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Motivation

Many computational enhancements of the simplex method:

3.1

Pre-processing heuristics

Sparse matrix algebra

Solving sparse systems of equations

Setting up Phase I artificial columns and objective function

Handling variable lower and upper bounds: I; < z; < u;

Handling “range” constraints: b; < aiTa: < b;+r;

Working with the basis inverse over a sequence of iterations
Handling Degeneracy

Rules for choosing incoming column

Many others

Outline

. Review of the Simplex Algorithm
. Computation and Matrix Sparsity in the Simplex Algorithm
. The Simplex Algorithm with Lower and Upper Bounds

. Working with the Basis Inverse over a Sequence of Iterations

Linear Optimization

General Form

minimize or maximize Z=cCT1+ -+ cpep
s.t. a1y + - -+ a1nTy S b1
>
Am1T1 ++amnmn . bm
Z1,---,Tn > 0,<0,o0r free
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xj is “free” if z; has no upper or lower limits.

3.2 Standard Form

C . SLIDE 5
minimize z = C1T1 + .- +CnTy
s.t. a1 + - +aipr, = b
am1t1 +---+ AmnTn - bm
1 e Tn > 0
Convert to matrix notation:
minimize z = T2 SLIDE 6
s.t. Ar = b
z > 0
minimize z = ¢’z
s.t. Az = b
z > 0.
We can always conveniently convert any linear optimization model to standard
form.
3.3 Example
SLIDE 7
minimize z = ¢’z
s.t. Az = b
z > 0
T = [ -1 1 27 5 17 10 6 ]
-1 1 5 1 2 5 1 4
A = 1 0 1 1 1 0 1 b=1 3
1 1 3 2 0 3 1 9
3.3.1 Initial Tableau
SLIDE 8
Initial Tableau
| RHS || 1 9 T3 Ty T5 Tg T7 |
0 -1 1 27 5 17 10 16
4 -1 1 5 1 2 5 1
3 1 0 1 1 1 0 1
9 1 1 3 2 0 3 1




3.3.2 Current Tableau

Initial Tableau:

After several iterations of the

Current Tableau:

one another and to the objective function row.

3.3.3 Linear Algebra of Tableaus

Initial Tableau:

Current Tableau:

Initial Tableau:

Current Tableau:

3.3.4 Canonical Form

Current Tableau:

RHS T T2 T3 T4 Ts5 Tg Ty
0 -1 1 27 5 17 10 16
4 —1 1 5 1 2 5 1
3 1 0 1 1 1 0 1
9 1 1 3 2 0 3 1
simplex algorithm, our tableau looks like:
RHS T1 T2 3 T4 T5 T6 7
—8 0 0 6 0 -1 -3 7
(z2 =) 5 0 1 -2 0 -5 1 -2
(x4 =) 1 0 0 4 1 4 2 2
(z1 =) 2 1 0 -3 0 -3 -2 -1
This was accomplished by adding linear combinations of rows of Az = b to
RHS T
0 c!
b A
RHS T
—%o ¢!
b A
RHS x
0 ¢’
b A
RHS x
& =0—p"b el =c"—pTA
b=B""b A=B"'A
RHS T T2 T3 T4 Ts5 g Ty
-8 0 0 6 0 -1 -3 7
(z2 =) 5 0 T -2 [ T —2
(x4 =) 1 0 0 4 1 4 2 2
(z1 =) 2 1 0 -3 0 -3 -2 -1

This tableau is in canonical form:

o All RHS values are nonnegative.
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e For each equation i, there is a variable whose coefficient is +1 in this equation and

whose coefficient is 0 in all other equations and in the objective function.

e These variables are the basic variables. (z2,z4,21) (in order) are the basic variables.

The other variables are the nonbasic variables (z3, x5, zs,z7).

3.3.5 Imbedded Identity Matrix

Current Tableau: RHS T T2 T3 T4 Ts5 Tg Ty
—8 0 0 6 0 -1 -3 7
(z2 =) 5 0 T —2 0 -5 T -2
(x4 =) 1 0 0 4 1 4 2 2
(z1 =) 2 1 0o -3 0o -3 -2 -1
The ordered equation columns of the basic variables form an identity matrix:
1 0 O
Ay Ay Ay =10 1 0
0 0 1
3.3.6 Basic Feasible Solution (b.f.s.)
Current Tableau: RHS T T2 T3 T4 Ts5 T6 Ty
—8 0 0 6 0 —1 -3 7
(z2 =) 5 0 1 -2 0 -5 1 -2
(z4 =) 1 0 0 4 1 4 2 2
(z1 =) 2 1 0 -3 0 -3 -2 -1

The basic feasible solution (b.f.s.) corresponding to this tableau is to set all non-basic variables

to 0, and all basic variables to their RHS values.

T2 5
T4 = 1 T3 = x5 —xg —x7 =0 .
T 2

This solution satisfies the equations Az = b.
This solution satisfies > 0.

The objective function value of the b.f.s. is z := —(—8) + 6x3 — lzs — 3x6 + Tx7 = 8.

3.3.7 Optimality Criterion

Current Tableau: RHS T T2 T3 T4 Ts5 T6 Ty
—8 0 0 6 0 —1 -3 7

(z2 =) 5 0 T —2 (R T -2

(x4 =) 1 0 0 4 1 4 2 2

(z1 =) 2 1 0o -3 0o -3 -2 -1

If all objective coefficients ¢; of the nonbasic variables are nonnegative, the current b.f.s. is

optimal.
Why?

SLIDE 13

SLIDE 14

SLIDE 15



3.3.8 Min-ratio Test

Current Tableau: RHS T T2 T3 T4 Ts5 g Ty
—8 0 0 6 0 —1 -3 7
(z2 =) 5 0 T —2 0 -5 T —2
(x4 =) 1 0 0 4 1 4 2 2
(z1 =) 2 1 0o -3 0 -3 -2 -1
e Find a nonbasic variable z; (column j) whose ¢; < 0. (j = 6 here)

e Increase z; and adjust all basic variables accordingly, until some basic variable becomes

0.
T2 1 L
T4 = — 2 rg = b — Agzg
T -2
L . b; (51
e This will happen when ¢ = 0* = min { = =minq —, -, = -
A;6>0 | Ais 172 —
3.3.9 Pivot Operation
Current Tableau: RHS T T2 T3 T4 Ts5 T6 Ty
-8 0 0 6 0 -1 -3 7
(z2 =) 5 0 T —2 (R T -2
(z4 =) 1 0 0 4 1 4 2 2
(z1 =) 2 1 0o -3 0o -3 -2 -1

e We reflect the fact that z¢ is now positive (basic) and x4 is now 0 (nonbasic) by
doing row operations to make z¢ a basic variable and z4 a nonbasic variable.

e We do this by making zs the basic variable in the row where z4 was basic, which

is row 2.

e We pivot on Az = 2.

Current Tableau: RHS T T2 T3 T4 Ts5 Tg Ty
-8 0 0 6 0 -1 -3 7

(z2 =) 5 0 1 —2 0 -5 1 —2

(x4 =) 1 0 0 4 1 4 2 2

(1 =) 2 1 0 -3 0 -3 -2 -1

New Tableau: RHS T T2 T3 T4 Ts5 Tg Ty
—13/2 0 0 12 3/2 5 0 10

(z2 =) 9/2 0 1 -4 -1/2 -7 0 -3

(6 =) 1/2 0 0 2 1/2 2 1 1

(z1 =) 3 1 0 1 1 1 0 1

Is the b.f.s. here optimal? Why?
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3.4 The Simplex Algorithm

3.4.1 Termination SLIDE 19

The simplex algorithm will only terminate with an optimal b.f.s. or with
a demonstration of unboundedness of the objective function.

Assume that no RHS values ever become zero in the algorithm; then the
algorithm improves the objective function at each iteration.

— There are only a finite number of possible b.f.s.’s.

The simplex algorithm must terminate in a finite number of steps.

3.4.2 Linear Algebra of Tableaus
SLIDE 20

Initial Tableau: RHS T SLIDE 21

Current Tableau: | RHS

SH
BN

Initial Tableau: RHS T

Current Tableau: RHS T
—¢=0—pTb el =cT —pT A

b=B"1b A=B"14

for some vector p (called the “simplex multipliers”)
and some matrix B (the basis matrix)

3.4.3 The basis matrix B

What is B?

Let the basic variable for equation i be denoted B(i).

SLIDE 22

Then B = AB(l) AB(Z) AB(m)

SLIDE 23



Initial Tableau:

New Tableau:

B(1)=2 , B(2)=6 , B(3) =1

Initial Tableau: | RES ”

B(1)=2 , B2) =

Initial Tableau:

New Tableau:

Initial Tableau:

New Tableau:

RHS T T2 T3 T4 Ts5 Tg Ty
0 -1 1 27 5 17 10 16
4 —1 1 5 1 2 5 1
3 1 0 1 1 1 0 1
9 1 1 3 2 0 3 1
RHS T T2 T3 T4 Ts5 Tg Ty
—13/2 0 0 12 3/2 5 0 10
(z2 =) 9/2 0 T —4 —i/2 -7 0 -3
(z6 =) 1/2 0 0 2 1/2 2 1 1
(z1 =) 3 1 0 1 1 1 0 1
T T2 T3 T4 T5 Te6 z7 |
0 -1 1 27 5 17 10 16
4 -1 1 5 1 2 5 1
3 1 0 1 1 1 0 1
9 1 1 3 2 0 3 1
6 , B3) =1
3 5
_ -1 _ 1 1
As  Ar = 1 B~ = 3 1 3
1 0 1 0
3.5 Simplex Multipliers p
3.5.1 Matrix Algebra of Tableaus
RHS x
0 c!
b A
RHS x
—Co ¢!
b A
RHS T
0 ct
b A
RHS T
—o=0—pTb cl=cT —pTA
b=B"1b A=B"1A

for some vector p (called the “simplex multipliers”)

and some matrix B (the basis matrix)
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3.5.2 The Basis

Initial Tableau: RHS T T2 T3 T4 Ts5 Tg Ty
0 —1 1 27 5 17 10 16
4 -1 1 5 1 2 5 1
3 1 0 1 1 1 0 1
9 1 1 3 2 0 3 1
New Tableau: RHS 1 To T3 T4 Ts5 T6 Ty
—13/2 0 0 12 3/2 5 0 10
(22 =) 9/2 0 I R—" y R— 0 -3
(z6 =) 1/2 0 0 2 1/2 2 1 1
(z1 =) 3 1 0 1 1 1 0 1
B(l)=2 , B(2)=6 , B(3)=1
3.5.3 Definition of cg
Initial Tableau: RHS T T2 T3 4 Ts5 g Ty
0 —1 1 27 5 17 10 16
4 -1 1 5 1 2 5 1
3 1 0 1 1 1 0 1
9 1 1 3 2 0 3 1
B(l)=2 , B(2)=6 , B(3) =1
L= [CB(I), ... ,CB(m)] = [e2,c6,c1] = [1,10,—1]
3.5.4 Definition of p
p is the solution of:
p'B=ch
This is just:
pT =cLBt
In our example, then,
p'= cgB™'= [110 —1] [ -3 —4 2
1 1
3 1 =3
_ [z 5
0o 1 o] =[% 5 -2

p is called the vector of simplex multipliers.

3.5.5 Matrix Computations

e The mathematics of the simplex algorithm relies on manipulations of A,

b, ¢ involving

A « B4
b « B
¢ « c—plA

where p” = ¢L B!

and where B is always a particular submatrix of A.
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3.5.6 Sparsity of A

SLIDE 31
e B is a particular submatrix of A and will be sparse if A is sparse.
e B! will generally be sparse if B is sparse.
e B! A will generally be sparse if A and B are sparse.
e Therefore, the key to efficient computation of the simplex method will be
the sparsity of A, which will impact on B, B~!, p, and B~ A.
4 Variables with Lower and Upper Bounds
SLIDE 32
Most linear optimization models have the following form:
minimize z = cTx
s.t. Ax = b
I<zx<u
We could convert this to standard form by defining y :=  —[ and w := u—=x, obtaining;:
minimize z=c"l +cTy + 07w
s.t. Ay + Ow = b—Al
Iy + Iw = u-—1
y>0 w >0
SLIDE 33
minimize z = T
s.t. Ax = b
I<z<u
minimize z=c"l +c’y + 0w
s.t. Ay + Ow = b—Al
Iy + Tw = u-—1
y>0 w >0
The LP matrix has gone from m x n to (n +m) x (2n)
4.1 Example
SLIDE 34
minimize z = T
s.t. Ax = b
I<zx<u
Example: ¢ = [ 0 0 -2 -1 1]
1 0 1 -2 0
A = s b = 4
0 1 -1 1 2 9
1= [ 1 2 2 1 2 |
vw=[ 5 8 3 3 5 ]



4.1.1 Tableau Form

SLIDE 35
minimize z = cTx
s.t. Az = b
I<zx<u
Form Tableau: [ UB 5 ) 3 3 5
LB 1 2 2 1 2
RHS T T2 T3 T4 s
0 0 0 —2 -1 1
4 1 0 1 —2 0
9 0 1 -1 1 2
4.1.2 Basic Feasible Solution
SLIDE 36
UB 5 8 3 3 5
LB 1 2 2% 1* 2%
RHS 1 s xs3 x4 x5
0 0 0 —2 —1 1
4 1 0 1 —2 0
9 0 1 -1 1 2
xr1, T2 are basic. T3, x4,xs are at their lower bounds.
T1 (4 1 -2 0 [ 4
(2)=(s)-()e-(T)w-(3)e=(s)
Is this solution feasible? Yes. Why?
Is this solution optimal? No. Why?
4.1.3 Improving a Solution
SLIDE 37
Let us increase x3 to 23 = 2+ 6 rn = 4-—460
T2 = 6 + 0
Weneed 1 < 2y = 4-6 < 5
2 < 13 = 6460 < 8
2 < z3 = 2460 < 3
Largest value of 8 is § = 1, at which point z3 attains its upper bound.
4.1.4 The N Tabl
¢ yew fableaud SLIDE 38
New tableau is :
UB 5 8 3* 3 5
LB 1 2 2 1* 2*
RHS T To T3 T4 Zs5
0 0 0 -2 -1 1
4 1 0 1 -2 0
9 0 1 -1 1 2

10



4.1.5 Another Iteration

UB 5 8 3* 3 5
LB 1 2 2 1* 2%
RHS T T2 T3 T4 Ts5
0 0 0 -2 -1 1
4 1 0 1 -2 0
9 0 1 -1 1 2

xr1, T2 are basic.
T3, T4, Ts are at one of their bounds, as indicated.

(2)=0)-(a)o-(T)o-(3)e-(

Is this solution feasible? Yes. Why?
Is this solution optimal? No. Why?

~N W
N——

Let us increase x4 to 24y =1+ 6 r1 = 3420
o = 7—-460
Weneed 1 < 2y = 3420 < 5
2 S Ty = 7T—0 S 8
1 < z4 = 146 < 3

Largest value of 6 is 8§ = 1, at which point x; reaches its upper bound.

We pivot to remove z; from the basis, replacing x1 by z4:

UB 5 8 3* 3 5
LB 1 2 2 1* 2%
RHS 1 ) xs3 x4 x5
0 0 0 —2 -1 1
4 1 0 1 -2 0
9 0 1 -1 1 2
UB 5* 8 3* 3 5
LB 1 2 2 1 2*
RHS T To T3 T4 T5
-2 —1/2 0 —5/2 0 1
-2 —1/2 0 —1/2 1 0
11 1/2 1 —1/2 0 2

4.1.6 Optimality Criterion

UB 5% 8 3F 3 5
LB 1 2 2 1 2%
RHS T1 P T3 T4 Ts5
—2 —1/2 0 —5/2 0 1
) —1/2 0 —1/2 1 0
11 1/2 1 —1/2 0 2

11
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T4, T2 are basic.
x1,xs,Ts are nonbasic at the bounds indicated above.

(2)-() O () ()= (2)

Is this solution feasible? Yes. Why?
Is this solution optimal? Yes. Why?

4.2 Remarks

— The simplex method can be adopted to handle variables with upper and
lower bounds, with no increase in the number of rows or columns of the
tableau.

— This is very important for computation.

4.3 A Radiation Therapy Model
5 Linear Optimization

5.1 Interior Point Methods

e Linear optimization models are solved by either the simplex algorithm or
by an interior-point method (IPM).

e Depending on certain aspects of the model, an IPM might be the method
of choice.

e We will learn more about IPMs in the second half of the course.

6 Efficiently Updating B!

6.1 Equations Involving B
6.1.1 The Basis Matrix B

At each iteration of the simplex method, we have a basis:

We form the basis matrix B:

B:=[Apa) | 4| - | ABm-1) | ABm) ] -

12
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6.1.2 Equations Systems to Solve

We need to be able to compute:

r=B"'r and/or pl =rIB 1

for iteration-specific vectors r1 and r». Equivalently, solve for z and p:

Bx=mr and/or  p"B=rl

6.2 LU Factorization
6.2.1 Solving Br =r
Factorize B:
B=LU
where L,U are lower and upper triangular.

To solve Bx = r1, we compute as follows:

e First solve Lv = r; for v

e Next solve Uz = v for x.

Then Br = LUx = Lv =7,

6.2.2 Solving p’ B =rl
B=LU

To solve p” B = r¥, we compute as follows:

e First solve uwTU =rT for u
e Next solve p” L = u” for p.

Then p" B =p"LU =" U =r]

6.3 Rank-1 Matrices

—2 2 0 -3 1
-4 4 0 -6 ) _ [ 2 B B
W=l _14 u o 2]~ | 7 x(=2 2.0 -3)
10 —-10 0 15 -5
W is an example of rank-1 matrix.
Define
1
2 T
u= 7 and v =(-2 2 0 -3)

-5
Think of v and v as n X 1 matrices
W =uvT .

Any rank-1 matrix can be written as uv” for suitable vectors u and v.

13
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6.4 Rank-1 Update Matrix

6.4.1 Sherman-Morrison Formula

SLIDE 50
Let M be a matrix.
Suppose that we “know” M ~!: we have stored M ! or we have an efficient subroutine
that solves Mz = b for any RHS b.
Let M = M + uv”. _
The Sherman-Morrison Formula: M is invertible if and only if v" M 'u # —1, in
which case -
~ M~ uv _
Mit=|1-—— | M.
[ 1+ vTM—lu]
6.4.2 Proof of Formula
SLIDE 51
~ -1 T -1 T
M x [I‘li{ﬂ%] MU= Mt wT] x [I—li\{ﬂ%] M-
—1 T —1
- [M+uvT] X [Mfl - 7]\/{1‘_”’;&4&“ ]
Tar—1 Tap—1.  T,-—1
= Tt e iy
T -1
= I+uUTM71 (1 - 1+UT§W717A - liv:{"\/IM*?u)
= T
q.e.d.
6.5 Solving Equations with M/ ~!
SLIDE 52
We “know” M~!: we have an efficient subroutine that solves Mz = b for any
RHS b. .
We wish to instead solve Mz =b
where M = M + uv™ SLIDE 53
~ M~ unT
=M%= |I-———"—" | M 'b.
x b { g vTMlu] b
Define:
=M and 2* =M 'u,
Then:
v {I M~ unT ]xl ol g? ( Tzt )
I I VT T 14+ 0T
SLIDE 54

Procedure for solving Mz = b:
e Solve the system Mz' = b for 2!

e Solve the system Mz? = u for 2

1 vt 2

e Compute x =z — Tt L

14



6.5.1 Computational Efficiency

e n® operations to form an LU factorization of M
e n? operations to solve Mz = b using back substitution

e n® + n? operations to solve Mz = b by factorizing M and then doing back
substitution

e 2n% 4 3n if we use the rank-1 update method: we need to do 2 back substitution
solves, and then 3n operations for the final step

e This is vastly superior to n® + n? for large n

6.6 Updating B and B!
6.6.1 Updating the Basis

Assume that the columns of A have been re-ordered so that

B::[Al |...|A]‘_1 |A]‘|Aj+1| |Am]

at one iteration. At the next iteration we have a new basis matrix B:

B;:[Al |...|A]‘71 |Ak'|Aj+1| |Am]

Column A; has been replaced by column A in the new basis.

6.6.2 Basis Update Formula
B::[Al | | Aj_l |A] | A]‘+1 | | Am]

B:=[Ai |...] Aj_1 |Ax | Ajpr | oo | Am ]
Note that B = B + (Aj, — A;) x (ej)T

¢’ is the j* unit vector

B =B +uv” with )
u=(Ar—A;) and v= (e])

To solve the equation system Bz = r1, we can apply the rank-1 update method,
substituting M = B, b=r1, u = (A — Aj) and v = (e’). This works out to:

e Solve the system Bz!' = r; for z!

e Solve the system Bz® = Ay — A; for z°
INT 1
e Compute z = z! — %xz

What if we want to do this over a sequence of iterations?

15

SLIDE 55

SLIDE 56

SLIDE 57

SLIDE 58



6.7 More Algebraic Manipulation

B—l — |:I— B~ uyT ] B—l

1+vT B— 14y

_ [1_ IB-I(AM]-)@J')T_)} B

+(e)"B-1(A,-4

But A; = Be’, whereby B™'A; = ¢/
Bt o= |-G | poi g
(ej)TBflAk
where 4 -
(514 =) ()

E:
(ef)T BilAk

B-' — BB~ where B — |1 — (B Ak=¢) ()"
(eJ')TB—lA,e

Procedure for solving the system Bz =r:

e Solve the system Bw = Ay, for w

~ w—ed)(ed)T
e Form and save the matrix £ = [I - %}
e Solve the system Bz' =r; for 2"

e Compute z = Ez!

1 C1
1 C2
- : o (1I) - ej)
BE= ; with 6= ~——2
G (e7)" w
Cm 1

Eis an elementary matrix
We store E by only storing the column ¢ and the index j

6.8 Implementation over Sequential Iterations
B:=[Ai |...] Aici |Ai| Aiga | -] Am ]

At the next iteration, we replace the column A; with the column A; :

B:i=[A |...] Aicy | A | A | | A ] -
Let @ be the solution of the system Bw = A;

B =EB!
where ~ _ o
bo[r- ]

(el)Tu?
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~—1

B =EB'=EEB!
We solve equations involving B by forming E, E and the LU factorization of B.

We start with a basis B and we compute and store an LU factorization of B.
Our sequence of bases is Bo = B, By, ..., By

We compute matrices E, ..., E, with the property that
(Bl)71 =FEFE_,---E,B! ,l=1,... k.
For the next basis inverse By4+1 we compute a new matrix Fr41 and we write:

(Bk+1)71 =FEp1 B E\B!

Recursive Implementation
The details for implementing this scheme are straightforward

The notation is not much fun

After K = 50 or so pivots of applying the above methodology, round-off error
tends to accumulate

Most simplex codes do a complete basis re-factorization every K = 50 pivots.
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