Exact Algorithms for the Minimum-Cost Embeddings of
Reliable Virtual Private Networks into Telecommunication

Networks

Rolf H. Mohring

Fachbereich Mathematik, Technische Universitat Berlin, Germany

Martin Oellrich

Technologiezentrum Darmstadt, Deutsche Telekom AG, Germany

Andreas S. Schulz
Sloan School of Management, MIT, Cambridge, USA

Fachbereich Mathematik, Technische Universitat Berlin, Germany

Summary: When establishing a virtual private network (VPN), a telecommunication provider has
to balance two conflicting goals. On the one hand, the customer requires reliability, on the other
hand, the provider has to keep costs at a minimum. This article presents two related approaches for
the optimal computational solution of the embedding of a VPN which is crucial in modern network
planning.

1. Introduction

In telecommunications engineering, there is more to do than accelerating transmission or constructing
safer encryption codes. Raising a large technological system typically shows an increasing risk of
failure due to unforeseen influences, inherent inconsistencies, or lack of control despite all efforts.
Keeping their networks stable and operable are the primary goals of all telecommunication providers.
Therefore, safety measures are being called for by their customers. A typical example in this context
is the routing of a virtual private network (VPN).

A VPN, as the name indicates, is a network that appears to be exclusively controlled and operated by
a customer company alone. In reality, it consists of a number of permanent lines that are leased from
a carrier. So control also lies upon the latter to a significant extent. And for this reason, the carrier
has to provide these lines subject to a reliability demand. This means that one failure in the carrier’s
network may at most cause one failure on the VPN level, in the customer’s network. Technically
speaking, the different leased lines must be routed disjointly through the carrier’s network.

In order to be competitive, the carrier must also consider the cost side of this demand. So naturally,
a reliable embedding of minimum cost is required. The problem of finding this optimum is the
mathematical task we treat in this paper.

The basis for this paper was a joint R&D project between the group Combinatorial Optimization and

Graph Algorithms at TU Berlin and the Network Optimization group at Deutsche Telekom AG that
has taken place from July 1995 through June 1996. It was initiated by earlier investigations of the
Deutsche Telekom AG [6]. One of the authors has written his Diploma thesis [4] about this project
containing all presented aspects in detail, along with many examples and important extensions. A
more elaborated journal paper [3] is in preparation, featuring more concepts and details of this

research.

Terminology

Throughout this text, we will refer to the physical network as the base graph G = (V,E), and to
the requested connections as the demand graph H = (T,D), T C V. The elements of V' and E are
called the nodes and edges of G, respectively. An element d = {s,t} € D is called a demand. Both
input graphs are multi-graphs which may contain parallel edges or demands, respectively, but no

loops. For examples of such data, see Figures 1 and 2.

0l
-/ ¥ .i o,

Figure 1: A physical network Figure 2: A virtual private network

(base graph) (demand graph)

In our project, we investigated the mathematical and algorithmic aspects of the so-called Minimum
Cost Disjoint Paths Problem in two versions, node- and edge-disjoint, respectively. The latter reads

as follows:

Minimum Cost Disjoint Paths Problem (MCDPP) (edge-disjoint version)

Given a base graph G = (V, E) with associated edge costs ¢: E — Q" and a demand
graph H = (T, D) where T'C V. For each demand d = {s,t}, find an embedding in
G as a simple s-t-path E? C E such that all paths are mutually edge-disjoint and the

total cost of all edges used is a minimum:

min Ydep Yoeemi c(e€)
s.t. FE'NEY =0 foralld,d € D,d#d.

The node-disjoint version differs from this one in that the paths may at most mutually share their
terminals. For these problems, we ask for only one optimal solution and do not require to produce
each of them, in case there are more than one.

An abundance of theoretical results is available on the topic of disjoint routing. The most important
ones are the NP-hardness of the problem, and the existences of feasible solutions as well as polynomial

time algorithms in highly restricted settings. A large number of them are surveyed in [4].

2. Lower Bounds on Costs

The key ingredients we need for designing a suitable search method are strong lower and upper
bounds on the optimal objective function values. In our case we generate feasible solutions and
hence upper bounds by means of a suitable heuristics guided by structural information that comes
along with our lower bounds.

In the following discussion, we concentrate on the computation of lower bounds. We denote a lower
cost bound on the optimal objective value of an (MCDPP) instance (G, H) with cost function ¢ by
LB.(G, H).

2.1 The Model

The min-cost VPN embedding problem may be considered as a special case of the general multi-
commodity flow problem. The latter consists of a certain number of individual minimum cost flow
problems, tied together by so-called bundle constraints (for an introduction see [1]). These con-
straints typically limit the amount of flow on an arc of the underlying network up to a joint capacity
value. In our case, this value is uniformly equal to one on all the arcs, in addition to all arc flows
being restricted to the binary values of {0,1}. This forces the desired disjointness.

We now model the min-cost VPN embedding problem as an integer linear program. To this end,
we formalize three types of constraints, which are reflected in the corresponding (in)equalities in the

model:

(i) all demands are flows between their associated terminals,
(ii) all edges have got bundle capacities of one,

(iii) all flow values are binary.

In order to get a network N = (V, A) of directed arcs, we split all edges into two anti-parallel arcs

with costs equal to c(e):
A= {(u,v) | {u,v} € E}U{(v,u) | {u,v} € E}.

Each demand d € D represents a commodity, and the vector of all variables describing its flow values

is denoted by z¢. For each d = {s,t}, the balance vectors b* € {—1,0,1}V] are given by:

1 ifo=s,
i) =3¢ —1 ifv=t,

0 otherwise.
Finally, M € {—1,0,1}IVIXI4l denotes the node-arc incidence matrix where

1 if a = (u,v) for some u,
M,, = -1 if a = (v,u) for some u,

0 otherwise.

The edge-disjoint model of (MCDPP) now reads as follows:

min 3N c(a)z’(a)
deD acA
Model (ILP) s. t. (i) Mz = p? foralld € D
ode
(i) > (z%(u,v) +2%v,u)) <1 forall {u,v} € E
deD
(iii) z¢ € {0, 1} for all d € D.

Here, (i) models flow conservation (Kirchhoff’s Law), and (ii) the joint capacity constraints.
The node-disjoint model differs from the above only in constraint (ii) which is transformed to nodes

instead of edges in order to control the flow through nodes.

2.2 Lagrangian Relaxation

We assume that the reader is familiar with the basics of Lagrangian relaxation, subgradient optimiza-
tion, and their properties, see [1, 2]. Lagrangian relaxation applied to the disjointness constraint (ii)
of Model (ILP) reads:

min S0Y (elu,v) + Au,v)) (2w, v) + 2o, u) — D Au,v)

deD {up}eE {uv}€E
Model (LR») | ¢ (3 Mt = p forall d € D
(iii) z¢ € {0, 1} for all d € D.

Now for any value of vector A > 0, the remaining problem is to find a minimum cost flow for all
demands d € D independently from each other with respect to the new cost function c+\. Apparently,

this is equivalent to | D| individual shortest path problems.

3. The Branch-and-Bound Method

Our first solution method is based on the branch-and-bound paradigm. For an introduction to this
principle, see for instance, [5].

We note that a branch-and-bound approach is well suited for the solution of (MCDPP): we have
fast methods for computing good lower bounds, and we are able to partition each solution set into

disjoint subsets representing again (MCDPP) type problems.

3.1 Branching Strategy

We can achieve a disjoint partitioning of the partial solution set in a search tree vertex by observing
that every demand d = {s,t} must be embedded using exactly one edge e incident to its terminal
s. Hence, we choose every neighboring edge e once as a candidate for the embedding where we have
chosen the terminal s at random from the two terminals of d. Then, we partition the set of all
solutions into subsets differing by these edges e which are respectively added to the embedding of d
(and thereby excluded from the embeddings of all other demands).

G G'-e

Figure 3: Reduced problem (G' —e, H —d+ {v,t}) after embedding edge e
for demand d.

The node-disjoint case differs only slightly in that we reduce the base graph to G’ — v instead of
G' —e.

3.2 Bounding Subproblems

We test whether a subproblem (G’, H') at hand can possibly deliver a global optimal solution by
comparing
(x) cost(E\ E')+ LBc(G', H') < cost(Shest)

where E, E' are the edge sets of G,G’, respectively. The term E \ E’' means all edges hitherto
embedded for some demand, and cost(Syest) is the cost of the actual found best solution Spes:.

Obviously, this is not the case otherwise.

4. The Backtracking Method

Our second method is related to branch-and-bound. It partitions the set of all solutions into smaller

subsets, yet the divisions are made differently. The general idea is to simultaneously reduce G and

H in every step, thereby recursively defining a search tree. For this purpose, we successively embed
entire paths which are delivered by an appropriate path generation sub-algorithm, one at a time.

On every level of the search tree, we attempt to solve an (MCDPP) type problem (G',H') by
embedding one demand from H' successively by all paths that are possible in G'. With each of these
paths, we define a subproblem by removing its nodes or edges from G’ (depending on the disjointness

mode) and the embedded demand from H’. The bounding works analogously to equation (x).

5. Conclusion

Confronted with a real-world problem of the Deutsche Telekom AG, we have investigated the op-
timization problem (MCDPP) on arbitrary base and demand graphs in both versions, edge- and
node-disjoint. Due to their NP-hardness, we pursued exact approaches lacking a polynomial time
guarantee.

We have set up and implemented a method for computing lower bounds on the optimal objective
value of (MCDPP), representing the total embedding cost. They are the core ingredients in both
practical algorithms we have devised for obtaining optimal solutions to the embedding problems.
Subsequently, we have developed two combinatorial codes, one using a branch-and-bound method
and a backtracking type one. While the former approach had to be carefully adapted in order to
actually produce disjoint paths, the backtracking method is based on entire paths generated by an
appropriate subroutine.

Both methods have the advantage that execution can be terminated at any time while retaining the
best feasible solution hitherto found. This may be automated by finishing when the total cost cost(S)
of a solution S drops below a certain percentage p above the global lower cost bound LB¢(G, H).
We performed extensive experiments on several example classes which are from or close to real-world
situations. Throughout all our test runs, we have used the lower cost bounds LB, that were always
taken from the Lagrangian relaxation approach using subgradient optimization.

We have benchmarked both of our algorithms against the standard LP and IP solver cplex, version
3.0. This is a general tool for arbitrary optimization problems encoded by linear models. It does not
explicitly take into account the graph-theoretical structure of our problem (MCDPP), but exclusively
operates with the model variables. We observed in general that our algorithms mostly excelled in
performance over cplex. Some significant results can be seen in Table 5.below. Note that, although
in the cases considered feasible solutions always exist, this need not necessarily be true in general.
Methods for checking the existences of feasible solutions are described in [3, 4].

The code developed and implemented in this project has been integrated into a toolbox which is
used by the Deutsche Telekom AG.

Acknowledgments

We wish to acknowledge Joachim von Puttkamer, Wilfried Wieser, and Eckart Wollner from the
Center of Technology of the Deutsche Telekom AG who have identified the problem and initiated the
joint project. Also, we like to thank Olaf Jahn of the TU Berlin who has had a considerable part in

the implementation process.

time [min] size of back- branch-

base graph | tracking and-bound cplex
examplebe 185 0.0 0.0 0.3
example6bn nodes 0.1 0.3 0.2
examplel9e 354 1.5 2.0 8.1
examplel9n edges 24 0.9 16.9
example42e 0.2 0.1 60.1
example42n 0.7 0.3 20.9
examplell7e 676 n. 2.6 2.7 > 500

1107 e.

gerl7e 164 1.4 7.1 6.5
gerl7n nodes 0.0 0.6 5.4
ger73e 386 0.1 0.2 186.6
ger73n edges 0.0 0.0 8.4
gerl6e 434 2.3 8.2 29.5
ger16n nodes 19.3 33.8 22.1
ger28e 978 3.6 13.5 93.9
ger28n edges > 200 94.8 151.8
usa’e 176 0.0 0.2 0.2
usa7n nodes 0.5 0.6 2.8
usal2e 314 0.1 0.1 2.7
usal2n edges 0.4 0.1 2.0
usa26e 617 0.2 0.1 83.8
usa26n nodes 8.4 2.3 100.0
usa37e 1039 2.8 1.8 304.2
usa37n edges 0.1 0.0 182.7

Table 1: Running times of our (MCDPP) codes compared to cplex 3.0. The
postfix ‘e’ refers to the edge-disjoint case, ‘n’ to the node-disjoint one while the
decimals form the numbers of demands. Entries of “0.0” mean “below 6 seconds.”
All times were measured on a Sun SPARC 20 machine under SunOS 4.1.4.

time [sec] cheapest paths Lagrangian LP-relaxed optimum
bound time bound time bound time | value time
example6e 3567 0.0 3643.0 0.2 3643.0 12.7 3643 17.8
example6n 3567 0.0 3673.5 0.5 3673.5 10.3 3677 114
examplel9e 6918 0.0 7688.0 14 7688.0 483 7688 483
examplel9n 6966 0.0 8303.1 1.2 8303.5 662 8462 1011
exampled2e 8263 0.0 8707.0 1.5 8707.0 3605 8707 3605
example42n 8263 0.0 91026 1.7 9102.7 1237 9105 1251
examplell7e | 10478 0.03 11302.9 4.2 11303.0 > 10*| 11303 > 10*
geri7e 54215 0.0 56336.5 1.3 56340.5 208 | 56467 390
gerl7n 54679 0.0 58949.0 0.3 58949.0 321 | 58949 321
ger73e 88969 0.0 92132.0 1.7 92132.0 11198 | 92132 11198
ger73n 89601 0.0 98146.0 1.1 98146.0 502 | 98146 502
gerl6e 53321 0.0 55265.8 2.9 55266.0 1771 | 55266 1771
gerién 53423 0.0 57024.2 2.4 57086.0 1323 | 57086 1323
ger28e 80356 0.0 83094.8 4.6 83095.0 5634 | 83095 5634
ger28n 80125 0.0 87348.0 5.3 87404.4 8903 | 87498 9108
usa7e 60810 0.0 61498.8 0.6 61499.0 11 | 61499 11
usa7n 61214 0.0 66354.0 0.6 66398.0 8| 69942 168
usal2e 67835 0.0 69898.9 0.5 69899.0 68 | 69899 162
usal2n 67835 0.0 730924 0.7 73104.7 43 | 74556 121
usa26e 104293 0.0 | 109493.7 3.9 109494 5029 | 109494 5029
usa26n 105108 0.0 | 1234124 3.5 | 123601.1 2659 | 123835 5997
usa37e 1056412 0.0 | 112486.0 2.1 | 112486.0 18036 | 112486 18252
usa37n 105412 0.0 | 121550.0 2.0 | 121550.0 10961 | 121550 10961

Table 2: Comparison of different lower cost bounds: values and computation

times are given.

The LP-relaxed and optimum bounds were computed with

cplex, the cheapest paths with the same Dijkstra-subroutine underlying the La-

grangian relaxation. It can be seen that the Lagrangian bounds represent a good

compromise between accuracy and time.

17

7688

o
2
=
[¢)
©
£
8
o

value

22

optimal objective
= 8462

value

Figure 4: Optimal solutions to (MCDPP) on the example given in Figures 1

and 2. Left: node-disjoint case, right: edge-disjoint case.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin: Network Flows, Prentice Hall, Englewood
Cliffs (1993).

[2] M. Held, P. Wolfe, and H. Crowder: Validation of Subgradient Optimization, in Mathe-
matical Programming 6 (1974), pp. 62-88.

[3] R. H. Mohring, M. Oellrich, and A. S. Schulz: Optimal Embeddings of Reliable Virtual

Private Networks into Telecommunication Networks, in preparation.

[4] M. Oellrich: Algorithms for the Construction of Reliable Network Platforms in Telecom-
munication Networks, unpublished Diplomarbeit, Fachbereich Mathematik, Technische

Universitat Berlin (1997).

[5] C. H. Papadimitriou and K. Steiglitz: Combinatorial optimization: algorithms and com-
plezity, Prentice Hall, Englewood Cliffs (1982).

[6] W. Wieser: Planning of Survivable Network Platforms, Deutsche Telekom AG, Preprint
(1996).

