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2 Linear Programming

2.1 Alternative Perspective

SLIDE 2
LP: minimize c-x
s.t. ai~x:bi, i:L...,m
x e RY.
“c-a” means the linear function “3°7 | c;jz;”
R} := {z € " | « > 0} is the nonnegative orthant.
R is a convex cone.
K is convex cone if z,w € K and o, 6 >0 = az+ pwe K. SLIDE 3
LP: minimize c-x
s.t. ai-x=b;y, i=1,....m
xz e RNY.
“Minimize the linear function c-x, subject to the condition that x must solve m given
equations a; - x = b;,i = 1,...,m, and that x must lie in the convexr cone K = R} .”
2.1.1 LP Dual Problem
SLIDE 4

LD : maximize Y yib;
i=1

s.t. E yia; +s=c
i=1
seRY.



For feasible solutions z of LP and (y, s) of LD, the duality gap is simply

c-w—zm:yibi: (c—zm:yim) cx=s5-22>0
i=1 i=1

If LP and LD are feasible, then there exists ™ and (y*, s*) feasible for the primal and
dual, respectively, for which

m
c-xt — E yibi =s 2" =0
i=1

3 Facts about the Semidefinite Cone

If X is an n X n matrix, then X is a symmetric positive semidefinite (SPSD) matrix
if X = X" and
vIXv >0 for any veR"

If X is an n X n matrix, then X is a symmetric positive definite (SPD) matrix if
X = X" and

vIXv >0 forany veR",v#£0

4 Facts about the Semidefinite Cone

S™ denotes the set of symmetric n X n matrices

S% denotes the set of (SPSD) n X n matrices.

ST, denotes the set of (SPD) n x n matrices.  Let X,Y € S™.
“X > 0” denotes that X is SPSD

“X »Y” denotes that X —Y =0

“X > 0” to denote that X is SPD, etc.

Remark: ST = {X € S" | X > 0} is a convex cone.

5 Facts about Eigenvalues and Eigenvectors

If M is a square n X n matrix, then A\ is an eigenvalue of M with corresponding
eigenvector q if
Mg=Aq and q¢#0.

Let A1, A2, ..., Ay, enumerate the eigenvalues of M.

6 Facts about Eigenvalues and Eigenvectors

The corresponding eigenvectors ¢',¢2,...,q" of M can be chosen so that they are
orthonormal, namely

(qi)T (qj) =0fori#j and (qi)T (qz) -
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Define:

Then Q is an orthonormal matrix:

QTQ =1, equivalently Q¥ =Q~!

A1, A2, ..., Ap are the eigenvalues of M
q',q%,...,q" are the corresponding orthonormal eigenvectors of M

Q:: [ql q2 qn]

QTQ =1, equivalently QT = Q!

Define D:
A1 O 0
0 Ao
D =
0 An

Property: M = QDQT.

The decomposition of M into M = QDQT is called its eigendecomposition.

7 Facts about Symmetric Matrices

o If X € S, then X = QDQT for some orthonormal matrix @ and some diagonal
matrix D. The columns of @ form a set of n orthogonal eigenvectors of X,
whose eigenvalues are the corresponding entries of the diagonal matrix D.

e X > 0ifand only if X = QDQ" where the eigenvalues (i.c., the diagonal entries

of D) are all nonnegative.

e X > 0if and only if X = QDQT where the eigenvalues (i.e., the diagonal entries

of D) are all positive.

e If M is symmetric, then

e Consider the matrix M defined as follows:

P v

where P > 0, v is a vector, and d is a scalar. Then M > 0 if and only if

d—vTP~ v >0.

e For a given column vector a, the matrix X := aa” is SPSD, i.e., X = aa” = 0.
e If M = 0, then there is a matrix N for which M = NTN. To see this, simply

take N = D2 Q7.
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8 SDP

8.1 Semidefinite Programming
8.1.1 Think about X
Let X € S™. Think of X as:

e a matrix
e an array of n? components of the form (z11,...,Znn)

e an object (a vector) in the space S™.

All three different equivalent ways of looking at X will be useful.

8.1.2 Linear Function of X

Let X € S™. What will a linear function of X look like?
If C(X) is a linear function of X, then C'(X) can be written as C' @ X, where

COX = iiC”Xw

i=1 j=1
There is no loss of generality in assuming that the matrix C is also symmetric.

8.1.3 Definition of SDP
SDP : minimize CeX
s.t. A;e X =b;, ,i=1,...,m,

X =0,

“X > 07 is the same as “X € S}”

The data for SDP consists of the symmetric matrix C' (which is the data for the
objective function) and the m symmetric matrices A1, ..., Amn, and the m—vector b,
which form the m linear equations.

8.1.4 Example

10 1 0 2 8 I 12 3
Ar=[(0 3 7)), A=(2 6 0 ,b:<19>, and C=(2 9 0],
17 5 8 0 4 30 7

The variable X will be the 3 X 3 symmetric matrix:
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SDP :

minimize
s.t.

z11 + 4x12 + 6213 + 9x22 + Oz23 + 7233
r11 + 0x12 + 2213 + 3w22 + 1423 + 5233
0x11 + 4x12 + 16213 + 6222 + Ox23 + 4233

11
X =1 z21
Z31

11 + 4712 + 6213 + 9222 + 023 + TX33
z11 + 0x12 + 2213 + 3x22 + 14223 + 5233 11
O0z11 + 4x12 + 16213 + 6222 + Oz23 + 4233 = 19

11
19

12
T22
32
SDP : minimize
s.t.

11
21
Z31

12
x22
32

Z13
23
33

It may be helpful to think of “X > 0” as stating that each of the n eigenvalues of X must be
nonnegative.

X = > 0.

8.1.5 LPCSDP

LP:

minimize

c-x
s.t. a;-x="b;, i=1,...,m
n
z € RY.
Define:
a1 0 0 ct O 0
0 a;2 0 0 c2 0
A; = . . , i=1,...,m, and C =
0 0 Ain 0 0 ... cn
SDP minimize C e X
s.t. A;eX =b;, ,i=1,...,m,
Xij=0, i=1,...,n, j=i+1,...,n,
X 0 0
0 T2 0
X = =0,
0 0 ... zn
9 SDP Duality
m
SDD: maximize Y yibs
=1
m
s.t. ZylAz—&-S:C
1=1

S > 0.
Notice

S:C—zm:yiAit()

i=1
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10 SDP Duality

and so equivalently:

SDD :

s.t.

10.1 Example

1 0 1 0
Air=10 3 7], Ax=|2
1 7 5 8
SDD : maximize 1ly; + 19y2
s.t.
S>=0
SDD : maximize 1ly; + 19y2
1 0 1
s.t. y1{ 0 3 7
1 7 5
S>=0
is the same as:
SDD : maximize
s.t.
1—1y1 — Oy2
2 —0y1 — 2y2
3 —1y1 — 8y

10.2 Weak Duality

Weak Duality Theorem: Given a feasible solution X of SDP and a feasible solution

(y,S) of SDD, the duality gap is

CoX—Zyibi:SoXZO.

=1

If

maximize

<
=
VR
[
N w o
SR
~_
+
<
(V)
N
R CR=)
co N

0 2 8
+y2(2 6 0
8 0 4
11y1 + 19y2
2 —0y1 —2y2
9 — 3y1 — 6y2
0—Ty1 — Oy2

C.X—iyibizo,
i=1

then X and (y,S) are each optimal solutions to SDP and SDD, respectively, and

furthermore, SX = 0.

—_
N

+8=

[\
©

3—1y1 — 8y2
0—Ty1 — Oy2
7 —5y1 —4y2

S © N

[e=]
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10.3 Strong Duality

Strong Duality Theorem: Let 23 and zj, denote the optimal objective function
values of SDP and SDD, respectively. Suppose that there exists a feasible solution
X of SDP such that X > 0, and that there exists a feasible solution (§,S) of SDD
such that S = 0. Then both SDP and SDD attain their optimal values, and

Zp = Zp .

11 Some Important Weaknesses of SDP

e There may be a finite or infinite duality gap.
e The primal and/or dual may or may not attain their optima.

e Both programs will attain their common optimal value if both programs have
feasible solutions that are SPD.

e There is no finite algorithm for solving SDP.

e There is a simplex algorithm, but it is not a finite algorithm. There is no direct
analog of a “basic feasible solution” for SDP.

12 SDP in Combinatorial Optimization

12.0.1 The MAX CUT Problem

G is an undirected graph with nodes N = {1,...,n} and edge set E.

Let w;; = wj; be the weight on edge (3, j), for (i,5) € E.

We assume that w;; > 0 for all (z,5) € E.

The MAX CUT problem is to determine a subset S of the nodes N for which the
sum of the weights of the edges that cross from S to its complement S is maximized

(S:=N\S9).

12.0.2 Formulations

The MAX CUT problem is to determine a subset S of the nodes N for which the sum
of the weights w;; of the edges that cross from S to its complement S is maximized
(S:=N\8S).

Let z; =1forj€ Sandz; =—1forj€8S.

MAXCUT : maximize, 1> > wi;(1 — ziz;)
s.t. e {11}, j=1,...,n.
MAXCUT : maximize, 1> > wij(1—zizy)

s.t. z; €{-1,1}, j=1,...,n
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Let

Y =227 .
Then
Yij=zixz; t=1,...,n, j=1,...,n.
Also let W be the matrix whose (i, )™ element is w;; fori =1,...,nand j =1,...,n.
Then
MAXCUT : maximizey,, 1y » wij—WeY
i=1j=1
s.t. z; €{-1,1}, j=1,...,n
Y = zaT
MAXCUT : maximizey,, 1y, » wij—WeY
i=1j=1
s.t. z; €{-1,1}, j=1,...,n
Y = zaT
The first set of constraints are equivalent to Y;; =1, =1,...,n.
MAXCUT : maximizey,, i S wi; —WeY
i=1j=1
s.t. Y;;=1, j=1,...,n
Y =zt
MAXCUT : maximizey, i S D> wi; —WeY
i=1j=1
s.t. Y;;=1, j=1,...,n
Y = za2”.

Notice that the matrix Y = zz7 is a rank-1 SPSD matrix.
We relax this condition by removing the rank-1 restriction:

wi; — W eY
1

n n
RELAX : maximizey %Z
i=1j=

s.t. Yij=1, j=1,...,n
Y »=o.

It is therefore easy to see that RELAX provides an upper bound on MAXCUT, i.e.,
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MAXCUT < RELAX.

RELAX : maximizey % S wi;—WeY

s.t. Yij=1, j=1,...,n
Y > 0.
As it turns out, one can also prove without too much effort that:

0.87856 RELAX < MAXCUT < RELAX.

This is an impressive result, in that it states that the value of the semidefinite
relaxation is guaranteed to be no more than 12.2% higher than the value of

N P-hard problem MAX CUT.

13 SDP for Convex QCQP

A convex quadratically constrained quadratic program (QCQP) is a problem of the

form:

QCQP: minimize zTQoz+ ¢z + co

x
s.t. 2TQizr+q¢fz+e; <0 ,i=1,...,m,
where the Qo = 0 and Q; = 0, ¢ =1,...,m. This is the same as:
QCQP : minimize 60
x,0
s.t. 2TQor+qiaz+co—0<0
2TQiz+qfx+e; <0 ,i=1,...,m.
QCQP : minimize 60
x,0
s.t. 2TQor+ gz +co—0<0
2TQiz+¢fxz+e; <0 ,i=1,...,m.
Factor each Q; into
Qi = M M;
and note the equivalence:
I M;x T T
= — i i i < 0.
<xTMiT _Ci_qiTl'>0 T Qirtgrte <0
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QCQP : minimize 6
xz,0
s.t. xTQox—i-qu—i-co—GSO

xTQix—i-qiTx—i-CiSO vi=1,...,m.

Re-write QCQP as:
QCQP : minimize 6

xz,0
I Moz
s-t. ( xTMg —co—qu—i-ﬁ > =0
I M;x .
- =1,... .
( xTMiT —ci—qiTa? )*0 =1, »m

14 SDP for SOCP

14.1 Second-Order Cone Optimization

Second-order cone optimization:
SOCP : min, Tz

s.t. Az =1b

|Qix + di|| < (giTx—&—hi) , 1=1,...,k.

Recall ||v]| := vVvTv
SOCP : ming; cl'z
s.t. Ax =b
Qiz +di < (gg‘rfv-*-hi) ,oi=1,...,k.
Property:

T
1Qa +dll < (97w +h) = (%’Qj:df;y ;%i?)*o'

This property is a direct consequence of the fact that

M:(ﬁ Z)to — d—vTPy>0.

SOCP : ming, Lz
s.t. Ax =b

IQiz +dill < (¢Fz+hi) , i=1,....k.

Re-write as:

10
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SDPSOCP : ming Lz
s.t. Ax =b

((9¢T93+hi)1 (Qi$+di)> 0, i

=1, k.
(Qiz+d)"  glz+h

15 Eigenvalue Optimization

SLIDE 45
We are given symmetric matrices B and A;,i =1,...,k

Choose weights w1, ..., w, to create a new matrix S:

k
S =B — szAz .
=1

There might be restrictions on the weights Gw < d.
The typical goal is for S is to have some nice property such as:

® Anin(S) is maximized
o )\max(S) is minimized

® Anax(S) — Amin(S) is minimized

15.1 Some Useful Relationships
Property: M > tI if and only if Amin (M) > t.
Proof: M = QDQT. Define

SLIDE 46

R=M—tI =QDQ" —tI =Q(D —tNHQ" .

M>»tl < R=0 < D—tI[>0 < Iniu(M)>t.

q.e.d.

Property: M < tI if and only if Amax(M) < t.

15.2 Design Problem

Consider the design problem:

SLIDE 47
EOP: minimize Amax(S) — Amin(5)
w, S
k
s.t. S=B- > wid;
=1

Gw <d .
SLIDE 48
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EOP: minimize Amax(S) — Amin(S)
w, S

k
s.t. S=B-— Z ”LUZAZ
i=1

Gw <d .
This is equivalent to:

EOP: minimize w—A
w, S’ Ky A

s.t. S=B-— Z w;A;

16 The Logarithmic Barrier Function for SPD

Matrices
SLIDE 49
Let X > 0, equivalently X € S7.
X will have n nonnegative eigenvalues, say A1(X),...,An(X) > 0 (possibly counting
multiplicities).
85_7_:{)(6 Sn ‘ /\](X) 207]: 17--‘7”7
and A;(X) =0 for some j € {1,...,n}}.
SLIDE 50
ST ={XeS" | N(X)>0,j=1,...,n,
and A;(X) =0 for some j € {1,...,n}}.
A natural barrier function is:
B(X):=-)» Wm\(X))=-In (H )\i(X)> = — In(det(X)).
j=1 j=1
This function is called the log-determinant function or the logarithmic barrier function
for the semidefinite cone. SLIDE 51

B(X):==)» I\(X))=—In (H MX)) = — In(det(X)).

Quadratic Taylor expansion at X = X:

- - o1 1 5/ 1 o5 1 ol o 1
B(X +aD) ~ B(X) +aX oD+ o (X72DX72 ) e (X72DX"2) .

B(X) has the same remarkable properties in the context of interior-point methods for
SDP as the barrier function — Z;.;l In(z;) does in the context of linear optimization.

12



17 The SDP Analytic Center Problem

Given a system:
m
g yid; X C,
i=1

the analytic center is the solution (g, S) of:

(ACP:) maximizey g JIRYE)
i=1
s.t. ZZl yiAi +S=C
S=0.
(ACP:) maximize, g H Ai(S)
i=1
s.t. EZI y Ay +S=C
S=0.
This is the same as:
(ACP:) minimize, g —Indet(S)
s.t. Z:il yi Ay +S=C
S>0.
(ACP:) minimizey g —Indet(5)
s.t. Zil yi Ay +S=C
S>0.

Let (g, S) be the analytic center.
There are easy-to-construct ellipsoids Ern and EguTt, both centered at § and where EgyT is
a scaled version of Ern with scale factor n, with the property that:

FEin C P C Eour

13
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18 Minimum Volume Circumscription

SLIDE 56
R > 0 and z € R" define an ellipsoid in R™:
Er.={y|(y—2)"Ry—2) <1}
The volume of Eg , is proportional to \/det(R~1). SLIDE 57
Given k points cq,...,c,, we would like to find an ellipsoid circumscribing
c1,...,c, that has minimum volume:

14



SLIDE 58

MCP : minimize vol (Er,.)

which is equivalent to:

MCP : minimize
R,z
s.t.

MCP : minimize
R,z
s.t.

R,z
s.t. ¢ €FEr., i=1,...,k

— In(det(R))
(ci—2)TR(ci—2) <1, i=1,...,k

R>0
SLIDE 59

—In(det(R))
(ci—2)TR(ci—2) <1, i=1,...,k

R>0

Factor R = M? where M = 0 (that is, M is a square root of R):

MCP : minimize
M,z
s.t.

— In(det(M?))
(ci—2)"MTM(c;i —2) <1, i=1,...,k,

M =0
SLIDE 60
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MCP: minimize — In(det(M?))
M,z
s.t. (ci —2)TMTM(c; —2) <1, i=1,...
M > 0.
Notice the equivalence:
I MCi — Mz o T T o
( (Me; — M2)T 1 )tO — (c;—2)'M " M(c;—2)<1
Re-write MCP:
MCP : minimize —2In(det(M))
M,z
I Mc; — Mz
5.t ( (Mc; — M2)T 1 ) z 0,
M > 0.
MCP : minimize —2In(det(M))
M,z
I Mc; — Mz
s-t. ( (Me; — Mz)T 1 ) z0, 1
M > 0.
Substitute y = M=z:
MCP : minimize —2In(det(M))
M,y
I Mc; —y _
s.t. ( (Mci—y)T 1 > >0, i=1,
M > 0.
MCP : minimize —2In(det(M))
M,y
I Mc;, — vy
s.t. =0
( (Me; —y)T 1 0

This problem is very easy to

M > 0.

solve.

Recover the original solution R,z by computing:

R=M? and z=M'y.

19 SDP in Control Theory

A variety of control and system problems can be cast and solved as instances of

SDP. This topic is beyond the scope of this lecturer’s expertise.

16
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20 Interior-point Methods for SDP
20.1 Primal and Dual SDP

SDP: minimize CeX
s.t. A;e X =0b; ,i=1,...,m,
X >0
and

m
SDD: maximize Zyibi
i=1

s.t. Z yiA; +S=C
1=1

S~=0.
If X and (y, S) are feasible for the primal and the dual, the duality gap is:

CoX—Zyibi:Son(].

=1

Also,
SeX =0 < SX=0.
B(X) = — Zln()\i(X)) =—In H Ai(X) | = — In(det(X)) .
j=1 Jj=1
Consider:

BSDP(p): minimize C o X — pln(det(X))
s.t. A;e X =b; ,i=1,...,m,

X > 0.
Let fu.(X) denote the objective function of BSDP(u). Then:

—Vfu(X)=C—px~!

BSDP(p): minimize C o X — pln(det(X))
s.t. A;e X =b; ,i=1,...,m,
X > 0.

Vfu(X) = C — px—1
Karush-Kuhn-Tucker conditions for BSDP(u) are:

AZOX:bZ ,i:l,...,m,

X =0,

C — ,LLX71 = Z yzAz
1=1

17
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A;e X =b;, ,i=1,...,m,
X =0,

C— ,LLX_l = Z yzAz
i=1
Define
S=puX""',

which implies
XS =ul,

and rewrite KKT conditions as:
AieX =b; ,i=1,....m, X =0
iyiAi“rS:C
f;ig:p,].
AieX =b; ,i=1,....m, X >0
S yid; £S5 =C
3?16‘:/1].

If (X,y,S) is a solution of this system, then X is feasible for SDP, (y, S) is feasible

for SDD, and the resulting duality gap is

n n

SeX = Zzsinij = Z(SX)M — Z(Nj)jj — np.

i=1 j=1 =1 J=1

AieX =bi i=1,....m, X =0
SyiAdi+S=C

=1

XS =ul.

If (X,y,S5) is a solution of this system, then X is feasible for SDP, (y, S) is feasible

for SDD, the duality gap is

SeX =npu.

This suggests that we try solving BSDP(u) for a variety of values of y as y — 0.
Interior-point methods for SDP are very similar to those for linear optimization, in

that they use Newton’s method to solve the KKT system as p — 0.

21 Website for SDP

A good website for semidefinite programming is:

http://www-user.tu-chemnitz.de/ helmberg/semidef.html.
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22

Optimization of Truss Vibration

22.1 Motivation

The design and analysis of trusses are found in a wide variety of scientific ap-
plications including engineering mechanics, structural engineering, MEMS, and
biomedical engineering.

As finite approximations to solid structures, a truss is the fundamental concept
of Finite Element Analysis.

The truss problem also arises quite obviously and naturally in the design of
scaffolding-based structures such as bridges, the Eiffel tower, and the skeletons
for tall buildings.

Using semidefinite programming (SDP) and the interior-point software SDPT3,
we will explore an elegant and powerful technique for optimizing truss vibration
dynamics.

The problem we consider here is designing a truss such that the lowest frequency
) at which it vibrates is above a given lower bound 2.

November 7, 1940, Tacoma Narrows Bridge in Tacoma, Washington

22.2 The Dynamics Model

Newton’s Second Law of Motion:

F=mxa.

19
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T

If the mass is pulled down, the displacement u produces a force in the spring tending
to move the mass back to its equilibrium point (where v = 0).

The displacement u causes an upward force k X u, where k is the spring constant.
We obtain from F' = m X a that:

—ku(t) = mi(t)

SLIDE 77
Law of Motion:
—ku(t) = miu(t)
Solution:
. [ k
u(t) = sin ( p— t>
Frequency of vibration:
[ k
w=4/—.
m
22.2.1 Apply to Truss Structure
SLIDE 78
Law of Motion:
—ku(t) = mi(t)
Solution:
[ k
t) = si — t
u(t) = sin ( - >
k
w=1/—
m
For truss structure, we need multidimensional analogs for k,u(t), and m. SLIDE 79

A simple truss.
Each bar has both stiffness and mass that depend on material properties and the bar’s
cross-sectional area.

20



5 feet

6 feet

A

10 feet

22.2.2 Analog of k

The spring constant k extends to the stiffness matrix of a truss.
We used G to denote the stiffness matrix.
Here we will use K.

K=G=AB'AT

Each column of A, denoted as a;, is the projection of bar ¢ onto the degrees of freedom
of the nodes that bar ¢ meets.

L2 0 Elél 0
Eitr Ly
—1
B= . . B l'=
' 2
0 Lm 0 Eznétrn
Emtﬂl m

22.2.3 Analog of m

Instead of a single displacement scalar u(t), we have N degrees of freedom, and the
vector
u(t) = (ur(t),...,un(t))
is the vector of displacements.
The mass m extends to a mass matrix M

22.2.4 Laws of Motion

—ku(t) = mi(t)

21
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becomes:
—Ku(t) = Mi(t)

Both K and M are SPD matrices, and are easily computed once the truss geometry
and the nodal constraints are specified. SLIDE 83
—Ku(t) = Mi(t)
The truss structure vibration involves sine functions with frequencies
Wi = \/Xz
where

Ay ooy AN
are the eigenvalues of
MK
The threshold frequency € of the truss is the lowest frequency wi,i = 1,..., N, or
equivalently, the square root of the smallest eigenvalue of M K. SLIDE 84
—Ku(t) = Mi(t)

The threshold frequency ) of the truss is the square root of the smallest eigenvalue of
M™'K.
Lower bound constraint on the threshold frequency

Q>0

Property: ~ ~
Q>0 = K-OPM»-0.

22.3 Truss Vibration Design

SLIDE 85
We wrote the stiffness matrix as a linear function of the volumes ¢; of the bars i:
K=Y tig(ai)(a)”,
i=1 v
L; is the length of bar ¢
F; is the Young’s modulus of bar ¢
t; is the volume of bar 1.
22.4 Truss Vibration Design
SLIDE 86
Here we use y; to represent the area of bar i (y; = 2—1)
K=K =3 [E @] w= 3 K
=1 Ll =1
where g
Ki=[THa)@)"] i=1.m
¢ SLIDE 87
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., My, for which we can write the mass matrix as a linear

There are matrices M, ..

function of the areas yi,...,Ym:

M = M(y) = ZMi?Jz‘
=1
SLIDE 88

In truss vibration design, we seek to design a truss of minimum weight whose threshold

frequency € is at least a pre-specified value Q.

TSDP : minimize Ebiyi
i=1

Z(K'b — Qle)yz t 0

s.t.
i=1
.,m.

i<yi<ui, t=1,..
SLIDE 89

o~

The decision variables are y1,...,Ym
li,u; are bounds on the area y; of bar ¢ (perhaps from the output of the static truss
SLIDE 90

design model)
b; is the length of bar i times the material density of bar 4
TSDP: minimizey Y biys
i=1

(K; — Q*M,)y; = 0

NgE

s.t.

Il
—

leyzSUz, 7::1,...,771
SLIDE 91

22.5 Computational Example
TSDP : minimizey ibiyi
=1

i=1

lzgy1§u17 7'7177m
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5 feet

A

10 feet

6 feet

TSDP :

s.t.

e mass density for steel, which is p =0.736e—03

e Young’s modulus for steel, which is 3.0e+07 pounds per square inch

e () =220Hz

22.5.1 SDPT3

SDPT3 is the semidefinite programming software developed by “T3”:

m
minimizey Zbiyi
i=1

INNgEL

o~
N

l; = 5.0 square inches for all bars i

u; = 8.0 square inches for all bars 4

(K; —Q2M;)y; = 0

1
i Sy Sug, 1=1,...

e Kim Chuan Toh of National University of Singapore

e Reha Titiingu of Carnegie Mellon University

e Michael Todd of Cornell University
Statistics for TSDP problem run using SDPT3

Linear Inequalities 14
Semidefinite block size 6 X6

CPU time (seconds): 0.8

IPM Iterations: 15

| Optimal Solution

Bar 1 area (square inches) 8.0000
Bar 2 area (square inches) 8.0000
Bar 3 area (square inches) 7.1797
Bar 4 area (square inches) 6.9411
Bar 5 area (square inches) 5.0000
Bar 6 area (square inches) 6.9411
Bar 7 area (square inches) 7.1797
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5 feet

6 feet

10 feet

22.6 More Computation
SLIDE 96

A truss tower used for computational experiments. This version of the tower has 40
bars and 32 degrees of freedom.
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tower

100 T T T T T T
(00
80
70
60 |
50
40
30
20
10
O 1 1 1 1 1 1
60 40 20 0 20 40 60
Computational results using SDPT3 for truss frequency optimization.
Semidefinite Linear Scalar IPM CPU time
Block Inequalities | Variables || Iterations (sec)
12 x 12 30 15 17 1.17
20 x 20 50 25 20 1.49
32 x 32 80 40 21 1.88
48 x 48 120 60 20 2.73
60 x 60 150 75 20 3.76
80 x 80 200 100 23 5.34
120 x 120 300 150 23 9.46

22.6.1 Frontier Solutions

Lower bound on Threshold Frequency 2 versus Weight of Structure
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Weight

'I 5 | | | | | |

200 205 210 215 220 225 230 235
Q, lower bound on frequency (Hz)
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