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1 Outline

A Bisection Line-Search Algorithm for 1-Dimensional Optimization

The Conditional-Gradient Method for Constrained Optimization (Frank-
Wolfe Method)

Subgradient Optimization

Application of Subgradient Optimization to the Lagrange Dual Prob-
lem

2 A Bisection Line-Search Algorithm for 1-Dimensional
Optimization

Consider the optimization problem:

P : minimize, f(z)

s.t. r e R”.

Let us suppose that f(x) is a differentiable convex function. In a typical
algorithm for solving P we have a current iterate value & and we choose a
direction d by some suitable means. The direction d is usually chosen to be
a descent direction, defined by the following property:

f(Z +ed) < f(Z) for all € > 0 and sufficiently small .

We then typically also perform the 1-dimensional line-search optimization:

a := argmin f(z+ad) .

Let

ha) == (7 + ad),
whereby h(«) is a convex function in the scalar variable «, and our problem
is to solve for

a:= arg min h(a).



We therefore seek a value & for which

’

h (@) = 0.
It is elementary to show that
W () = Vf(z+ad)ld.
Property: If d is a descent direction at Z, then &' (0) < 0.
Because h(«) is a convex function of a, we also have:

Property: h/(a) is a monotone increasing function of a.

Figure 1 shows an example of convex function of two variables to be
optimized. Figure 2 shows the function h(a) obtained by restricting the
function of Figure 1 to the line shown in that figure. Note from Figure 2 that
h(a) is convex. Therefore its first derivative A’ () will be a monotonically
increasing function. This is shown in Figure 3.

Because h/(a) is a monotonically increasing function, we can approxi-
mately compute &, the point that satisfies h/(@) = 0, by a suitable bisection
method. Suppose that we know a value & that A’ (&) > 0. Since h'(0) < 0
and h'(&) > 0, the mid-value & = 044 is a suitable test-point. Note the
following:

e If h'(&) = 0, we are done.
o If W' (&) > 0, we can now bracket @ in the interval (0, &).
e If h'(&) < 0, we can now bracket @ in the interval (&, &).

This leads to the following bisection algorithm for minimizing h(a) = f(Z +
ad) by solving the equation h'(a) & 0.

Step 0. Set £ =0. Set o := 0 and «, := &.
Step k. Set & = 2+F% and compute B (&).

o If h'(&) > 0, re-set v, := @&. Set k — k+1.

o If h'(&) < 0, re-set oy := &. Set k — k+ 1.



Figure 1: A convex function to be optimized.
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Figure 2: The 1-dimensional function h(«).
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e If 1 (&) = 0, stop.
Property: After every iteration of the bisection algorithm, the current
interval [y, o] must contain a point @ such that i’ (@) = 0.

Property: At the kth iteration of the bisection algorithm, the length of
the current interval [ay, ay,] is

Property: A value of a such that |& — @] < e can be found in at most

o 2)

steps of the bisection algorithm.

2.1 Computing & for which 1'(d@) > 0

Suppose that we do not have available a convenient value & for which A’ (&) >
0. One way to proceed is to pick an initial “guess” of & and compute h/(d).
If B (&) > 0, then proceed to the bisection algorithm; if A’ (&) < 0, then
re-set & <+ 2& and repeat the process.

2.2 Stopping Criteria for the Bisection Algorithm

In practice, we need to run the bisection algorithm with a stopping criterion.
Some relevant stopping criteria are:

e Stop after a fixed number of iterations. That is, stop when k = K,
where K is specified by the user.

e Stop when the interval becomes small. That is, stop when o, — g < €,
where € is specified by the user.

e Stop when |h'(&)| becomes small. That is, stop when |h'(&)] < e,
where € is specified by the user.

This third stopping criterion typically yields the best results in practice.



2.3 Modification of the Bisection Algorithm when the Do-
main of f(z) is Restricted

The discussion and analysis of the bisection algorithm has presumed that
our optimization problem is

P : minimize, f(x)

s.t. r € R

Given a point Z and a direction d, the line-search problem then is

LS : minimize, h(«a):= f(Z + ad)
s.t. aeR.

Suppose instead that the domain of definition of f(z) is an open set X C R".
Then our optimization problem is:

P : minimize, f(x)

s.t. r € X,

and the line-search problem then is

LS : minimize, h(«a):= f(Z + ad)

s.t. Z+ade X.

In this case, we must ensure that all iterate values of o in the bisection al-
gorithm satisfy T+ ad € X. As an example, consider the following problem:

P : minimize, f(z):=— ft In(b; — A;x)
=1

)

s.t. b— Ax > 0.



Here the domain of f(z) is X = {# € " | b — Az > 0}. Given a point
Z € X and a direction d, the line-search problem is:

LS : minimize, h(a):=f(Z+ ad)=— gl: In(b; — Ai(Z + ad))
=1

1

s.t. b— A(z + ad) > 0.

Standard arithmetic manipulation can be used to establish that

b—A(Z+ad) >0 ifandonly if a<a<a

where
& = — min {w} and & := min {w}
o A;d<0 —Az‘(i T A;d>0 Aic{ ’
and the line-search problem then is:
LS : minimize, h(a):=— 3 In(b; — A;(Z + ad))
i=1

~ ~

s.t. a< a<a.

3 The Conditional-Gradient Method for Constrained
Optimization (Frank-Wolfe Method)

We now consider the following optimization problem:

P : minimize, f(x)

s.t. reC.

We assume that f(x) is a convex function, and that C' is a convex set.
Herein we describe the conditional-gradient method for solving P, also called
the Frank-Wolfe method. This method is one of the cornerstones of opti-
mization, and was one of the first successful algorithms used to solve non-
linear optimization problems. It is based on the premise that the set C



is well-suited for linear optimization. That means that either C is itself a
system of linear inequalities C' = {z | Az < b}, or more generally that the
problem:

LO,: minimize, 'z

s.t. ze(C

is easy to solve for any given objective function vector c.

This being the case, suppose that we have a given iterate value z € C.
Let us linearize the function f(z) at x = z. This linearization is:

a1(w) = f(2) + V@) (@ - 7)),

which is the first-order Taylor expansion of f(-) at Z. Since we can easily
do linear optimization on C', let us solve:

LP: minimize, 2 (z)= f(z)+ V(@) (z—-7)

s.t. zeC,

which simplifies to:
LP: minimize, Vf(z)lz

s.t. zeC.

Let * denote the optimal solution to this problem. Then since C is
a convex set, the line segment joining z and z* is also in C, and we can
perform a line-search of f(x) over this segment. That is, we solve:

LS : minimize, f(Z+ a(z* — 7))

s.t. 0<a<l1.

Let @ denote the solution to this line-search problem. We re-set Z:
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and repeat this process.

The formal description of this method, called the conditional gradient
method or the Frank-Wolfe method, is given below:

Step 0: Initialization. Start with a feasible solution 2° € C. Set
k=0. Set LB «— —o0.

Step 1: Update upper bound. Set UB « f(z"). Set  « z*.

Step 2: Compute next iterate.

— Solve the problem

and let z* denote the solution.

— Solve the line-search problem:
minimize, f(Z+ a(z* — 7))

s.t. 0<a<l,

and let & denote the solution.

— Set ¥t — 7 + a(z* — )
Step 3: Update Lower Bound. Set LB «— max{LB, z}.

Step 4: Check Stopping Criteria. If [UB — LB| < ¢, stop. Oth-
erwise, set k «— k + 1 and go to Step 1.

11



3.1 Upper and Lower Bounds in the Frank-Wolfe Method,
and Convergence

e The upper bound values UB are simply the objective function values
of the iterates f(z*) for k = 0,.... This is a monotonically decreasing
sequence because the line-search guarantees that each iterate is an
improvement over the previous iterate.

e The lower bound values LB result from the convexity of f(z) and the
gradient inequality for convex functions:

f(z)> f(@)+ Vf(@) T (x—z) forany z € C .

Therefore

min f(z) > min f(z) + V()" (@ - 7) =2,

and so the optimal objective function value of P is bounded below by

zZ.

We also have the following convergence theorem for the Frank-Wolfe
method:
Property: Suppose that C'is a bounded set, and that there exists a constant
L for which

IVf(z) = VIl < Lllz -yl

for all x,y € C. Then there exists a constant €2 > 0 for which the following
is true:

Q

f(a®) — min f(z) < -~ .

3.2 Illustration of the Frank-Wolfe Method
Consider the following instance of P:

P : minimize f(z)

s.t. zeC,

where
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and

C={(x1,m2) |1 —22 <1, 2221 + 22 <7, 21 >0, x3 >0} .
Notice that the gradient of f(x1,z2) is given by the formula:
4a3 — 32
Vf(x1,z2) = ( 9y 8 ) :
Suppose that =¥ = Z = (0.5,3.0) is the current iterate of the Frank-

Wolfe method, and the current lower bound is LB = —100.0. We compute
f(Z) = £(0.5,3.0) = —30.9375 and we compute the gradient of f(x) at z:

43 — 32 —-31.5
V£(0.5,3.0) = < 9y — 8 ) = ( 90 ) .
We then create and solve the following linear optimization problem:

LP: Z=min, ,, -—30.9375—31.5(z; —0.5)—2.0(z2 —3.0)

s.t. T, —x9 <1
22x1 +a2 <7
:1:120
l’QZO.

The optimal solution of this problem is:
¥ = (a7,23) = (2.5,1.5) ,
and the optimal objective function value is:
zZ = —50.6875 .
Now we perform a line-search of the 1-dimensional function

f@+a(@*—z) = =32(z1 +a(z] — 21)) + (21 + 2] — 11))*
—8(Z2 + afah — 22)) + (T2 + a(zs — Ia))?

13



over a € [0,1]. This function attains its minimum at @ = 0.7165 and we
therefore update as follows:

2" — z+a(x*—z) = (0.5,3.0)40.7165((2.5, 1.5)—(0.5,3.0)) = (1.9329,1.9253)
and
LB «— max{LB,z} = max{—100, —50.6875} = —50.6875 .
The new upper bound is
UB = f(z*1) = £(1.9329,1.9253) = —59.5901 .

This is illustrated in Figure 4.

4 Subgradient Optimization

4.1 Definition
Suppose that f(z) is a convex function. If f(x) is differentiable, we have
the gradient inequality:

f(z)> f(@) + V(@) (x—z) forany z € X ,

where typically we think of X = R". This inequality is illustrated in Figure
5.

There are many important convex functions that are not differentiable.
The notion of the gradient generalizes to the concept of a subgradient of
a convex function. A vector g € R” is called subgradient of the convex
function f(z) at x = z if the following inequality is satisfied:

fx)>f@) +gl(x—2) forallze X .

This definition is illustrated in Figure 6.

14



><o

. 3
Figure 4: Mlustration of an iteration of the Frank-Wolfe method.

15



5000
4000
3000

2000

f(U)ooo

-1000

—-2000

~3000 ! ! ! ! ! ! ! ! !
-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 5: The gradient and the gradient inequality for a differentiable convex
function.
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Figure 6: Subgradients and the subgradient inequality for a non-
differentiable convex function.
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4.2 Properties of Subgradients

Suppose that f(x) is a convex function. For each x, let 0f(z) denote the set
of all subgradients of f(z) at . We call 9f(x) the “subdifferential of f(z).”

o If f(z) is convex, then Jf(x) is always a nonempty convex set.
e If f(x) is differentiable, then Of(z) = {V f(z)}.

e Subgradients plays the same role for convex functions as the gradient
does for differentiable functions. Consider the following optimization
problem:

min / («)

— If f(x) is convex and differentiable, then x is a global minimum
if and only if Vf(z) = 0.

— If f(x) is convex and non-differentiable, then z is a global mini-
mum if and only if 0 € 9f(x).
4.3 Subgradients for Concave Functions

If f(x) is a concave function, then g is a subgradient of f(x) at x = Z if:

fx) < f(@) +¢ (x—7) forallze X .

This is illustrated in Figure 7. Figure 8 shows a piecewise-linear concave
function. Figure 9 illustrates the subdifferential for a concave function.

4.4 Computing Subgradients

Subgradients play a very important role in non-differentiable optimization.
In most algorithms, we assume that we have a subroutine that receives as
input a value z, and has output g where g is a subgradient of f(x).

18
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Figure 7: The subgradient of a concave function.
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Figure 8: A piecewise linear concave function.
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Figure 9: The subdifferential of a concave function.
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5 The Subgradient Method for Maximizing a Con-
cave Function

Suppose that Z(u) is a concave function, and that we seek to solve:

P : maximize, Z(u)

s.t. ue R .

If Z(u) is differentiable and d := VZ(u) satisfies d # 0, then d is an ascent
direction at u, namely

Z(u+ ed) > Z(u) for all e > 0 and sufficiently small .

This is illustrated in Figure 10. However, if Z(u) is not differentiable and
g is a subgradient of Z(u) at u = @, then g is not necessarily an ascent
direction. This is illustrated in Figure 11.

The following algorithm generalizes the steepest descent algorithm and
can be used to maximize a nondifferentiable concave function Z(u).

Step 0: Initialization. Start with any point u! € #”. Choose an
infinite sequence of positive stepsize values {a}72 . Set k = 1.

Step 1: Compute a subgradient. Compute g € 0Z(u*).

Step 2: Compute stepsize. Compute stepsize oy from stepsize
series.

Step 3: Update Iterate. Set uf*! «— u* + akﬁ. Set k — k+1
and go to Step 1.

As it turns out, the viability of the subgradient algorithm depends crit-
ically on the sequence of stepsizes:

Property: Suppose that {oy}72, satisfies:
o0
1. == = .
Hm o 0 and Zak o0
k=1
Then under very mild additional assumptions,

Z(u*) = Z(u) .
sup (u*) = max Z(u)
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Figure 10: The gradient is an ascent direction.
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Figure 11: A subgradient is not necessarily an ascent direction.
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5.1 Example of Subgradient Algorithm in One Variable

Consider the following concave optimization problem:

P : maximize, Z(u)= min{0.5u+ 2, —1u+ 20}

s.t. ueRk.

We illustrate various implementations of the subgradient method on this
simple problem.

e Choose u' = 0 and a;, = 0'—24. Figure 12 illustrates the performance

of the subgradient algorithm for this stepsize sequence.

e Choose u' = 0 and oy, = 0.02. Figure 13 illustrates the performance
of the subgradient algorithm for this stepsize sequence.

e Choose u' = 0 and a;, = 0._]81' Figure 14 illustrates the performance
of the subgradient algorithm for this stepsize sequence.

e Choose u' = 0 and o, = 0.01 x (0.9)k. Figure 15 illustrates the
performance of the subgradient algorithm for this stepsize sequence.

5.2 Example of Subgradient Algorithm in Two Variables

Consider the following concave optimization problem:

P: maximize, Z(u)=min{ 2.8571u; — 0.2857ug — 5.7143,
—uy + ug + 2a
—0.1290u; — 1.0323uz + 21.1613}

s.t. ue R,

We illustrate the implementation of the subgradient method on this prob-
lem with u! = (0,0) and o = ﬁ Figure 16 shows the function level sets
and the path of iterations. Figure 17 shows the objective function values,
and Figure 18 shows values of the variables u = (u1, u2).
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Figure 13: Tllustration of subgradient algorithm, oy, = 0.02 .
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and path of iterations.
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Figure 17: Illustration of the subgradient method in two variables: objective
function values.
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6 Solution of the Lagrangian Dual via Subgradient
Optimization

We start with the primal problem:

OP : minimum, f(x)
s.t. gilr) < 0, i=1,....m

x € P,

We create the Lagrangian:
L(z,u) := f(z) +u’ g(z)
and the dual function:

L*(u) ;== minimumgep f(z) +ulg(x)

The dual problem then is:

D: maximum, L*(u)

S.t. u>0

Recall that L*(u) is a concave function. The premise of Lagrangian duality

is that it is “easy” to compute L*(u) for any given u. That is, it is easy to
compute an optimal solution Z of

L*(@) := minimumgcp f(z)+a’g(x) = f(z)+alg(z)

for any given u, where £ € P. It turns out that computing subgradients of
L*(u) is then also easy. We have:
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Property: Suppose that « is given and that £ € P is an optimal solution

of L*(u) = mi}g f(z) +ualg(x). Then g := g(Z) is a subgradient of L*(u) at
BAS

U = U.

Proof: For any u > 0 we have

L*(w) = minf(z)+ u'g(x)
< f(@) +ulg(z)
= f@+uag@) + (u—u)g(z)
= min (z) +alg(z) + g(2)" (u — a)

= L* (u)+gT(u—a).

Therefore g is a subgradient of L*(u) at a.
q.e.d.

The subgradient method for solving the Lagrangian dual can now be
stated:

Step 0: Initialization. Start with any point u' € R*, ' > 0.
Choose an infinite sequence of positive stepsize values {ag}72 ;. Set
k=1.

Step 1: Compute a subgradient. Solve for an optimal solution Z
of L*(uF) = n"éilg f(x) + (W) Tg(x). Set g := g(z).

Step 2: Compute stepsize. Compute stepsize «j from stepsize
series.

Step 3: Update Iterate. Set uft! «— uk—l—akﬁ. If uF+1 # 0, re-set
uf“ — maX{ufH,O}, i=1,...,m. Set k — k+ 1 and go to Step 1.
Note that we have modified Step 3 slightly in order to ensure that the
values of u* remain nonnegative.
6.1 Illustration and Exercise using the Subgradient Method
for solving the Lagrangian Dual

Consider the primal problem:
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OP : minimum, T

s.t. Az —b<0
z e {0,1}" .
Here g(z) = Az —band P={0,1}"={z |z; =0o0r 1,5 =1,...,n}.
We create the Lagrangian:
L(z,u) == 'z +ul (Az — b)

and the dual function:

L*(u) := minimumgegoqyn ¢’ o +u’ (Az —b)

The dual problem then is:
D: maximum, L*(u)

s.t. u>0

Now let us choose @ > 0. Notice that an optimal solution z of L*(u) is:
o _Joif (c—ATa); >0
T 1 if (e— ATw); <0
for j=1,...,n. Also,

L*(a) = Tz +u' (Az — b) = —alb — Zn: {(c - ATa)jT :
j=1
Also
g:=9(&) =Az -0
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is a subgradient of L*(u).

Now consider the following data instance of this problem:

7 -8 12
-2 =2 -1
A=1] 6 5 ,b=1 45
-5 6 20
3 12 42
and
'=(-4 1).

Solve the Lagrange dual problem of this instance using the subgradient
algorithm starting at u' = (1,1,1,1,1)7, with the following step-size choices:

° ak:%forkzl,....

° ak:ﬁforkzl,....
e o, =02x (0.75)% for k=1,....

e a stepsize rule of your own.
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