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1 Overview 

• Nonlinear Optimization 

• Portfolio Optimization 

• An Inventory Reliability Problem 

• Further concepts for nonlinear optimization 

• Convex Sets and Convex Functions 

• Convex Optimization 

• Pattern Classification 

• Some Geometry Problems 

• On the Geometry of Nonlinear Optimization 

• Classification of Nonlinear Optimization Problems 

• Solving Separable Convex Optimization via Linear Optimization 

• Optimality Conditions for Nonlinear Optimization 

• A Few Concluding Remarks 

2 Nonlinear versus Linear Optimization 

Recall the basic linear optimization model: 
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TLP : minimizex c x 

s.t. 
Ta1 x ≤ b1, 
· = 
· ≥ 
. . . 

Tamx ≤ bm, 

nx ∈ � . 

In this model, all constraints are linear equalities or inequalities, and the 
objective function is a linear function. In contrast, a nonlinear optimization 
problem can have nonlinear functions in the constraints and/or the objective 
function: 

NLP  : minimizex f(x) 

s.t. 
g1(x) ≤ 0, 
· = 
· ≥ 
. . . 

gm(x) ≤ 0, 

nx ∈ � , 

n � n �In this model, we have f(x) :  � → � and gi(x) :  � → �, i  = 1, . . . , m. 

Below we present several examples of nonlinear optimization models. 
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3 Portfolio Optimization 

Portfolio optimization models are used throughout the financial investment 
management sector. These are nonlinear models that are used to determine 
the composition of investment portfolios. 

Investors prefer higher annual rates of return on investing to lower an-
nual rates of return. Furthermore, investors prefer lower risk to higher risk. 
Portfolio optimization seeks to optimally trade off risk and return in invest-
ing. 

We consider n assets, whose annual rates of return Ri are random vari-
ables, i = 1, . . . , n. The expected annual return of asset i is µi, i = 1, . . . , n, 
and so if we invest a fraction  xi of our investment dollar in asset i, the 
expected return of the portfolio is: 

n 
T µixi = µ x 

i=1 

where of course the fractions xi must satisfy: 

n 
T xi = e x = 1.0 

i=1 

and 
x ≥ 0 . 

(Here, e is the vector of ones, e = (1, 1, . . . , 1)T . 

The covariance of the rates of return of assets i and j is given as 

Qij = COV(i, j) . 

We can think of the Qij values as forming a matrix Q, whereby the variance 
of portfolio is then: 

n n n n 

COV(i, j)xixj = Qij xixj = x T Qx. 
i=1 j=1 i=1 j=1 

It should be noted, by the way, that the matrix Q will always by SPD 
(symmetric positive-definite). 
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The “risk” in the portfolio is the standard deviation of the portfolio: 

STDEV = xT Qx , 

and the “return” of the portfolio is the expected annual rate of return of the 
portfolio: 

TRETURN = µ x .  

Suppose that we would like to determine the fractional investment values 
x1, . . . , xn in order to maximize the return of the portfolio, subject to meet-
ing some pre-specified target risk level. For example, we might want to 
ensure that the standard deviation of the portfolio is at most 13.0%. We 
can formulate the following nonlinear optimization model: 

TMAXIMIZE: RETURN = µ x 
s.t.

FSUM: eT x = 1 


ST. DEV.: xT Qx ≤ 13.0 

NONNEGATIVITY: x ≥ 0 . 

An alternative version of the basic portfolio optimization model is to 
determine the fractional investment values x1, . . . , xn in order to minimize 
the risk of the portfolio, subject to meeting a pre-specified target expected 
return level. For example, we might want to ensure that the expected return 
of the portfolio is at least 16.0%. We can formulate the following nonlinear 
optimization model: 

MINIMIZE: STDEV = xT Qx 
s.t. 

tFSUM: e x = 1  

TEXP. RETURN: µ x ≥ 16.0 

NONNEGATIVITY: x ≥ 0 . 
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Variations of this type of model are used pervasively by asset manage-
ment companies worldwide. Also, this model can be extended to yield the 
CAPM (Capital Asset Pricing Model). Finally, we point out the Nobel Prize 
in economics was awarded in 1990 to Merton Miller, William Sharpe, and 
Harry Markowitz for their work on portfolio theory and portfolio models 
(and the implications for asset pricing). 

4 An Inventory Reliability Problem 

A colleague recently came to me with the follow problem that arises in 
analyzing inventory management problems: 

Given positive coefficients hi, βi, di, i  = 1, . . . , m, and  δ >  0, solve for 
s1, . . . , sm: 

m 
IMP  : minimizes hisi


i=1


s.t. 
m 

die
−βisi ≤ δ, 

i=1 

si ≥ 0, i = 1, . . . , m  

5 Further Concepts for Nonlinear Optimization 

Recall the basic nonlinear optimization model: 
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NLP  : minimizex f(x) 

s.t. 
g1(x) ≤ 0, 
· = 
· ≥ 
. . . 

gm(x) ≤ 0, 

nx ∈ � , 

n � n �where f(x) :  � → �  and gi(x) :  � → �, i  = 1, . . . , m. The feasible 
region of NLP  is the set 

F = {x|g1(x) ≤ 0, . . . , gm(x) ≤ 0} 

The ball centered at x̄ with radius ε is the set: 

x, ε) :=  {x|‖x − ¯B(¯ x‖ ≤ ε} 

We have the following definitions of local/global, strict/non-strict min-
ima/maxima. 

Definition 5.1 x ∈ F  is a local minimum of NLP  if there exists ε >  0 
such that f(x) ≤ f(y) for all y ∈ B(x, ε) ∩ F . 

Definition 5.2 x ∈ F  is a global minimum of NLP  if f(x) ≤ f(y) for all 
y ∈ F . 

Definition 5.3 x ∈ F  is a strict local minimum of NLP  if there exists 
ε >  0 such that f(x) < f(y) for all y ∈ B(x, ε) ∩ F , y 
= x. 

Definition 5.4 x ∈ F  is a strict global minimum of NLP  if f(x) < f(y) 
for all y ∈ F , y 
= x. 
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Figure 1: Illustration of local versus global optima. 

Definition 5.5 x ∈ F  is a local maximum of NLP  if there exists ε >  0 
such that f(x) ≥ f(y) for all y ∈ B(x, ε) ∩ F . 

Definition 5.6 x ∈ F  is a global maximum of NLP  if f(x) ≥ f(y) for all 
y ∈ F . 

Definition 5.7 x ∈ F  is a strict local maximum of NLP  if there exists 
ε >  0 such that f(x) > f(y) for all y ∈ B(x, ε) ∩ F , y 
= x. 

Definition 5.8 x ∈ F  is a strict global maximum of NLP  if f(x) > f(y) 
for all y ∈ F , y 
= x. 

The phenomenon of local versus global optima is illustrated in Figure 1. 

5.1 Convex Sets and Functions 

Convex sets and convex functions play an extremely important role in the 
study of optimization models. We start with the definition of a convex set: 

Definition 5.9 A subset S ⊂ �n is a convex set if 

x, y ∈ S ⇒ λx + (1  − λ)y ∈ S 

for any λ ∈ [0, 1]. 
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Figure 2: Illustration of convex and non-convex sets.


Figure 3: Illustration of the intersection of convex sets. 

Figure 2 shows a convex set and a non-convex set. 

Proposition 5.1 If S, T are convex sets, then S ∩ T is a convex set. 

This proposition is illustrated in Figure 3. 

Proposition 5.2 The intersection of any collection of convex sets is a con-
vex set. 

We now turn our attention to convex functions, defined below. 

Definition 5.10 A function f (x) is a convex function if 

f (λx + (1  − λ)y) ≤ λf (x) + (1  − λ)f (y) 

for all x and y and for all λ ∈ [0, 1]. 
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Figure 4: Illustration of convex and strictly convex functions. 

Definition 5.11 A function f (x) is a strictly convex function if 

f (λx + (1  − λ)y) < λf  (x) + (1  − λ)f (y) 

for all x and y and for all λ ∈ (0, 1), y 
= x. 

Figure 4 illustrates convex and strictly convex functions. 

Now consider the following optimization problem, where the feasible re-
gion is simply described as the set F : 

P : minimizex f (x) 

s.t. 
x ∈ F  

Proposition 5.3 Suppose that F is a convex set, f : F → � is a convex 
x is a local minimum of P . Then ¯function, and ¯ x is a global minimum of f 

over F . 

Proof: Suppose x̄ is not a global minimum, i.e., there exists y ∈ F for 
which f (y) < f  (¯ x+(1−λ)y, which is a convex combination x). Let y(λ) =  λ¯
of x̄ and y for λ ∈ [0, 1] (and therefore, y(λ) ∈ F for λ ∈ [0, 1]). Note that 
y(λ) → x̄ as λ → 1. 
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From the convexity of f (·), 

f (y(λ)) = f (λ¯ x)+(1−λ)f (y) < λf  (¯ x) =  f (¯x+(1−λ)y) ≤ λf (¯ x)+(1−λ)f (¯ x) 

for all λ ∈ (0, 1). Therefore, f (y(λ)) < f  (¯ x isx) for all λ ∈ (0, 1), and so ¯
not a local minimum, resulting in a contradiction. 
q.e.d. 

Some examples of convex functions of one variable are: 

• f (x) =  ax + b 

• f (x) =  x2 + bx + c 

• f (x) =  |x| 
• f (x) =  − ln(x) for  x >  0 

• f (x) =  1 for x >  0 x


x
• f (x) =  e

5.2 Concave Functions and Maximization 

The “opposite” of a convex function is a concave function, defined below: 

Definition 5.12 A function f (x) is a concave function if 

f (λx + (1  − λ)y) ≥ λf (x) + (1  − λ)f (y) 

for all x and y and for all λ ∈ [0, 1]. 

Definition 5.13 A function f (x) is a strictly concave function if 

f (λx + (1  − λ)y) > λf  (x) + (1  − λ)f (y) 

for all x and y and for all λ ∈ (0, 1), ,  y 
= x.


Figure 5 illustrates concave and strictly concave functions.


Now consider the maximization problem P :
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Figure 5: Illustration of concave and strictly concave functions. 

P : maximizex f (x) 

s.t. 
x ∈ F  

Proposition 5.4 Suppose that F is a convex set, f : F → � is a concave 
x is a local maximum of P . Then ¯function, and ¯ x is a global maximum of 

f over F . 

5.3 Linear Functions, Convexity, and Concavity 

Proposition 5.5 A linear function f (x) =  aT x + b is both convex and 
concave. 

Proposition 5.6 If f (x) is both convex and concave, then f (x) is a linear 
function. 

These properties are illustrated in Figure 6. 
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Figure 6: A linear function is convex and concave. 

5.4 Convex Optimization 

Suppose that f (x) is a convex function. The set 

Sα := {x|f (x) ≤ α} 

is the level set of f (x) at level α. 

Proposition 5.7 If f (x) is a convex function, then Sα is a convex set. 

This proposition is illustrated in Figure 7.


Now consider the following optimization:


CP : minimizex f (x)


s.t. 
g1(x) ≤ 0, 

. . . 

gm(x) ≤ 0, 

Ax = b, 

nx ∈ � , 
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Figure 7: The level sets of a convex function are convex sets. 

CP is called a convex optimization problem if f(x), g1(x), . . . , gm(x) are  
convex functions. 

Proposition 5.8 The feasible region of CP is a convex set. 

Proof: From Proposition 5.7, each of the sets 

Fi := {x|gi(x) ≤ 0} 

is a convex set, for i = 1, . . . , m. Also, the affine set {x|Ax = b} is easily 
shown to be a convex set. And from Proposition 5.2, 

mF := {x|Ax = b} ∩ (∩i=1Fi) 

is a convex set. 
q.e.d. 

Notice therefore that in CP we are minimizing a convex function over a 
convex set. Applying Proposition 5.3, we have: 

Corollary 5.1 Any local minimum of CP will be a global minimum of CP . 
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This is a most important aspect of convex optimization problem. 

Remark 1 If we replace “min” by “max” in CP and if f(x) is a concave 
function while g1(x), . . . , gm(x) are convex functions, then any local maxi-
mum of CP will be a global maximum of CP . 

5.5 Further Properties of Convex Functions 

The next two propositions present two very important aspects of convex 
functions, namely that nonnegative sums of convex functions are convex 
functions, and that a convex function of an affine transformation of the 
variables is a convex function. 

Proposition 5.9 If f1(x) and f2(x) are convex functions, and a, b ≥ 0, 
then 

f(x) :=  af1(x) +  bf2(x) 

is a convex function. 

Proposition 5.10 If f(x) is a convex function and x = Ay + b, then 

g(y) :=  f(Ay + b) 

is a convex function. 

A function f(x) is  twice differentiable at x = x̄ if there exists a vector 
∇f(¯ x) (called the x) (called the gradient of f(·)) and a symmetric matrix H(¯
Hessian of f(·)) for which: 

1 
x) +  ∇f(¯ x) +  

2
(x − ¯ x)(x − ¯ x(x)‖x − ¯f(x) =  f(¯ x)T (x − ¯ x)T H(¯ x) +  R¯ x‖2 

where R¯ x.x(x) → 0 as  x → ¯


The gradient vector is the vector of partial derivatives:


( )t x) ∂f(¯∂f(¯ x)∇f(x̄) =  , . . . ,  . 
∂x1 ∂xn 
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The Hessian matrix is the matrix of second partial derivatives: 

∂2f(¯
H(x̄)ij = 

x) 
. 

∂xi∂xj 

The next theorem presents a characterization of a convex function in 
terms of its Hessian matrix. Recall that SPSD means symmetric and positive 
semi-definite, and SPD means symmetric and positive-definite. 

Theorem 5.1 Suppose that f(x) is twice differentiable on the open convex 
set S. Then f(x) is a convex function on the domain S if  and only if  H(x) 
is SPSD for all x ∈ S. 

The following functions are examples of convex functions in n-dimensions. 

T• f(x) =  a x + b 

• f(x) =  1 xT Mx  − cT x where M is SPSD2

• f(x) =  ‖x‖ for any norm ‖ · ‖  (see proof below) 

m 
T• f(x) =  − ln(bi − ai x) for  x satisfying Ax < b. 

i=1 

1Corollary 5.2 If f(x) =  2xT Mx  − cT x where M is a symmetric matrix, 
then f(·) is a convex function if and only if M is SPSD. Furthermore, f(·) 
is a strictly convex function if and only if M is SPD. 

Proposition 5.11 The norm function f(x) =  ‖x‖ is a convex function. 

Proof: Let f(x) :=  ‖x‖. For any x, y and λ ∈ [0, 1], we have: 

f(λx + (1  − λ)y) 

= ‖λx + (1  − λ)y‖ 

≤ ‖λx‖ + ‖(1 − λ)y‖ 

= λ‖x‖ + (1  − λ)‖y‖ 
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Figure 8: Illustration of a norm function. 

= λf (x) + (1  − λ)f (y). 

q.e.d. 

This proposition is illustrated in Figure 8. 

When a convex function is differentiable, it must satisfy the following 
property, called the “gradient inequality”. 

Proposition 5.12 If f (·) is a differentiable convex function, then for any 
x, y, 

f (y) ≥ f (x) +  ∇f (x)T (y − x) . 

Even when a convex function is not differentiable, it must satisfy the 
following “subgradient” inequality. 

Proposition 5.13 If f (·) is a convex function, then for every x, there must 
exist some vector s for which 

f (y) ≥ f (x) +  s T (y − x) for any y .  

The vector s in this proposition is called a subgradient of f (·) at the  
point x. 
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6	 More Examples of Convex Optimization Prob-
lems 

6.1 A Pattern Classification Training Problem 

We are given: 

• points a1, . . . , ak ∈ �n that have property “P” 

• points b1, . . . , bm ∈ �n that do not have property “P” 

We would like to use these k + m points to develop a linear rule that can 
be used to predict whether or not other points x might or might not have 
property P. In particular, we seek a vector v and a scalar β for which: 

• vT ai > β  for all i = 1, . . . , k  

• vT bi < β  for all i = 1, . . . , m  

We will then use v, β to predict whether or not any other point c has 
property P or not. If we are given another vector c, we will declare whether 
c has property P or not as follows: 

• If vT c > β, then we declare that c has property P. 

• If vT c < β, then we declare that c does not have property P.


We therefore seek v, β that define the hyperplane


Hv,β := {x|v T x = β} 

for which: 

• vT ai > β  for all i = 1, . . . , k  

• vT bi < β  for all i = 1, . . . , m  
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Figure 9: Illustration of the pattern classification problem. 

This is illustrated in Figure 9. 

In addition, we would like the hyperplane Hv,β to be as far away from 
the points a1, . . . , ak, b1, . . . , bk as possible. Elementary analysis shows that 
the distance of the hyperplane Hv,β to any point ai is equal to 

vT ai − β 
‖v‖ 

and similarly the distance of the hyperplane Hv,β to any point bi is equal to 

T biβ − v
. ‖v‖ 

If we normalize the vector v so that ‖v‖ = 1, then the minimum distance of 
the hyperplane Hv,β to the points a1, . . . , ak , b1, . . . , bk is then: 

T mmin{v a 1 − β, . . . , v  T a k − β, β − v T b1, . . . , β  − v T b } 

Therefore we would also like v and β to satisfy: 

• ‖v‖ = 1,  and  

m• min{vT a1 − β, . . . , vT ak − β, β − vT b1, . . . , β  − vT b } is maximized. 

This results in the following optimization problem: 
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PCP  : maximizev,β,δ δ 

s.t. 
vT ai − β ≥ δ, i = 1, . . . , k  

T biβ − v ≥ δ, i = 1, . . . , m  

‖v‖ = 1, 

v ∈ �n, β  ∈ �  

Now notice that as written, PCP  is not a convex optimization problem, 
due to the presence of the constraint “‖v‖ = 1.” However, if we perform the 
following transformation of variables: 

v β 
x = , α  = 

δ δ 
‖v‖ 1then maximizing δ is the same as maximizing ‖x‖ = ‖x‖ , which is the 

same as minimizing ‖x‖. Therefore we can write the equivalent problem: 

CPCP : minimizex,α ‖x‖ 

s.t. 
xT ai − α ≥ 1, i = 1, . . . , k  

T biα − x ≥ 1, i = 1, . . . , m  

x ∈ �n, α  ∈ �  

Here we see that CPCP is a convex problem. We can solve CPCP for 
x α 1x, α, and substitute v = ‖x‖ , β = and δ = to obtain the solution of ‖x‖ ‖x‖ 

PRP . 
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Figure 10: Illustration of the minimum norm problem. 

6.2 The Minimum Norm Problem 

Given a vector c, we would like to find the closest point to c that also satisfies 
the linear inequalities Ax ≤ b. 

This problem is: 

MNP  : minimizex ‖x − c‖ 

s.t. 
Ax ≤ b 

nx ∈ �

This problem is illustrated in Figure 10. 

6.3 The Fermat-Weber Problem 

1 nWe are given m points c , . . . , cm ∈ � . We would like to determine the 
location of a distribution center at the point x ∈ �n that minimizes the sum 

1of the distances from x to each of the points c , . . . , cm ∈ �n . This problem 
is illustrated in Figure 11. It has the following formulation: 
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∑ m 
FWP  : minimizex ‖x − ci‖ 

i=1 

s.t. 
nx ∈ �

Notice that FWP  is a convex unconstrained problem. 

6.4 The Ball Circumscription Problem 

1 nWe are given m points c , . . . , cm ∈ � . We would like to determine the 
location of a distribution center at the point x ∈ �n that minimizes the 

1maximum distance from x to any of the points c , . . . , cm ∈ �n . This prob-
lem is illustrated in Figure 12. It has the following formulation: 

BCP : minimizex,δ δ 

s.t. 
‖x − ci‖ ≤  δ, i = 1, . . . , m,  

nx ∈ �

This is a convex (constrained) optimization problem. 

6.5 The Analytic Center Problem 

Given a system of linear inequalities Ax ≤ b, we would like to determine a 
x that satisfies Aˆ“nicely” interior point ˆ x < b. Of course, we would like the 

point to be as interior as possible, in some mathematically meaningful way. 
As it turns out, the solution of the following problem has some remarkable 
properties: 
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Figure 11: Illustration of the Fermat-Weber problem.


Figure 12: Illustration of the ball circumscription problem. 
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Figure 13: Illustration of the analytic center problem. 

m 
ACP : maximizex (b − Ax)i 

i=1 

s.t. 
Ax ≤ b, 

nx ∈ �

This problem is illustrated in Figure 13. 

Proposition 6.1 Suppose that x̂ solves the analytic center problem ACP . 
Then for each i, we have: 

∗ si(b − Ax̂)i ≥ 
m 

where 
∗ si := max(b − Ax)i . 

Ax≤b

Notice that as stated, ACP is not a convex problem, but it is equivalent 
to: 

24 



∑ 

Figure 14: Illustration of the circumscribed ellipsoid problem. 

m 
CACP : minimizex − ln((b − Ax)i) 

i=1 

s.t. 
Ax < b, 

nx ∈ �

Now notice that CACP is a convex problem. 

6.6 The Circumscribed Ellipsoid Problem 

1 nWe are given m points c , . . . , cm ∈ � . We would like to determine an 
1 m ∈ellipsoid of minimum volume that contains each of the points c , . . . , c

�n . This problem is illustrated in Figure 14. 

Before we show the formulation of this problem, first recall that an SPD 
matrix R and a given point z can be used to define an ellipsoid in �n: 

ER,z := {y | (y − z)T R(y − z) ≤ 1}. 
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Figure 15: Illustration of an ellipsoid. 

Figure 15 shows an illustration of an ellipsoid. 

One can prove that the volume of ER,z is proportional to det(R−1)
1 
2 .


Our problem is: 

MCP1 : minimize det(R−1) 
R, z 

1 
2 

s.t. ci ∈ ER,z , i  = 1, . . . , k,  

R is SPD. 

Now minimizing det(R−1)
1 
2 is the same as minimizing ln(det(R−1) ), 

since the logarithm function is strictly increasing in its argument. Also,


ln(det(R−1)
1 
2 ) =  −


1 
2 

ln(det(R)) 

and so our problem is equivalent to: 

MCP2 : minimize − ln(det(R)) 
R, z 
s.t. (ci − z)T R(ci − z) ≤ 1, i  = 1, . . . , k  

R is SPD . 
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We now factor R = M2 where M is SPD (that is, M is a square root of 
R), and now MCP  becomes: 

MCP3 : minimize − ln(det(M2)) 
M, z 
s.t. (ci − z)T MT M(ci − z) ≤ 1, i  = 1, . . . , k,  

M is SPD. 

which is the same as: 

MCP4 : minimize −2 ln(det(M))

M, z

s.t. ‖M(ci − z)‖ ≤ 1, i  = 1, . . . , k,  

M is SPD. 

Next substitute y = Mz  to obtain: 

MCP5 : minimize −2 ln(det(M))

M, y

s.t. ‖Mci − y‖ ≤ 1, i  = 1, . . . , k,  

M is SPD. 

It turns out that this is convex problem in the variables M, y. 

We can recover R and z after solving MCP5 by substituting R = M2 

and z = M−1y. 

7	 Classification of Nonlinear Optimization Prob-
lems 

7.1 General Nonlinear Problem 

min or max f(x) 
s.t. gi(x) ≤ bi , i  = 1, . . . , m  
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7.2 Unconstrained Optimization 

min	 or max f(x) 

ns.t.	 x ∈ �

7.3 Linearly Constrained Problems 

min	 or max f(x) 

s.t.	 Ax ≤ b 

7.4 Linear Optimization 
Tmin c x 

s.t.	 Ax ≤ b 

7.5 Quadratic Problem 

min	 cT x + 1 xT Qx2

s.t. Ax ≤ b 

n n n 
The objective function here is min cj xj + xj Qjk xk . 

j=1 j=1 k=1 

7.6 Quadratically Constrained Quadratic Problem 

min cT x + 1 xT Qx2

Ts.t.	 ai x + 1 xT Qix ≤ bi , i  = 1, . . . , m2

7.7 Separable Problem 
n 

min fj (x) 
j=1 

n 
s.t.	 gij (xj ) ≤ bi , i  = 1, . . . , m  

j=1 
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7.7.1	 Example of a separable problem 
√ 

3min x2 + 2y + 1 +  z

s.t. x2 + y2 + cos  z ≤ 9 

√
sin x + 3 − y + sin(z + π) ≤ 18 

x ≥ 0, y  ≤ 0, z  ≥ 0 

7.8 Convex Problem 

min	 f(x) 

s.t.	 gi(x) ≤ bi , i  = 1, . . . , m  

Ax = b 

where f(x) is a convex function and g1(x), . . . , gm(x) are convex func-
tions, or: 

max f(x) 

s.t.	 gi(x) ≤ bi , i  = 1, . . . , m  

Ax = b 

where f(x) is a concave function and g1(x), . . . , gm(x) are convex func-
tions. 
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7.8.1 Example of a convex problem 

min	 x2 + ey 

s.t.	 x2 + y2 ≤ 64 

x + y ≤ 9 

(x − 10)2 + (y)2 ≤ 25 

x ≥ 0, y  ≥ 0 

8	 Solving Separable Convex Optimization via Lin-
ear Optimization 

Consider the problem 

min (x1 − 2)2 + 2x2 + 9x3 

s.t. 3x1 + 2x2 + 5x3 ≤ 7 

7x1 + 5x2 + x3 ≤ 8 

x1, x2, x3 ≥ 0 

This problem has: 

1. linear constraints 

2. a separable objective function z = f1(x1) +  f2(x2) + 9x3 

3. a convex objective function (since f1(·) and  f2(·) are convex functions) 

In this case, we can approximate f1(·) and  f2(·) by piecewise-linear (PL) 
functions. Suppose we know that 0 ≤ x1 ≤ 9 and  0  ≤ x2 ≤ 9. Referring to 
Figure 16 and Figure 17, we see that we can approximate these functions as 
follows: 
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Figure 16: PL approximation of f1(·). 

Figure 17: PL approximation of f2(·). 
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f1(x1) = (x1 − 2)2 ≈ 4 − x1a + 5x1b + 11x1c 

where 
x1 = x1a + x1b + x1c 

and: 

0 ≤ x1a ≤ 3, 0 ≤ x1b ≤ 3, 0 ≤ x1c ≤ 3 . 

Similarly, 

7 2 1 
f2(x2) = 2x2 ≈ 1 +  

3 
x2a + 18

3 
x2b + 149

3 
x2c 

where 
x2 = x2a + x2b + x2c 

and: 

0 ≤ x2a ≤ 3, 0 ≤ x2b ≤ 3, 0 ≤ x2c ≤ 3 

The linear optimization approximation then is: 
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min 4 − x1a + 5x1b + 11x1c + 1 +  7 x2a + 18  2 x2b + 149 1 x2c + 9x3
3 3 3

s.t. 3x1 + 2x2 + 5x3 ≤ 7


7x1 + 5x2 + x3 ≤ 8


x1, x2, x3 ≥ 0


x1a + x1b + x1c = x1


x2a + x2b + x2c = x2


0 ≤ x1a ≤ 3


0 ≤ x1b ≤ 3


0 ≤ x1c ≤ 3


0 ≤ x2a ≤ 3


0 ≤ x2b ≤ 3


0 ≤ x2c ≤ 3


9 On the Geometry of Nonlinear Optimization 

Figures 18, 19, and 20 show three possible configurations of optimal solutions 
of nonlinear optimization models. These figures illustrate that unlike linear 
optimization, the optimal solution of a nonlinear optimization problem need 
not be a “corner point” of F . The optimal solution may be on the boundary 
or even in the interior of F . However, as all three figures show, the optimal 
solution will be characterized by how the contours of f(·) are “aligned” with 
the feasible region F . 
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Figure 18: First example of the geometry of the solution of a nonlinear 
optimization problem. 

Figure 19: Second example of the geometry of the solution of a nonlinear 
optimization problem. 

Figure 20: Third example of the geometry of the solution of a nonlinear 
optimization problem. 
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10	 Optimality Conditions for Nonlinear Optimiza-
tion 

Consider the convex problem: 

(CP) :	 min f(x) 

s.t. gi(x) ≤ bi , i  = 1, . . . , m  .  

where f(x), gi(x) are convex functions. 

We have: 

Theorem 10.1 (Karush-Kuhn-Tucker Theorem) Suppose that f(x), g1(x), . . . , gm(x) 
are all convex functions. Then under very mild conditions, x̄ solves (CP) if 
and only if there exists ȳi ≥ 0, i  = 1, . . . , m, such that 

m 
x) + 	 ȳi∇gi(¯(i)	 ∇f(¯ x) = 0  (gradients line up) 

i=1 

(ii)	 gi(x̄) − bi ≤ 0 (feasibility) 

(iii) ȳi ≥ 0	 (multipliers must be nonnegative) 

(iv) ¯ x)) = 0. (multipliers for nonbinding constraints are zero) yi(bi − gi(¯

10.1	 The KKT Theorem generalizes linear optimization strong 
duality 

Let us see how the KKT Theorem applies to linear optimization. Consider 
the following linear optimization problem and its dual: 

m 
T(LP): min c x (LD): max −yibi


i=1


m 
Tai x ≤ bi , i  = 1, . . . , m  − yiai = c 

i=1 

y ≥ 0 
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Now let us look at the KKT Theorem applied to this problem. The 
KKT Theorem states that if ¯ yi, i  = 1, . . . , mx solves LP, then there exists ¯
for which: 

m m 
x) +  ȳi∇gi(¯(i) ∇f (¯ x) :=  c + ȳiai = 0 (gradients line up) 

i=1 i=1 

T(ii) gi(x̄) − bi := ai x − bi ≤ 0 ( primal feasibility) 

(iii) ȳi ≥ 0 

T(iv) ¯ x)) := ¯yi(bi − gi(¯ yi(bi − ai x) = 0. (complementary slackness) 

Now notice that (ii) is primal feasibility of x̄, and  (i) and  (iii) together 
are dual feasibility of ȳ. Finally, (iv) is complementary slackness. Therefore, 
the KKT Theorem here states that ¯ y together must be primal feasible x and ¯
and dual feasible, and must satisfy complementary slackness. 
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g1(x) = 0 

g2(x) = 0 

g3(x) = 0 

∇g1(x) 

∇g2(x) 

f(x) 

∇f(x) x – 

−∇

Figure 21: Illustration of the KKT Theorem. 

10.2 Geometry of the KKT Theorem 
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10.3 An example of the KKT Theorem 

Consider the problem: 

min 6(x1 − 10)2 +4(x2 − 12.5)2 

2s.t.	 x1 +(x2 − 5)2 ≤ 50 

2 2x1 +3x2 ≤ 200 

(x1 − 6)2 2 ≤ 37+x2


In this problem, we have:


f (x) = 6(x1 − 10)2 + 4(x2 − 12.5)2 

2 g1(x) =  x1 + (x2 − 5)2 

2 2 g2(x) =  x	 + 3x21 

2 g3(x) = (x1 − 6)2 + x2 

We also have: 
 

12(x1 − 10)  ∇f (x) =  
8(x2 − 12.5) 

	 
2x1 	 ∇g1(x) =  

2(x2 − 5) 

 
2x1  ∇g2(x) =  
6x2 
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 
2(x1 − 6)  ∇g3(x) =  

2x2 

Let us determine whether or not the point x = (¯ x2) = (7, 6) is an ¯ x1, ¯
optimal solution to this problem. 

We first check for feasibility: 

g1(x̄) = 50  ≤ 50 = b1 

g2(x̄) = 157 < 200 = b2 

g3(x̄) = 37  ≤ 37 = b3


To check for optimality, we compute all gradients at ¯
x: 
  −36  ∇f(x) =  
−52 

 
14  ∇g1(x) =  
2 

 
14  ∇g2(x) =  
36 

 
2  ∇g3(x) =  
12 

We next check to see if the gradients “line up”, by trying to solve for 
y1 ≥ 0, y2 = 0, y3 ≥ 0 in the following system: 

39 



∑ ∑ 

          −36 14 14 2 0
  +   y1 +   y2 +   y3 =  


−52 2 36 12 0 

y = (¯Notice that ¯ y1, ȳ2, ȳ3) = (2, 0, 4) solves this system in nonnegative 
values, and that y2 = 0. Therefore x̄ is an optimal solution to this problem. 

10.4 The KKT Theorem with Different formats of Constraints 

Suppose that our optimization problem is of the following form: 

(CPE) : min f(x) 

s.t. gi(x) ≤ bi , i  ∈ I 

Tai x = bi , i  ∈ E


The KKT Theorem for this model is as follows:


Theorem 10.2 (Karush-Kuhn-Tucker Theorem) Suppose that f(x), gi(x) 
¯are all convex functions for i ∈ I. Then under very mild conditions, x 

solves (CPE) if and only if there exists ȳi ≥ 0, i  ∈ I and v̄i, i  ∈ E such that 

k 
(i) ∇f(¯ x) +  v̄iai = 0  (gradients line up) x) +  ȳi∇gi(¯


i∈I i∈E


(ii − a) gi(x̄) − bi ≤ 0, i  ∈ I (feasibility) 

t(ii − b) ai x − bi = 0, i  ∈ E (feasibility) 

(iii) ȳi ≥ 0, i  ∈ I (nonnegative multipliers on inequalities) 

(iv) ȳi(bi − gi(x̄)) = 0, i  ∈ I.  (complementary slackness) 

What about the non-convex case? Let us consider a problem of the 
following form: 
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(NCE) : min f(x) 

s.t. gi(x) ≤ bi , i  ∈ I 

hi(x) =  bi , i  ∈ E 

Well, when the problem is not convex, we can at least assert that any 
optimal solution must satisfy the KKT conditions: 

Theorem 10.3 (Karush-Kuhn-Tucker Theorem) Under some very mild con-
ditions, if x̄ solves (NCE), then there exists ȳi ≥ 0, i  ∈ I and v̄i, i  ∈ E such 
that 

(i) ∇f(¯ x) +  v̄i∇hi(x) = 0  (gradients line up) x) +  ȳi∇gi(¯
i∈I i∈E 

(ii − a) gi(x̄) − bi ≤ 0, i  ∈ I	 (feasibility) 

(ii − b) hi(x) − bi = 0, i  ∈ E	 (feasibility) 

(iii) ȳi ≥ 0	 (nonnegative multipliers on inequalities) 

(iv) ȳi(bi − gi(x̄)) = 0.	 (complementary slackness) 

11 A Few Concluding Remarks 

1. Nonconvex optimization problems can be difficult to solve.	 This is

because local optima may not be global optima. Most algorithms are

based on calculus, and so can only find a local optimum.


2. Solution Methods. There are a large number of solution methods for

solving nonlinear constrained problems. Today, the most powerful

methods fall into two classes:


•	 methods that try to generalize the simplex algorithm to the non
-
linear case.


•	 methods that generalize the barrier method to the nonlinear case. 
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3. Quadratic Problems.	 A quadratic problem is “almost linear”, and 
can be solved by a special implementation of the simplex algorithm, 
called the complementary pivoting algorithm. Quadratic problems are 
roughly eight times harder to solve than linear optimization problems 
of comparable size. 

42 


