Benders’ Decomposition Methods for Structured
Optimization, including Stochastic Optimization

Robert M. Freund

April 29, 2004

(©2004 Massachusetts Institute of Technology.

1 Block Ladder Structure

We consider the solution of a linear optimization model of the basic format:

minimize,,, clz + Ty

s.t. Ax = b
Bx + Dy = d
x>0 y>0.

Here the variables z can be thought of as stage-1 decisions, governed by
constraints Az = b,z > 0 and with cost function ¢’ z. Once the x variables
have been chosen, the y variables are chosen next, subject to the constraints
Dy =d — Bz,y > 0 and with cost function f7y.

We also consider the more complex format associated with two-stage
optimization under uncertainty:

minimize fz + Oz1f1Ty1 + a2f2Ty2 + -+ OéKf;TgyK
TyYly-- - YK
s.t. Ax = b
Bix + D1y1 = d
Box + Dayo = do
Bix + Dryx = di

xvyluyza”'uyKZO .

Actually, each of these formats can be thought of as a special case of the
other format. The more complex format above is known as “block-ladder”,
and is illustrated in Figure 1.

RHS

Stage-1 Stage-2
Variables Variables
Objectives
State 1
State 2
State 3
State k

Figure 1: Block ladder structure of two-stage stochastic linear optimization.

2 Reformulation of the Basic Model
The basic model format is:
VAL = minimum,, e + Ty
s.t. Azx =

Bx + Dy =

whose optimal objective value is denoted by VAL. We re-write this as:

VAL = minimum, 'z + z(z)
s.t. Ax =0
>0,
where:
P2: 2(r) =minimum, fTy
st. Dy = d— Bz
y=>0.

We call this problem “P2” because it represents the stage-2 decision problem,
once the stage-1 variables x have been chosen. Applying duality, we can also
construct z(z) through the dual of P2, which we denote by D2:

D2: z(z) = maximum, p’(d— Bx)

s.t. DTp

IN
~

The feasible region of D2 is the set:

Dy:={p|D'p< [},

whose extreme points and extreme rays can be enumerated:

are the extreme points of P, and

are the extreme rays of Ps.

If we use an algorithm to solve D2, exactly one of two cases will arise:
D2 is unbounded from above, or D2 has an optimal solution. In the first
case, the algorithm will find that D2 is unbounded from above, and it will
return one of the extreme rays ¥ =/ for some j, with the property that

(r)T(d — Bx) > 0

in which case
z(x) = 400 .

In the second case, the algorithm will solve D2, and it will return one of the
extreme points p = p’ for some i as well as the optimal objective function
value z(x) which will satisfy:

(@) = () (d = Ba) = max (5" (d— Ba) .

Therefore we can re-write D2 again as the following problem:

D2: z(z) = minimum, z
st. (p)T(d—-Bz) < =z i=1,...,1
(rHT(d—-Bx) < 0 j=1,...,J.
This problem simply states that the value of D2 is just the dual objective
function evaluated at the best extreme point of the dual feasible region, pro-

vided that the objective function makes an obtuse angle with every extreme
ray of the dual feasible region.

We now take this reformulation of z(z) and place it in the orginal prob-
lem:

FMP : VAL = minimum, , Tr+ 2
s.t. Ax = b
x>0
®»)7(d—Bz) < = i=1,...,1

(rH)T(d—-Bz) < 0 j=1,...,J.

We call this problem FMP for the full master problem. Comparing FMP
to the original version of the problem, we see that we have eliminated the
variables y from the problem, we have added a single scalar variable z, and
we have also added a generically extremely large number of constraints.

3 Delayed Constraint Generation

The idea behind delayed constraint generation is to try to solve FMP using
only a small subset of the constraints, and to check afterward whether any
of the non-included constraints are violated.

Consider the restricted master problem RMP composed of only k of the
extreme point / extreme ray constraints from FMP:

RMPF: VALF = minimumy . e+ 2

s.t. Ax = b

We solve this problem, obtaining the optimal objective value VAL* and
the solution Z,Zz that is optimal for this problem. We first observe that
VALF is a lower bound on VAL, i.e.:

VALF < VAL .

In order to check whether the solution Z, z is optimal for the full mas-
ter problem, we must check whether Z, Z violates any of the non-included
constraints. We check for this by solving the linear optimization problem:

Q(z): = maximum, pl(d—BZ) = minimum, Ty
st. DTp<f st. Dy=d— Bx
y=>0.

If Q(Z) is unbounded, the algorithm will return an extreme ray ¥ = rJ
for some j, where = will satisfy:

(rHT(d - Bz) > 0.

‘We therefore have found that T has violated the constraint:

(r)'(d—Bz) <0,

and so we add this constraint to RMP and re-solve RMP.

If Q(z) has an optimal solution, the algorithm will return an optimal
extreme point p = p° for some i, as well as the optimal solution § to the
minimization problem of Q(Z).

Now notice first from Q(Z) that (z, g) is feasible for the original problem.
Therefore, if UB is a previously computed upper bound on VAL, we can
update the upper bound and our “best” feasible solution as follows:

If 'z+ fIy < UB, then BESTSOL « (Z,7) .

UB « min{UB, "'z + T3} .
Also, notice that if:
(»")"(d~Bz) >z,
then we have found that z, z has violated the constraint:

(»)"(d - Bx) <z,
and so we add this constraint to RMP and re-solve RMP.

If (p))7(d — Bz) < %, then we have:

kinf?if(pk)T(d ~Bz) = (p)'(d—- Bz) < 7,

and so Z, z is feasible and hence optimal for FMP, and so (Z,y) is optimal
for the original problem, and so we terminate the algorithm.

By our construction of upper and lower bounds on VAL, we can also
terminate the algorithm whenever:

UB — VALF < ¢

for a pre-specified tolerance &.

3.1 Delayed Constraint Generation Algorithm

Here is a formal description of the algorithm just described.

0. Set LB= —oc0 and UB= +o0.

1. A typical iteration starts with the relaxed master problem RMP¥, in
which only & constraints of the full master problem FMP are included.
An optimal solution Z, Z to the relaxed master problem is computed.
We update the lower bound on VAL:

LB « VAL" .

2. Solve the subproblem Q(z):

Q(z): maximum, p’(d—Bz) = minimum, Ty
st. DIp<f st. Dy=d— Bz
y=>0.

3. If Q(Z) has an optimal solution, let p and § be the primal and dual
solutions of Q(z). If p” (d — Bz) < Z, then Z, Z satisfies all constraints
of FMP, and so Z, z is optimal for FMP. Furthermore, this implies that
(z,7) is optimal for the original problem.

If p7'(d — Bz) > z, then we add the constraint:

pl(d— Bzx) < z

to the restricted master problem RMP.
Update the upper bound and the best solution:

If ¢'z+ fTy < UB, then BESTSOL « (z,7)

UB «— min{UB, 'z + f17}

If UB — LB < ¢, then terminate. Otherwise, return to step 1.

4. If Q(z) is unbounded from above, let 7 be the extreme ray generated
by the algorithm that solves Q(z). Add the constraint:

71 (d— Bz) <0

to the restricted master problem RMP, and return to step 1.

This algorithm is known formally as Benders’ decomposition. The Ben-
ders’ decomposition method was developed in 1962 [2], and is described in
many sources on large-scale optimization and stochastic programming. A
general treatment of this method can be found in [3, 4].

The algorithm can be initialized by first computing any Z that is feasible
for the first stage, that is, AZ = b, > 0, and by choosing the value of Z
to be —oo (or any suitably small number). This will force (Z, z) to violate
some constraints of FMP.

Notice that the linear optimization problems solved in Benders’ decom-
position are “small” relative to the size of the original problem. We need
to solve RMP* once every outer iteration and we need to solve Q(Z) once
every outer iteration. Previous optimal solutions of RMP* and Q(z) can
serve as a starting basis for the current versions of RMP* and Q(z) if we
use the simplex method. Because interior-point methods do not have the
capability of starting from a previous optimal solution, we should think of
Benders’ decomposition as a method to use in conjunction with the simplex
method primarily.

Incidentally, one can show that Benders’ decomposition method is the
same as Dantzig-Wolfe decomposition applied to the dual problem.

10

4 Benders’ Decomposition for Problems with Block-
Ladder Structure

Suppose that our problem has the complex block-ladder structure of the
following optimization model that we see for two-stage optimization under
uncertainty:

VAL =minimize Tz + aiffyn + coffyy + - + axfryk
w’ yl’] yK
s.t. Ax = b
Bix + D1y = d
Box + Daya = do
B + Dgyx = dk

xvylvaa"'vyKZO .

whose optimal objective value is denoted by VAL. We re-write this as:

K
VAL = minimum, c’z+ Y auz,(7)
w=1
s.t. Ax =0
>0,

where:

11

P2,: 2,(r) =minimum,, fIy,
st. Dyy, = d,— Bz

Yo > 0.

We call this problem “P2,” because it represents the stage-2 decision prob-
lem under scenario w, once the stage-1 variables x have been chosen. Ap-
plying duality, we can also construct z,(x) through the dual of P2, which
we denote by D2,,:

D2, : 2,(z) =maximum,, pL(d, — B,z)
s.t. DIp, < fo.
The feasible region of D2, is the set:

,DL20 = {pw | DZ;pw < fw})

whose extreme points and extreme rays can be enumerated:

1 1
Doy Dy

are the extreme points of D¢, and

are the extreme rays of D5 .

If we use an algorithm to solve D2, exactly one of two cases will arise:
D2, is unbounded from above, or D2, has an optimal solution. In the first
case, the algorithm will find that D2, is unbounded from above, and it will
return one of the extreme rays 7,, = rZ, for some j, with the property that

12

in which case

In the second case, the algorithm will solve D2,,, and it will return one of the
extreme points p, = p’, for some i as well as the optimal objective function
value z,(x) which will satisfy:

zo(x) = ()" (dw — Buz) = pax (p)"(d — Bux) .

e tw

Therefore we can re-write D2, again as the following problem:

D2, : z,(z) = minimum,, Ze
st. (p)T(d, — Box) < 2, 1=1,...,1,

(1) T(dy—Boz) < 0 j=1,...,Ju.

This problem simply states that the value of D2, is just the dual objective
function evaluated at the best extreme point of the dual feasible region, pro-
vided that the objective function makes an obtuse angle with every extreme
ray of the dual feasible region.

We now take this reformulation of z,(z) and place it in the orginal
problem:

13

K
FMP : VAL = minimum ¢’z 4+ Y auz,
w=1
LyZly-e-yRK
s.t. Az = b

x>0

() (dy — Bor) < 2y i=1,... 0 w=1,...

()T (dy—Boz) < 0 j=1,....Jp, w=1,...

We call this problem FMP for the full master problem. Comparing
FMP to the original version of the problem, we see that we have eliminated
the vector variables y1,...,yx from the problem, we have added K scalar
variables z, forw =1, ..., K, and we have also added a generically extremely
large number of constraints.

As in the basic model, we consider the restricted master problem RMP
composed of only k of the extreme point / extreme ray constraints from
FMP:

K
RMP* : VALF = minimum ¢’z + 3 oz,

w=1
LTyZ1y..-43RK
s.t. Ax = b
x>0

(pfu)T(dw — B,x) < z, forsomeiandw

(r1)7(dy — Box) < 0 for someiand w ,

where there are a total of k£ of the inequality constraints. We solve this prob-
lem, obtaining the optimal objective value VALF and the solution Z, Z1, . . ., Zx

14

K

K.

that is optimal for this problem. We first observe that VAL* is a lower bound
on VAL, i.e.:

VALF < VAL.

In order to check whether the solution Z,z1, ..., Zx is optimal for the
full master problem, we must check whether Z,Zz1,...,Zx violates any of
the non-included constraints. We check for this by solving the K linear
optimization problems:

Qu(7) : = maximum,, pl(d, — B,Z) = minimum,, Iy,
st. DIp, < f, st. Dyy, =d, — BT
Yo =0

If Q. (Z) is unbounded, the algorithm will return an extreme ray 7, = ri
for some j, where z will satisfy:

(ri)'(dy, — BuZ) >0 .

We therefore have found that Z has violated the constraint:

(TZJT(dw - oﬂ?) <0 y

and so we add this constraint to RMP.

If Qu(Z) has an optimal solution, the algorithm will return an optimal
extreme point p,, = p!, for some ¢, as well as the optimal solution %,, of the
minimization problem of Q ().

If |
()T (d, — B,%) > Z, ,

15

then we have found that z, z, has violated the constraint:
(pZ;)T(dw - Bux) < 20 4

and so we add this constraint to RMP.

If Q. (Z) has finite optimal objective function values for allw = 1,..., K,
then Z,91,...,yx satisfies all of the constraints of the original problem.
Therefore, if UB is a previously computed upper bound on VAL, we can
update the upper bound and our “best” feasible solution as follows:

K
If "2+ aufo . < UB, then BESTSOL « (z,71,....0xk) -

w=1

K
UB « min{UB,c"Z +) _ aufu)} -

w=1

If (pi,)T(d, — B,%) < Z, for all w=1,..., K, then we have:

w

,max, () (dy — Boz) = (pi)(dy — Buz) <z, forallw=1,...,K ,

and so 7, Z1, . . . , 2K satisfies all of the constraints in FMP. Therefore, z, 21, . . .
is feasible and hence optimal for FMP, and so (Z, 91, ..., %) is optimal for
the original problem, and we can terminate the algorithm.

Also, by our construction of upper and lower bounds on VAL, we can
also terminate the algorithm whenever:

UB - VALF < ¢
for a pre-specified tolerance ¢.

16

7ZK

4.1 The Delayed Constraint Generation Algorithm for Prob-
lems with Block-Ladder Structure

Here is a formal description of the algorithm just described for problems
with block-ladder structure.

0. Set LB= —oc0 and UB= +c0.

1. A typical iteration starts with the relaxed master problem RMP¥, in
which only & constraints of the full master problem FMP are included.
An optimal solution Z,Zz1,...,Zx to the relaxed master problem is
computed. We update the lower bound on VAL:

LB « VALF .

2. For w=1,..., K, solve the subproblem Q,(Z):

Qu(Z) : = maximum,, pl(d, — B,Z) = minimum,, Ly,
s.t. Dgpw < fu st. Dyy, =d, —
Yo 20

— If Qu(z) is unbounded from above, let 7, be the extreme ray
generated by the algorithm that solves Q(Z). Add the constraint:

7l (d, — B,z) <0

to the restricted master problem RMP.

— If Q,(Z) has an optimal solution, let p,, and g, be the primal and
dual solutions of Q,(z). If (p!,)T(d, — B,T) > Z,, then we add
the constraint:

17

pz:(dw - wa) < Zu

to the restricted master problem RMP.

3. If (pi)7(dy, — BuZ) < 2, forall w = 1,..., K, then (Z,%1,...,9x) is
optimal for the original problem, and the algorithm terminates.

4. If Q. (%) has an optimal solution for all w = 1, ..., K, then update the
upper bound on VAL as follows:

K
If T2+ owfo 9, < UB, then BESTSOL « (Z,41,...,0x) -

w=1

K
UB « min{UB,c"Z+ Y aufu "} -

w=1

If UB — LB < ¢, then terminate. Otherwise, add all of the new
constraints to RMP and return to step 1.

In this version of Benders’ decomposition, we might add as many as K
new constraints per major iteration.

5 The Power Plant Investment Model

Recall the power plant investment model described earlier. The full model
is:

18

4 125

5 5 15
Igliyn Zcﬂi + Z Qg ZZZO-Olfi(W)hjyijkw
’ w=1

i=1 = i=1 j=1 k=1
4

s.t. Zci:zi < 10,000 (Budget constraint)
i=1

x4 <5.0 (Hydroelectric constraint)

Yijhw < T fori=1,...,4, all j,k,w (Capacity constraints)
5

Z Yijkw = Dijkw for all j, k,w (Demand constraints)

i=1

x>0, y=>0

(1)

where a, is the probability of scenario w, and Dy, is the power demand in
block j and year k£ under scenario w.

This model has 4 stage-1 variables, and 46,875 stage-2 variables. Further-
more, other than nonnegativity constraints, there are 2 stage-1 constraints,
and 375 constraints for each of the 125 scenarios in stage-2. This yields
a total of 46,877 constraints. It is typical for problems of this type to be
solved by Benders’ decomposition, which exploits the problem structure by
decomposing it into smaller problems.

Consider a fixed x which is feasible (i.e., z > 0 and satisfies the budget
constraint and hydroelectric constraint). Then the optimal second-stage
variables y;jx., can be determined by solving for each w the problem:

ot
ot

15

2,(7) & min ZZZO'Olfi(w)hjyijk“’
SO
subject to Yijkw < 5 fori=1,...,4, all j,k, (Capacity constraints)

5
Z Yijkw = Djkw for all j, k (Demand constraints)
i=1
y=>0.

(2)

19

Although this means solving 125 problems (one for each scenario), each
subproblem has only 375 variables and 375 constraints. (Furthermore, the
structure of this problem lends itself to a simple greedy optimal solution.)

The dual of the subproblem (2) is:

4 5 15 5 15
zo(7) & max Z Z Z TiPijkw T Z Z Djkwbjkw

i=1 j=1 k=1 j=1k=1

subject t0 Pjjrw + ke < 0.01f;(w)h; i=1,...,4, for all j, k (3)
Dijkw <0
Qjkw = 0.

6 Computational Results

All models were solved in OPLStudio on a Sony Viao Laptop with a Pentium
IIT 750 MHz Processor Running Windows 2000. Table 1 shows the number
of iterations taken by the simplex method to solve the original model.

Original Model CPT Time
Iterations (minutes:seconds)

| Simplex || 41,334 | 5:03 |

Table 1: Iterations to solve the original model.

We next solved the problem using Benders’ decomposition, using a du-
ality gap tolerance of ¢ = 1072. We first solved the model treating all
stage-2 variables and constraints as one large block, using the basic Ben-
ders’ decomposition algorithm. We next solved the model treating each of
the 125 stage-2 scenarios as a separate block, using the more advanced ver-
sion of Benders’ decomposition that takes full advantage of the block-ladder
structure. The number of master iterations and the number of constraints

20

generated by the two different solution methods are shown in Table 2. Notice
that while the block-ladder version generates more constraints, it requires
fewer major iterations. Table 3 shows the computation times of all of the
solution methods. From this table, it is evident that the method that takes
full advantage of the block-ladder structure was the most efficient solution
method.

Benders’ Decomposition
Basic (1 Block) | Block-Ladder (125 Blocks)
Master Iterations 39 15
Generated Constraints 39 1,875

Table 2: Master iterations and generated constraints for the two implemen-
tations of Benders’ decomposition.

No Decomposition Benders’ Decomposition
Original Model Basic (1 Block) | Block-Ladder (125 Blocks)
CPU Time
(min:sec) 5:03 3:22 1:27

Table 3: Computation times (min:sec) for the original model and the two
implementations of Benders’ decomposition.

Figure 2 shows the the upper and lower bounds generated by Benders’
decomposition at each iteration. Notice that there is initial rapid conver-
gence of the bounds to the optimal objective function value, followed by
very slow convergence thereafter. This is typical pattern that is observed in
decomposition methods in general. Figure 3 shows the duality gap between
the upper and lower bounds on a logarithmic scale. Here we see that the
convergence rate of the duality gap is roughly linear.

21

50 T

O Block Ladder 125 Block:
A A Basic - 1 Block
[n]
40 4
&
= 30 A i
k] A
z
£ A
)
E o &
3
§20r n i
o A
o
Bem B R R R el
g B Beege g R R
A A
o
10r E
A
a]
VN
0 £y B 1 1
0 5 10 15

Iteration

Figure 2: Upper and lower bounds for Benders’ decomposition.

7 Exercise

The current version of the powerplant planning model uses the strategy
of adding one constraint for every scenario in the model at each iteration
of the Benders’ decomposition method. This means that k& = 125 new
constraints are added to the model at each outer iteration of the method.
As discussed in class, this strategy outperforms the alternative strategy of
adding only k£ = 1 new constraint at each outer iteration of the model. In
this question, you are asked to explore intermediate strategies that might
improve computation time for solving the powerplant planning model using
Benders’ decomposition.

By adding your own control logic in the region indicated in the script
file, bender1.osc, experiment with different strategies for limiting and/or
controlling the number of new constraints added to the model at each outer
iteration. You may also modify the model files or the data file if neces-
sary. (One strategy that you might try would be to add a fixed number of

22

T T
10° 7?3 O- Block Ladder 125 Block
5 A Basic - 1 Block
A
A
wp "0 Te E
m]
AA
0 a N
L A i
el
g 8, N
£ an
[
2 a] A
310 A A i
| JANNVN
B g N
3] b
290t b A i
10 A
@ o] A
Q A
% A
N
10° b E s E
A
5O AN
A
107 F A . B
A
10’2 | | | | | | |
0 5 10 15 20 25 30 35 40

Iteration

Figure 3: Gap between upper and lower bounds for Benders’ decomposition.
constraints, say k = 10, 20, or 30, etc., constraints per outer iteration.)

References

[1] D. Anderson. Models for determining least-cost investments in electric-
ity supply. The Bell Journal of Economics, 3:267-299, 1972.

. Benders. Partitioning procedures for solving mixed-variables pro-
2] J. Bend Partitioni d f Lvi ixed iabl
gramming problems. Numerische Mathematik, 4:238-252, 1962.

[3] D. Bertsimas and J. Tsitisklis. Introduction to Linear Optimization.
Athena Scientific, 1997.

[4] J. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer-Verlag, 1997.

23

