=1 

s.t. b − Ax > 0. 
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nHere the domain of f(x) is  X = {x ∈ � | b − Ax > 0}. Given  a  point  
x̄ ∈ X and a direction d̄, the line-search problem is: 

x + αd̄) =  − 
m 

ln(bi − Ai(¯LS : minimizeα h(α) :=  f(¯	 x + αd̄)) 
i=1 

s.t. b − A(x̄ + αd̄) > 0. 

Standard arithmetic manipulation can be used to establish that 

b − A(¯	 ˇ αx + αd̄) > 0 if and only if α < α <  ̂

where 

bi − Aix	 bi − Aixˇ	 ˆα := − min ¯ and α := min ,¯ ¯	 ¯Aid<0 −Aid	 Aid>0 Aid 

and the line-search problem then is: 

m 
LS : minimizeα h(α) :=  − ln(bi − Ai(x̄ + αd̄)) 

i=1 

s.t. α < α <  ̂ˇ α. 

3	 The Conditional-Gradient Method for Constrained 
Optimization (Frank-Wolfe Method) 

We now consider the following optimization problem: 

P :	 minimizex f(x) 

s.t. x ∈ C .  

We assume that f(x) is a convex function, and that C is a convex set.  
Herein we describe the conditional-gradient method for solving P , also called 
the Frank-Wolfe method. This method is one of the cornerstones of opti-
mization, and was one of the first successful algorithms used to solve non-
linear optimization problems. It is based on the premise that the set C 
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is well-suited for linear optimization. That means that either C is itself a 
system of linear inequalities C = {x | Ax ≤ b}, or more generally that the 
problem: 

TLOc : minimizex c x 

s.t. x ∈ C 

is easy to solve for any given objective function vector c. 

This being the case, suppose that we have a given iterate value x̄ ∈ C. 
Let us linearize the function f (x) at  x = x̄. This linearization is: 

z1(x) :=  f (¯ x)T (x − ¯x) +  ∇f (¯ x) , 

which is the first-order Taylor expansion of f (·) at  x. Since we can easily ¯
do linear optimization on C, let us solve: 

LP : minimizex z1(x) =  f (¯ x)T (x − ¯x) +  ∇f (¯ x) 

s.t. x ∈ C ,  

which simplifies to:


LP : minimizex ∇f (¯
x)T x 

s.t. x ∈ C .  

∗Let x denote the optimal solution to this problem. Then since C is 
∗a convex set, the line segment joining x and x is also in C, and  we  can  ¯

perform a line-search of f (x) over this segment. That is, we solve: 

x + α(x ∗ − ¯LS : minimizeα f (¯ x)) 

s.t. 0 ≤ α ≤ 1 . 

Let ¯ x:α denote the solution to this line-search problem. We re-set ¯
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¯ x + ¯ x)x ← ¯ α(x ∗ − ¯

and repeat this process. 

The formal description of this method, called the conditional gradient 
method or the Frank-Wolfe method, is given below: 

Step 0: Initialization. Start with a feasible solution x0 ∈ C. Set  
k = 0.  Set  LB ← −∞. 

kStep 1: Update upper bound. Set UB  ← f (xk ). Set x̄ ← x . 

Step 2: Compute next iterate. 

–	 Solve the problem 

z̄ = minx f (¯ x)T (x − ¯x) +  ∇f (¯	 x) 

s.t. x ∈ C ,  

and let x ∗ denote the solution. 

– Solve the line-search problem: 

∗ − ¯minimizeα f (x̄ + α(x x)) 

s.t. 0 ≤ α ≤ 1 , 

and let ᾱ denote the solution. 
k+1 ← ¯– Set x x + ¯ x)α(x ∗ − ¯

Step 3: Update Lower Bound. Set LB ← max{LB, z̄}. 
Step 4: Check Stopping Criteria. If |UB  − LB| ≤ ε, stop. Oth-
erwise, set k ← k + 1 and go to Step 1. 
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3.1	 Upper and Lower Bounds in the Frank-Wolfe Method, 
and Convergence 

•	 The upper bound values UB  are simply the objective function values 
of the iterates f(xk ) for  k = 0, . . .. This is a monotonically decreasing 
sequence because the line-search guarantees that each iterate is an 
improvement over the previous iterate. 

•	 The lower bound values LB result from the convexity of f(x) and the 
gradient inequality for convex functions: 

f(x) ≥ f(¯ x)T (x − ¯x) +  ∇f(¯ x) for any x ∈ C .  

Therefore 

x) +  ∇f(¯ x) =  ̄min f(x) ≥ min f(¯ x)T (x − ¯ z ,  
x∈C x∈C 

and so the optimal objective function value of P is bounded below by 
z̄. 

We also have the following convergence theorem for the Frank-Wolfe 
method: 
Property: Suppose that C is a bounded set, and that there exists a constant 
L for which 

‖∇f(x) −∇f(y)‖ ≤ L‖x − y‖ 

for all x, y ∈ C. Then there exists a constant Ω > 0 for which the following 
is true: 

Ω 
f(x k ) − min f(x) ≤ . 

x∈C k 

3.2	 Illustration of the Frank-Wolfe Method 

Consider the following instance of P : 

P : minimize f(x) 

s.t. x ∈ C ,  

where 
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4 2f(x) =  f(x1, x2) =  −32x1 + x1 − 8x2 + x2 

and 

C = {(x1, x2) | x1 − x2 ≤ 1, 2.2x1 + x2 ≤ 7, x1 ≥ 0, x2 ≥ 0} . 

Notice that the gradient of f(x1, x2) is given by the formula: 

3 

∇f(x1, x2) =  
4x1 − 32 

.
2x2 − 8 

Suppose that x = ¯k x = (0.5, 3.0) is the current iterate of the Frank-
Wolfe method, and the current lower bound is LB = −100.0. We compute 

x) =  f(0.5, 3.0) = −30.9375 and we compute the gradient of f(x) at  ̄f(¯	 x: 

3 −31.5 ∇f(0.5, 3.0) = 
4x1 − 32 

= −2.0 
.

2x2 − 8 

We then create and solve the following linear optimization problem: 

LP : z̄ = minx1,x2 −30.9375 − 31.5(x1 − 0.5) − 2.0(x2 − 3.0) 

s.t.	 x1 − x2 ≤ 1 
2.2x1 + x2 ≤ 7 
x1 ≥ 0 
x2 ≥ 0 . 

The optimal solution of this problem is: 

∗ ∗	 ∗ x = (x1, x2) = (2.5, 1.5) , 

and the optimal objective function value is: 

z̄ = −50.6875 . 

Now we perform a line-search of the 1-dimensional function 

∗	 ∗f(¯ x)) = −32(¯ x1)) + (¯ x1))4x + α(x ∗ − ¯ x1 + α(x1 − ¯ x1 + α(x1 − ¯
∗	 ∗−8(¯ x2)) + (¯ x2))2x2 + α(x2 − ¯ x2 + α(x2 − ¯
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¯over α ∈ [0, 1]. This function attains its minimum at α = 0.7165 and we 
therefore update as follows: 

k+1 x+¯ x) = (0.5, 3.0)+0.7165((2.5, 1.5)−(0.5, 3.0)) = (1.9329, 1.9253)x ← ¯ α(x ∗ −¯

and 

LB ← max{LB, z̄} = max{−100, −50.6875} = −50.6875 . 

The new upper bound is 

UB  = f(x k+1) =  f(1.9329, 1.9253) = −59.5901 . 

This is illustrated in Figure 4. 

4 Subgradient Optimization 

4.1 Definition 

Suppose that f(x) is a convex function. If f(x) is differentiable, we have 
the gradient inequality: 

f(x) ≥ f(¯ x)T (x − ¯x) +  ∇f(¯ x) for any x ∈ X ,  

where typically we think of X = �n . This inequality is illustrated in Figure 
5. 

There are many important convex functions that are not differentiable. 
The notion of the gradient generalizes to the concept of a subgradient of 
a convex function. A vector g ∈ �n is called subgradient of the convex 
function f(x) at  x = x̄ if the following inequality is satisfied: 

x) +  g T (x − ¯f(x) ≥ f(¯ x) for all x ∈ X .  

This definition is illustrated in Figure 6. 
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4.2 Properties of Subgradients 

Suppose that f(x) is a convex function. For each x, let  ∂f(x) denote the set 
of all subgradients of f(x) at  x. We call ∂f(x) the “subdifferential of f(x).” 

•	 If f(x) is convex, then ∂f(x) is always a nonempty convex set. 

•	 If f(x) is differentiable, then ∂f(x) =  {∇f(x)}. 
•	 Subgradients plays the same role for convex functions as the gradient 

does for differentiable functions. Consider the following optimization 
problem: 

min f(x) 
x 

–	 If f(x) is convex and differentiable, then x is a global minimum 
if and only if ∇f(x) = 0.  

–	 If f(x) is convex and non-differentiable, then x is a global mini-
mum if and only if 0 ∈ ∂f(x). 

4.3 Subgradients for Concave Functions 

If f(x) is a concave function, then g is a subgradient of f(x) at  x = x̄ if: 

x) +  g T (x − ¯f(x) ≤ f(¯ x) for all x ∈ X .  

This is illustrated in Figure 7. Figure 8 shows a piecewise-linear concave 
function. Figure 9 illustrates the subdifferential for a concave function. 

4.4 Computing Subgradients 

Subgradients play a very important role in non-differentiable optimization. 
In most algorithms, we assume that we have a subroutine that receives as 
input a value x, and has output g where g is a subgradient of f(x). 
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5	 The Subgradient Method for Maximizing a Con­
cave Function 

Suppose that Z(u) is a concave function, and that we seek to solve: 

P : maximizeu Z(u) 

ns.t. u ∈ � . 

u) satisfies d �If Z(u) is differentiable and d := ∇Z(¯ = 0, then d is an ascent 
direction at ū, namely 

Z(¯ u) for all ε >  0 and sufficiently small .u + εd) > Z(¯

This is illustrated in Figure 10. However, if Z(u) is not differentiable and 
g is a subgradient of Z(u) at  u = ū, then g is not necessarily an ascent 
direction. This is illustrated in Figure 11. 

The following algorithm generalizes the steepest descent algorithm and 
can be used to maximize a nondifferentiable concave function Z(u). 

nStep 0: Initialization. Start with any point u1 ∈ � . Choose an 
infinite sequence of positive stepsize values {αk }∞ . Set  k = 1.  k=1

Step 1: Compute a subgradient. Compute g ∈ ∂Z(uk ). 

Step 2: Compute stepsize. Compute stepsize αk from stepsize 
series. 

gStep 3: Update Iterate. Set uk+1 ← uk + αk ‖g‖ . Set  k ← k + 1  
and go to Step 1. 

As it turns out, the viability of the subgradient algorithm depends crit-
ically on the sequence of stepsizes: 

Property: Suppose that {αk }∞ satisfies:k=1 

∞ 

lim	 αk = 0 and αk = ∞ . 
k→∞ 

k=1 

Then under very mild additional assumptions, 

sup Z(u k ) =  max  Z(u) . 
k u∈�n 

22 



_ _ 

f(x) + 

g 

f(x)T(x-x) 

Figure 10: The gradient is an ascent direction. 

23




g 

f(x) + gT(x-x) 
_ _ 

Figure 11: A subgradient is not necessarily an ascent direction. 
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5.1 Example of Subgradient Algorithm in One Variable 

Consider the following concave optimization problem: 

P : maximizeu Z(u) = min{0.5u + 2,−1u + 20} 

s.t. u ∈ � . 

We illustrate various implementations of the subgradient method on this 
simple problem. 

•	 Choose u1 = 0 and αk = 0.
k 
14 . Figure 12 illustrates the performance 

of the subgradient algorithm for this stepsize sequence. 

•	 Choose u1 = 0 and αk = 0.02. Figure 13 illustrates the performance 
of the subgradient algorithm for this stepsize sequence. 

•	 Choose u1 = 0 and αk = 0.
k 
01 . Figure 14 illustrates the performance 

of the subgradient algorithm for this stepsize sequence. 

•	 Choose u1 = 0 and αk = 0.01 × (0.9)k . Figure 15 illustrates the 
performance of the subgradient algorithm for this stepsize sequence. 

5.2 Example of Subgradient Algorithm in Two Variables 

Consider the following concave optimization problem: 

P : maximizeu Z(u) = min{ 2.8571u1 − 0.2857u2 − 5.7143, 
−u1 + u2 + 2, 
−0.1290u1 − 1.0323u2 + 21.1613} 

s.t. u ∈ �2 . 

We illustrate the implementation of the subgradient method on this prob-
1lem with u1 = (0, 0) and αk = √ . Figure 16 shows the function level sets 
k 

and the path of iterations. Figure 17 shows the objective function values, 
and Figure 18 shows values of the variables u = (u1, u2). 
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6	 Solution of the Lagrangian Dual via Subgradient 
Optimization 

We start with the primal problem: 

OP : minimumx f(x) 

s.t.	 gi(x) ≤ 0, i  = 1, . . . , m  

x ∈ P, 

We create the Lagrangian: 

TL(x, u) :=  f(x) +  u g(x) 

and the dual function: 

∗L (u) := minimumx∈P f(x) +  uT g(x) 

The dual problem then is: 

∗D :  maximumu L (u) 

s.t. u ≥ 0 

∗Recall that L (u) is a concave function. The premise of Lagrangian duality 

∗ u) for any given ¯is that it is “easy” to compute L (¯ u. That is, it is easy to 
compute an optimal solution x̄ of 

∗L (¯	 uT g(x) =  f(¯ uT g(¯u) := minimumx∈P f(x) +  ̄ x) +  ̄ x) 

u, where ¯for any given ¯ x ∈ P . It turns out that computing subgradients of 
∗L (u) is then also easy. We have: 
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Property: Suppose that ¯	 x ∈ P is an optimal solution u is given and that ¯
∗	 ∗of L (¯	 uT g(x). Then g := g(¯u) = min  f(x) +  ̄ 	 x) is a subgradient of L (u) at  

x∈P 
u = ū. 

Proof: For any u ≥ 0 we have  

L ∗(u) =  min  f(x) +  u T g(x) 
x∈P 

T x) +  u g(¯≤	 f(¯ x) 
T x) +  ̄ x) + (u − ¯ x)= f(¯ u g(¯ u)T g(¯

T= 	min  f(x) +  ̄ g(x) +  g(¯ ¯u x)T (u − u) 
x∈P 
∗=	 L (¯ ¯u) +  g T (u − u) . 

∗Therefore g is a subgradient of L (u) at  ̄u. 
q.e.d. 

The subgradient method for solving the Lagrangian dual can now be 
stated: 

nStep 0: Initialization. Start with any point u1 ∈ � , u1 ≥ 0. 
Choose an infinite sequence of positive stepsize values {αk }∞ . Set  k=1

k = 1.  

Step 1: Compute a subgradient. Solve for an optimal solution x̄ 
∗of L (uk) = min  f(x) + (uk )T g(x). Set g := g(x̄). 

x∈P 

Step 2: Compute stepsize. Compute stepsize αk from stepsize 
series. 

gStep 3: Update Iterate. Set uk+1 ← uk + αk ‖g‖ . If  u �k+1 ≥ 0, re-set 
k+1 u ← max{u k+1 , 0}, i = 1, . . . , m. Set  k ← k + 1 and go to Step 1.i i 

Note that we have modified Step 3 slightly in order to ensure that the 
values of uk remain nonnegative. 

6.1	 Illustration and Exercise using the Subgradient Method 
for solving the Lagrangian Dual 

Consider the primal problem: 
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{ 

∑ 

TOP : minimumx c x 

s.t. Ax − b ≤ 0 

nx ∈ {0, 1} . 

nHere g(x) =  Ax − b and P = {0, 1} = {x | xj = 0 or 1, j  = 1, . . . , n}. 
We create the Lagrangian: 

TL(x, u) :=  c x + u T (Ax − b) 

and the dual function: 

∗L (u) := minimumx∈{0,1}n cT x + uT (Ax − b) 

The dual problem then is: 

∗D :  maximumu L (u) 

s.t. u ≥ 0 

∗u ≥ 0. Notice that an optimal solution ¯ u) is:  Now let us choose ¯ x of L (¯

¯
0 if  (c − AT ū)j ≥ 0 

xj = 
1 if  (c − AT ū)j ≤ 0 

for j = 1, . . . , n. Also,  

n [ ]−∗ u) =  c T ¯ u T (A¯ ¯ u)j .L (¯ x + ¯ x − b) =  −u T b − (c − AT ¯
j=1 

Also 
g := g(¯ x − bx) =  A¯
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∗is a subgradient of L (ū). 

Now consider the following data instance of this problem:     
7 −8 12      −2 −2   −1     

A =  6 5  , b  =  45       −5 6   20  

3  12  42 

and 
T c = (  −4 1  )  . 

Solve the Lagrange dual problem of this instance using the subgradient 
algorithm starting at u1 = (1, 1, 1, 1, 1)T , with the following step-size choices: 

• αk = 

• αk = 

1 
k 

1√ 

for k = 1, . . ..


for k = 1, . . ..

k 

• αk = 0.2 × (0.75)k for k = 1, . . .. 

• a stepsize rule of your own. 
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