Optimization Modelling and Computational Issues in Radiation Therapy

(lecture developed in collaboration with Peng Sun)

February 3, 2004

1 Outline

SLIDE 1

- 1. Radiation Therapy
- 2. Linear Optimization Models
- 3. Computation
- 4. Nonlinear and Mixed-Integer Models
- 5. Looking Ahead to the Course

2 Radiation Therapy

2.1 The Problem

2.2 Overview

Slide 2

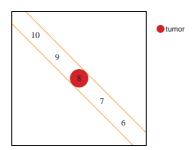
- This year, 1,200,000 Americans will be diagnosed with cancer
- 600,000+ patients will receive radiation therapy
 - beam(s) of radiation delivered to the body in order to kill cancer cells
- \bullet Sadly, only 67% of "curable" patients will be cured

SLIDE 3

- High doses of radiation (energy/unit mass) can kill cells and/or prevent them from growing and dividing
 - true for cancer cells and normal cells
- Radiation is attractive because the repair mechanisms for cancer cells is less efficient than for normal cells

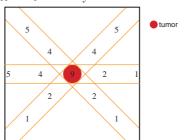
- Recent advances in radiation therapy now make it possible to:
 - map the cancerous region in greater detail
 - aim a larger number of different "beamlets" with greater specificity
- ullet Spawned the new field of tomotherapy
- "Optimizing the Delivery of Radiation Therapy to Cancer Patients," by Shepard, Ferris, Olivera, and Mackie, *SIAM Review*, Vol. 41, pp. 721–744, 1999.

2.2.1 Conventional Radiotherapy



SLIDE 5

Relative Intensity of Dose Delivered



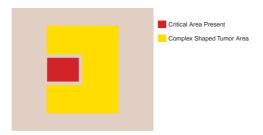
SLIDE 6

Relative Intensity of Dose Delivered

Slide 7

In conventional radiotherapy

- 3 to 7 beams of radiation
- radiation oncologist and physRest8work together to
- determined by manual "trial-and-error" process



With only a small number of beams, it is difficult/impossible to deliver required dose to tumor without impacting the critical area.

2.2.2 Recent Advances

SLIDE 9

- More accurate map of tumor area
 - CT Computed Tomography
 - MRI Magnetic Resonance Imaging

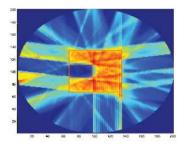
SLIDE 10

- More accurate delivery of radiation
 - IMRT: Intensity Modulated Radiation Therapy
 - Tomotherapy

2.2.3 Formal Problem Statement

SLIDE 11

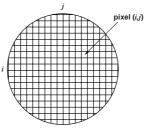
- \bullet For a given tumor and given critical areas
- For a given set of possible beamlet origins and angles
- Determine the weight on each beamlet such that:
 - do sage over the tumor area will be at least a target level γ_L
 - do sage over the critical area will be at most a target level γ_U



3 Linear Optimization Models

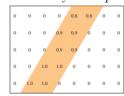
3.1 Discretize the Space

Divide up region into a 2-dimensional (or 3-dimensional) grid of pixels



3.2 Create Beamlet Data

Create the beamlet data for each of $p=1,\ldots,n$ possible beamlets. D^p is the matrix of unit doses delivered by beam p.



 $D_{ij}^p = \text{unit dose delivered to pixel } (i, j) \text{ by beamlet } p.$

3.3 Dosage Equations

Decision variables $w = (w_1, \dots, w_n)$

 $w_p = \text{intensity weight assigned to beamlet } p, p = 1, \dots, n.$

$$D_{ij} := \sum_{p=1}^{n} D_{ij}^{p} w_{p}$$

(":=" denotes "by definition")

$$D := \sum_{p=1}^{n} D^p w_p$$

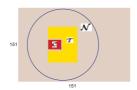
is the matrix of the integral dose (total delivered dose)

SLIDE 13

SLIDE 14

3.4 Definitions of Regions

SLIDE 16



 \mathcal{T} is the target area \mathcal{C} is the critical area \mathcal{N} is normal tissue $\mathcal{S} := \mathcal{T} \cup \mathcal{C} \cup \mathcal{N}$

3.5 Ideal Linear Model

SLIDE 17

$$\begin{array}{ll} \text{minimize} & \sum\limits_{(i,j)\in\mathcal{S}} D_{i\,j} \\ \text{s.t.} & D_{i\,j} = \sum\limits_{p=1}^{n} D_{i\,j}^{p}\,w_{p} & (i,j)\in\mathcal{S} \\ & w \geq 0 \\ & D_{i\,j} \geq \gamma_{L} & (i,j)\in\mathcal{T} \\ & D_{i\,j} \leq \gamma_{U} & (i,j)\in\mathcal{C} \end{array}$$

$$\text{minimize} & \sum\limits_{(i,j)\in\mathcal{S}} D_{i\,j} & (i,j)\in\mathcal{C}$$

$$\text{minimize} & \sum\limits_{(i,j)\in\mathcal{S}} D_{i\,j} & (i,j)\in\mathcal{S} \\ \text{s.t.} & D_{i\,j} = \sum\limits_{p=1}^{n} D_{i\,j}^{p}\,w_{p} & (i,j)\in\mathcal{S} \\ & w \geq 0 & (i,j)\in\mathcal{T} \\ & D_{i\,j} \leq \gamma_{L} & (i,j)\in\mathcal{T} \\ & D_{i\,j} \leq \gamma_{U} & (i,j)\in\mathcal{C} \end{array}$$

- $\bullet\,$ Unfortunately, this model is typically infeasible.
- Cannot deliver dose to tumor without some harm to critical area(s).

3.6 Engineered Approaches

SLIDE 20

SLIDE 21

minimize
$$\theta_{\mathcal{T}} \sum_{(i,j) \in \mathcal{T}} D_{i j} + \theta_{\mathcal{C}} \sum_{(i,j) \in \mathcal{C}} D_{i j} + \theta_{\mathcal{N}} \sum_{(i,j) \in \mathcal{N}} D_{i j}$$
s.t.
$$D_{i j} = \sum_{p=1}^{n} D_{i j}^{p} w_{p} \qquad (i,j) \in \mathcal{S}$$

$$w \geq 0$$

$$D_{i j} \geq \gamma_{i j}^{L} \qquad (i,j) \in \mathcal{T}$$

$$w_{m} \leq 0.05 \sum_{p=1}^{n} w_{p} \qquad m = 1, \dots, n$$

Some other possible objective functions:

Let $(Target)_{ij}$ be the target prescribed dose to be delivered to pixel (i, j)

$$\begin{array}{ll} \text{minimize} & \max_{(i,j) \in \mathcal{S}} |D_{i\,j} - (\text{Target})_{i\,j}| \\ \text{s.t.} & D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p \qquad (i,j) \in \mathcal{S} \\ w > 0 \end{array}$$

This is the same as:

$$\begin{array}{ll}
\text{minimize} & \mu \\
w, D, \mu
\end{array}$$

s.t.
$$-\mu \leq D_{ij} - (\mathrm{Target})_{ij} \leq \mu \qquad (i,j) \in \mathcal{S}$$

$$D_{ij} = \sum_{p=1}^{n} D_{ij}^{p} w_{p} \qquad (i,j) \in \mathcal{S}$$

$$w > 0$$

Here is another model:

minimize
$$\sum_{(i,j)\in\mathcal{S}} |D_{ij} - (\text{Target})_{ij}|$$

s.t.
$$D_{ij} = \sum_{p=1}^{n} D_{ij}^{p} w_{p} \qquad (i,j) \in \mathcal{S}$$
$$w \ge 0$$

SLIDE 23

This is the same as:

s.t.
$$D_{ij} = \sum_{p=1}^{n} D_{ij}^{p} w_{p} \qquad (i,j) \in \mathcal{S}$$

$$w > 0$$

$$-\Delta_{ij} \le D_{ij} - (\text{Target})_{ij} \le \Delta_{ij} \qquad (i,j) \in \mathcal{S}$$

Computation 4

Base Case Model 4.1

SLIDE 24

Consider the "base case" example problem:

$$(\text{Target})_{i\,j} = 16, \quad (i,j) \in \mathcal{T}$$

$$(\text{Target})_{i\,j} = 0, \quad (i,j) \in \mathcal{C}$$

$$(\text{Target})_{i\,j} = 0, \quad (i,j) \in \mathcal{N}$$

$$(\text{Target})_{i\,j} = 0, \quad (i,j) \in \mathcal{N}$$

$$egin{array}{c} ext{minimize} \ w, D, \Delta \end{array}$$

$$\underset{w,D,\Delta}{\text{minimize}} \qquad 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i\,j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i\,j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i\,j}$$

.t.
$$D_{ij} = \sum_{p=1}^{n} D_{ij}^{p} w_{p} \qquad (i,j) \in \mathcal{S}$$

$$(i,j) \in \mathcal{S}$$

$$-\Delta_{ij} \le D_{ij} - (\text{Target})_{ij} \le \Delta_{ij} \qquad (i,j) \in \mathcal{S}$$

4.2Size of the Model

Dimensional Analysis

SLIDE 26

minimize
$$1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i j}$$
s.t.
$$D_{i j} = \sum_{p=1}^{n} D_{i j}^{p} w_{p} \qquad (i,j) \in \mathcal{S}$$

$$w \ge 0$$

$$-\Delta_{i j} \le D_{i j} - (\text{Target})_{i j} \le \Delta_{i j} \qquad (i,j) \in \mathcal{S}$$

Dimensional Analysis:

$$\begin{array}{l} \text{number of pixels} = 31,397 (\approx \pi*100^2) \\ \text{number of beamlets} = 564 & (n) \\ |\mathcal{T}| = 3,859; \quad |\mathcal{C}| = 630; \quad |\mathcal{N}| = 26,908 \\ |\mathcal{S}| = 31,397 \end{array}$$

Slide 27

ninimize
$$1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i j}$$
s.t.
$$D_{i j} = \sum_{p=1}^{n} D_{i j}^{p} w_{p} \qquad (i,j) \in \mathcal{S}$$

$$w \ge 0$$

$$-\Delta_{i j} \le D_{i j} - (\text{Target})_{i j} \le \Delta_{i j} \qquad (i,j) \in \mathcal{S}$$

4.2.2 Number of Constraints

Other Constraints*	Number
$D_{ij} =$	31, 397
$\leq D_{ij} - (\mathrm{Target})_{ij} \leq$	62,794
Total	94, 191

^{*}We usually exclude simple variable upper/lower bounds when counting constraints.

4.2.3 Summary

 Variables
 Constraints*

 63,358
 94,191

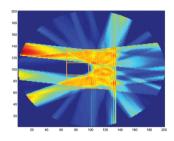
SLIDE 29

^{*}Excludes variable upper/lower bounds.

4.3 Base Case Model

4.3.1 Optimal Solution

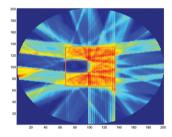
SLIDE 31



Base Case Model Solution

4.4 Another Model Solution

SLIDE 32

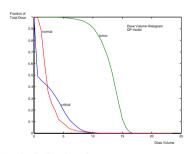


Solution of a nonlinear model.

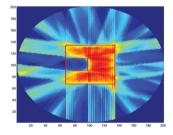
4.5 Dose Histogram

4.5.1 of Solution

SLIDE 33



4.6 Another Model Solution



Solution of a nonlinear model, where $\theta_{\mathcal{N}} = \theta_{\mathcal{C}} = \theta_{\mathcal{T}} = 1$.

5 Computation

5.1 Computational Issues

5.1.1 Software/Algorithms

- Software codes:
 - CPLEX simplex (pivoting method)
 - CPLEX barrier
 - LOQO
- Algorithms:
 - Simplex method ("pivoting" method)
 - Interior-point method (IPM) ("barrier" method)

5.1.2 Counting Iterations

- Iteration Counts:
 - Number of pivots for simplex method
 - Number of Newton steps for IPM

5.1.3 Issues in Running Times

- Running time will be affected by:
 - number of constraints
 - number of variables
 - software code
 - type of algorithm (simplex or IPM)
 - properties of linear algebra systems involved
 - * density/patterns of nonzeroes of matrix systems to be solved
 - other problem characteristics specific to problem
 - $\ \ idiosyncratic \ influences$
 - pre-processing heuristics

5.2 Base Case

5.2.1 No Pre-Processing

- Base Case Model
- No Pre-Processing

SLIDE 35

SLIDE 36

SLIDE 37

			Running Time	
Code	Algorithm	Iterations	CPU	Wall
Code	Aigorithin	10Cl atlolls	(sec)	(minutes)
CPLEX	Simplex	183,530	440	250
CPLEX	Barrier	49	13	37

5.3 Some Generic Rules

SLIDE 39

1. The simplex algorithm is designed to handle variables with lower bounds and upper bounds:

$$\min_{x} c^{T} x$$

$$Ax = b$$

$$\ell \le x \le i$$

where $\ell_j = -\infty$ and/or $u_j = +\infty$ is allowed.

2. We say x_j has no bounds if $\ell_j = -\infty$ and $u_j = +\infty$. Otherwise x_j is a bounded variable.

SLIDE 40

$$\min_{x} c^{T} x$$

$$Ax = b$$

$$\ell < x < x$$

- 3. For the simplex method, the work per pivot generally depends on the number of nonzeros in A.
- 4. If A is very sparse (its density of nonzero elements is low), then the work per pivot will be low.
- 5. The number of simplex pivots in a "good" model is roughly between m and 10n.

SLIDE 41

$$\min_{x} c^{T} x$$

$$Ax = b$$

$$\ell \le x \le u$$

5. The work per iteration of an interior-point method generally depends on the structure of the matrix

$$K = \begin{pmatrix} I & A^T \\ A & 0 \end{pmatrix}.$$

SLIDE 42

$$K = \begin{pmatrix} I & A^T \\ A & 0 \end{pmatrix}.$$

6. The structure of K is often (but not always) related to the structure of the matrix AA^T because the following two matrices are "similar":

$$K = \begin{pmatrix} I & A^T \\ A & 0 \end{pmatrix} \quad P = \begin{pmatrix} I & A^T \\ 0 & -AA^T \end{pmatrix}.$$

7. The number of interior-point method iterations is typically 25–80 (independent of m and/or n).

5.4 Pre-Processing

5.4.1 Heuristics

SLIDE 43

Pre-Processing Heuristics in Commercial-Grade Software

- Designed to Eliminate Constraints and/or Variables
- Example:

$$-5x \qquad +3y \qquad +z \qquad = 17$$

$$0 \le x \le 4 \qquad 0 \le y \le 2 \qquad 10 \le z \le 40$$

SLIDE 44

• Example:

$$-5x \qquad \qquad +3y \qquad \qquad +z \qquad = \quad 17$$

$$0 \leq x \leq 4 \qquad \qquad 0 \leq y \leq 2 \qquad \qquad 10 \leq z \leq 40$$

- $z = 17 + 5x 3y \ge 17 + 5(0) 3(2) = 11 \ge 10$
- $z = 17 + 5x 3y \le 17 + 5(4) 3(0) = 37 \le 40$
- ullet Therefore we can eliminate the bounds on z
- ullet Therefore we can treat z as a free variable
- ullet Therefore we can eliminate z from our model altogether.

SLIDE 45

- Base Case Model
- With Pre-Processing

			Running Time	
Code	Algorithm	Iterations	CPU	Wall
Code	Higorianin	1001 8010113	(sec)	(minutes)
CPLEX	Simplex	18,428	4.3	4
CPLEX	Barrier	16	130	133

5.5 Equivalent Formulation

5.5.1 "Small" Model

Slide 46

Equivalent Formulation: (eliminate D_{ij})

"Small" Model:

minimize
$$1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i j}$$
s.t.
$$-\Delta_{i j} \leq \sum_{p=1}^{n} D_{i j}^{p} w_{p} - (\text{Target})_{i j} \leq \Delta_{i j} \qquad (i,j) \in \mathcal{S}$$

$$w \geq 0$$

	Base Case Model	Small Model
Variables	63,358	31,961
Constraints*	94, 191	62,794

*always excludes simple variable upper/lower bounds

SLIDE 48

• Small Model

			Running Time	
Code	Algorithm	Iterations	CPU	Wall
Code	Aigoriumi	neramons	(sec)	(minutes)
CPLEX	Simplex	$171,\!656$	390	216
CPLEX	Barrier	57	80	31

5.6 Comparisons

SLIDE 49

			Running Time
Code	Algorithm	Model	Wall
Code	Aigorithin	Woder	(minutes)
		Base Case	250
CPLEX	$\operatorname{Simplex}$	Pre-Processed	4
		Small Model	216
		Base Case	37
CPLEX	Barrier	Pre-Processed	133
		Small Model	31

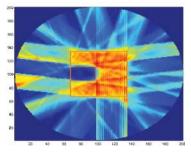
6 Nonlinear Optimization

6.1 Quadratic Model

$$QP: \quad \underset{w,D}{\text{minimize}} \quad 1 \cdot \sum_{(i,j) \in \mathcal{N}} [D_{i\,j} - \operatorname{Target}_{i\,j}]^2 \\ \quad + 100 \sum_{(i,j) \in \mathcal{C}} [D_{i\,j} - \operatorname{Target}_{i\,j}]^2 \\ \quad + 30 \sum_{(i,j) \in \mathcal{T}} [D_{i\,j} - \operatorname{Target}_{i\,j}]^2 \\ \text{s.t.} \qquad D_{i\,j} = \sum_{p=1}^n D_{i\,j}^p \, w_p \qquad (i,j) \in \mathcal{S} \\ \quad w \ge 0$$

6.1.1 Quadratic Model Output

SLIDE 51



6.2 Quadratic Model

6.2.1 Computational Results

SLIDE 52

				Running Time
Model	Code	Algorithm	Iterations	CPU
Model	Code	Aigorithin	Tter ations	(sec)
Base Case QP Model	LOQO	Barrier	31	82.7
Small QP Model	LOQO	Barrier	32	149.0

7 Mixed Integer Optimization

7.1 Limiting the Number of Beamlets

$$\begin{aligned} & \text{minimize} & & 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{i \, j} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{i \, j} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{i \, j} \\ & \text{s.t.} & & D_{i \, j} = \sum_{p=1}^n D_{i \, j}^p \, w_p & (i,j) \in \mathcal{S} \\ & & & w \geq 0 \\ & & -\Delta_{i \, j} \leq D_{i \, j} - (\text{Target})_{i \, j} \leq \Delta_{i \, j} & (i,j) \in \mathcal{S} \\ & & w_p \leq 100 y_p & p = 1, \dots, n \\ & & y_p \in \{0,1\} & p = 1, \dots, n \\ & & \sum_{p=1}^n y_p \leq 15. \end{aligned}$$

7.2 Computation

7.2.1 CPLEX MIP Solver

		Running Time		
MIP Gap	Simplex	CPU	Wall	
(%)	Pivots	(seconds)	(minutes)	
20	11,646	7	4	
15	11,646	7	4	
12	11,646	5	4	
10	$14,\!538$	9	6	
7	$14,\!538$	7	6	
5	14,538	10	6	
4	14,538	7	6	
3	$14,\!538$	5	6	
2	3,655,445	1,700	25.3 hours	

8 Modifications of the Model

8.1 Partial Volume Constraints

Partial Volume Constraints:

"No more than 20% of the critical region can exceed a dose of $30G_{v}$."

"No more than 5% of the critical region can exceed a dose of $50G_y$."

Approach #1 (Integer Programming Model)

Let M be a very large number,

$$\begin{array}{lll} D_{i\,j} & \leq & 30 + M \cdot y_{i\,j}, & y_{i\,j} \in \{0,1\}, & (i\,j) \in \mathcal{C} \\ D_{i\,j} & \leq & 50 + M \cdot z_{i\,j}, & z_{i\,j} \in \{0,1\}, & (i\,j) \in \mathcal{C} \end{array}$$

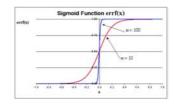
$$\sum_{\substack{(i\,j)\in\mathcal{C}\\(i\,j)\in\mathcal{C}}} y_{i\,j} \leq |\mathcal{C}| \times 0.20$$

Approach #2 (Error Function Approach)

The error function, or sigmoid function, is of the form:

$$\begin{split} \operatorname{err} f(x) &= \frac{1}{1 + e^{-\alpha x}} \\ \operatorname{err} f(x) &= \frac{1}{2} \ \text{at} \ x = 0 \\ \operatorname{err} f(x) &\to 1 \ \text{as} \ x \to \infty \\ \operatorname{err} f(x) &\to 0 \ \text{as} \ x \to -\infty \end{split}$$

Instead of integer variables, we use



SLIDE 58

SLIDE 57

SLIDE 54

SLIDE 55

$$\sum_{(i\,j)\in\mathcal{C}} \operatorname{err} f(D_{i\,j} - 30) \leq |\mathcal{C}| \times 0.20$$

$$\sum_{(i\,j)\in\mathcal{C}} \operatorname{err} f(D_{i\,j} - 50) \leq |\mathcal{C}| \times 0.05$$

9 Looking Ahead

9.1 Modeling Languages

9.1.1 Used in the Course

SLIDE 59

- Modeling languages and software used in the course
 - OPL Studio
 - * linear and mixed-integer programming
 - * solver is CPLEX simplex and/or CPLEX barrier
 - * first half of course
 - AMPL
 - * linear and nonlinear programming
 - * solver is LOQO
 - * second half of course

9.2 Modeling Tools

9.2.1 and Issues

- "Column Generation" (week 3)
 - generates new decision variables "on the fly"
- Exact optimization and exact feasibility
 - in models
 - in algorithms
- Computational Issues in LP (next lecture)
 - simplex method with upper/lower bounds
 - methods for updating the basis inverse