Telecommunication System Design:
Minimum-Cost Embeddings of Reliable
Virtual Private Networks

Prepared by Andreas S. Schulz



Overview

e The Project’s Origin

e The Problem’s Origin

e An Integer Programming Model
e A Lagrangian Relaxation

e A Comparison of Lower Bounds
e A Branch&Bound Approach

e Computational Results

e Extensions
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The Project’s
Origin

e Symposium on Operations Research 1994, Berlin.
e R&D Division, Deutsche Telekom AG, Darmstadt.
e Math. Dept., Berlin University of Technology:

— Ewgenij Gawrilow (Programmer),

—Olaf Jahn (Research Assistant),

— Rolf H. M6hring (Principal Investigator),
—Martin Oellrich (Research Assistant),

— Andreas S. Schulz (Principal Investigator).

e Official Start: July 1, 1995. 1 year.
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The Problem’s Market Liberalization

Origin

Prior to Deregulation.
Operation + management of network infrastructure and provision
of network services organized as integrated process.

Post Deregulation.
Competing providers of network services lease required transport
capacity from carriers of physical transmission networks.

U

Resulting subnetworks are independently operated.
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Virtual Private Networks

The Problem’s
Origin

A VPN appears to be exclusively controlled and

managed by a customer alone.

In reality, it consists of a number of lines leased from a
carrier.

VPNs are typically deployed as data service networks,
or backbones for mobile and ATM networks.
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Virtual Private Networks

The Problem’s
Origin
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The Problem’s Carrier’s Objective

Origin

The carrier has to balance two conflicting goals:

e On the one hand, customers require reliability.

e On the other hand, costs have to be kept at a
minimum in order to be competitive.

Note. In network engineering, reliability is a key issue. Keeping
their networks stable and operable are primary goals of all service
providers.
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The Problem’s Disjoint Routing

Origin

A VPN is reliable when no single fault in one physical
trunk can affect more than one of the logical
connections in the VPN. One can accommodate this
request by routing no two connections over a common
trunk.

Technically speaking, the different leased lines must
be routed disjointly.
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. Disjoint Paths Problem

Model

THE MINIMUM COST DISJOINT PATHS PROBLEM.

Input: A graph G = (V, E),
c: F — IN,
k pairs {s1,%1},...,{8k, t} Of terminals.

Goal:  Find k edge-disjoint paths Pi,..., P
in G connecting {sy,%1},..., {sk, tr}

such that » ~¢(P;) is minimum.

=1
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Computational
Complexity

e How difficult is the MINIMUM COST DISJOINT PATHS
PROBLEM?

e What if we disregard the disjointhess constraint?

?2??
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Mathematical Multicommodity Flow

Model

k
. S S £
ITiin g ¥ ng mij

£=1 (i j)eA

st mf—) af = b Vie V,Vee{1,...,k},
J J
k
Y (zf+h) <1 ¥{i,j} € E,
£e=]1

i ¢ {0,1}  V(i,j) e A,Vee{1,...,k}.

LA
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Mathematical
Model Notation

Directed Network:
A:={(u,v), (v,u) |{u,v} € F}

Supplies/Demands:
1, Vi — Sy
bf =4 —1, ifi=1,,
0, otherwise.
Decisions:
ot { 1, if {2,7} belongs to path P,
t) "

0, otherwise.
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Lower Bounds

e Proving optimality.
e Identifying near-optimal solutions.

Your Ideas for Lower Bounds?

1. Combinatorial (Cheapest Paths)

2. Linear Programming Relaxation

3. Lagrangian Relaxation
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e Reducing search space in enumerative approaches.
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Lag rangian Dualizing “Bad” Constraints

Relaxation

OP . miﬂmg{[}’l} C

s.t. Nax
Ax

b
1

IA |

We know that optimization over the constraints
“‘Nx =b, x € {0,1}" Is easy.

The addition of the constraints “Ax < 1” makes the
problem much more difficult.

Let P=1xc 10,1} ¢ Nz = b}
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Lag rangian Dualizing “Bad” Constraints

Relaxation

OP : min, cx

s.t. Axr <
=

1
T P

The Lagrangian is:
L(zx,u)=cx4+u(Ax—1) = —ul+ (c+uvA)x
And the Lagrangian dual, for u > O:

L*(u) :=min, —ul—+ (c+uA)x
s.t. rc P
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: itive Interpr ion
Lagranglan Intuitive Interpretatio

Relaxation

k k
minz Z Cij mfj =+ Z uij(;(mfj s ﬂfﬁi) —1)
3

£=1 (i,j)eA {i,j}eE
Y (x5 — =) = b Vi, Ve
j

xi. € {0,1}  V(i,5),VE

LY

Repeatedly used arcs have higher (virtual) cost.

Unused arcs might become more attractive.
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Lagrangian Solving the Dual

Relaxation

L*(u) := min, —ul+ (c+uA)x
8.t. T e P

D : max, L*(u)
s.t. u>0

Notice that L*(w) is easy to evaluate for any value of w, and so
we attempt to get good lower bounds for OP by designing an
algorithm to solve the dual problem D.

Which algorithm could we choose?
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Lagrangian Properties of the Dual

Relaxation

e The dual is a concave maximization problem.
e The dual function L*(u) is piece-wise linear.

L™ (u) = 1;}51}51 L(x,u)

= min{—-ul+ (c+uA)z’ : t=1,...,T}

We may use a subgradient method to solve the dual.
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Lagrangian Properties of the Dual

Relaxation
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Lagrangian Combinatorial Subgradients

Relaxation

Theorem 1
Let x* be an optimal solution to min .. p L(x,u), for

somew > 0. Then, Ax* — 1 is a subgradient of L*(.)
In w.

Remember d is a subgradient of L* in w iff L*(v) — L*(u) < d(v—u) forall v.
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Combinatorial Subgradients

Lagrangian
Relaxatglon

L*(v) — L' (u) = min L(x,v) — min L(x,u)

zeP xc P
— I}:gll:l L(z,v) — L(z",u)

A

L(z*,v) — L(x*,u)
= (cz*+v(Az*—1)) — (cz"+u(Axz* — 1))

= (Az"—1)(v—u) .
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Lagrangian Subgradient Algorithm

Relaxation

k
h+4+1 h ; ¢
u o=y 4 an( ) (af +af;) — 1)
£=1

Theorem 2 (Polyak 1967)

Let L*(u) be concave and bounded from above. If the sequence
of step-lengths (ap)nemw satisfies ap, > 0, limy, ., ap, = 0, and
> an = 00, then the subgradient method converges to the
maximum.

C) 2002 Massachusetts Institute of Technology 15.094 22



Typical Run

Lagrangian
Relaxation
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Lagrangian Practitioner’s Choice

Relaxation

Use linear approximation L(u) = cx(h) + u(Axz(h) — 1) t0
L*(u).

Let L* be the optimum value of the Lagrangian dual.

Set 8;, such that
L(u"™) = cz(h) + (u* 4+ 0n(Ax(h) —1))(Az(h) — 1) = L*.

B 2 (T
Hence, 0n = e
Therefore,
An(UB — L* (uh)
9;1-, —

|Az(h) — 1]
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Typical Run

Lagrangian
Relaxation
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Comparison of
Lower Bounds

L

Computational Results

time[sec] | cheapest paths lLagrangian LP relaxation optimum

bound time bound time bound  time | wvalue time
geri7e | 54215 0.0 | 563365 1.3 | 563405 P20B| 56467 390
gerl7n 54679 00 5894950 0.3 58849.0 321 | 58949 321
gery e 83968 0.0 g2i13z20 1.7 21320 11198 | 92132 11198
gerisan 89601 0.0 SB146.0 1.1 98146.0 502 | oB146 502
gerige 53321 0.0 552658 29 55266.0 1771 8266 1711
gerign 53423 0.0 570242 24 570B6.0 1323 | 570B6 1323
gerZte 80356 0.0 B3024.8 46 830895.0 5634 | 83095 5634
gerzsn 80125 0.0 87348.0 53 | 874044 BSO3 | 87458 9108
usa/le s60B10 OO 614888 OB 614890 11| 61489 11
usasn 61214 0.0 663540 06 66358.0 8| 65942 168
usaize 6/8630 0.0 698582 05 65859 .0 &8 | 698559 162
usaizn 67835 00 730524 D7 73104.7 43 | 74556 121
usagée |104283 00 | 1084837 39 108484 5029 (108494 5029
usaZen 105168 00 |1234124 35 |123601.1 2655 | 123835 5537
usadve | 105412 00 | 112486.0 21 | 1124860 1BD36 | 112486 18252
usa3rn 105412 0.0 |121550.0 20 |[121550.0 10961 | 121550 10961

iassachusetls Instiiute of lechnology
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: Lagrange vs. LP

Lower Bounds

Theorem 3

max L*(u) > LP value .

Equality holds if the polyhedron defined by N x = b,
0 < x <1 isinteger.
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Lagrange vs. LP

Comparison of

Lower Bounds Proof...
mexLi(u) =max =min Lz,
> max min L(x,u)

uw>0 Nz=b,xz>0

= max min (—ul+ (c+ ud)x)

u>0 Naz=baz>0

max (—ul 4+ min (c+ ud)x)

u>0 Nz=b,z>0

—ul —_ ...
Tl v
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Lagrange vs. LP

Comparison of
Lower Bounds ...Proof

= gmax | (—ul+yb)

min Pt 5
Nz=b,Ax<1,z>0

— optimal LP value.
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Ingredients
Branch&Bound

e Branching Strategy
e Exploration Strategy
e Lower Bounds

e Upper Bounds

[see picture]
Best Bound Search.
Lagrangian Dual.

Lagrangian Dual !!!
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Problemspecific Branching

Branch&Bound
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Branch&Bound Computational Results 1996

vs. CPLEX 3.0

time[min] | size |branch&bound CPLEX
geri7e 164 7.1 6.5
gerl7n |nodes 0.6 54
ger73e 386 0.2 186.6
ger/73n |edges 0.0 8.4
geri6e 434 8.2 29.5
gerién | nodes 838.8 2en]
ger28e 978 13.5 93.9
ger28n |edges 94.8 151.8
usa’e 176 O} 0.2
usazn nodes 0.6 2.8
usalZe 314 0.1 2.7
usal2n |edges 0.1 2.0
usa26e 617 0.1 83.8
usa2bn |nodes 2.3 100.0
© 2002 v‘ImcmHléﬁl‘l’J?m Wi[égs‘gT dmo!c%’.s 304.2 15.094 32
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Branch&Bound
vs. CPLEX 6.5.3

Computational Results 2000

time[sec] size branch&bound | branch&bound || CPLEX
basele | 176 nodes | 0.2 0.2 0.5
baseln | 314 edges 196.1 17.65 9.6
base2e | 185 nodes &y 0.3 1.0
base2n | 354 edges = Y 6.1 8.2
base3e | 164 nodes 78.2 6.9 1.3
base3n | 368 edges 5.2 3.9 T3
basede | 434 nodes | 314.3 20.5 5.2
based4n | 978 edges 152.0 28.3 19.9
base5e | 617 nodes | 3.5 1.8 Dl
basebn | 1039 edges 102.8 9.7 43.6
basebe |6894 nodes 15.0 8.1

basebn |8072 edges 14.8
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Why was it successful?
Reflection

e On the technical side:

— Preprocessing

— Pruning by infeasibility

— Recycling of Lagrangian multipliers

— Efficient solution of shortest paths problems
— Data structures

e Project in itself:
— Very good team in Berlin with complementary skKills.

— Competent partners at Deutsche Telekom.
— Got data early enough.
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Preprocessing

676 nodes Z5E

L1O0T anpes A4




Preprocessing
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Done?

Did we solve the right problem?
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Extensions

e Edge capacities.
e Dependent edges.
e Varying bandwidth requirements.

e Simultaneous embedding of many VPNs.
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Typical Steps

e Problem identification.
e Problem penetration.
e Modeling.
e Problem complexity.
e Solution approach.
e Implementation.
e Fine Tuning.
e Feedback.

(©) 2002 Massachusetls Instiiute of lechnology
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Today’s Lessons
Some of

e Good (= fast and close) lower bounds pay off.
e Tradeoff Lagrangian relaxation vs. LP relaxation.

e Algorithm fine tuning involves mathematical insights
as well as engineering.

e Commercial software becomes increasingly stronger.
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