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1 The Analytic Center of a Polyhedral System 

Given a polyhedral system of the form: 

Ax ≤ b ,  Mx  = g ,  

the analytic center is the solution of the following optimization problem: 

m 
(ACP:) maximizex,s si 

i=1 

s.t. Ax + s = b 

s ≥ 0 

Mx  = g .  

This is easily seen to be the same as: 

m 
(ACP:) minimizex,s − ln(si) 

i=1 

s.t. Ax + s = b 

s ≥ 0 

Mx  = g .  

The analytic center possesses a very nice “centrality” property. Suppose 
that (ˆ s) is the analytic center. Define the following matrix: x, ˆ

 (ŝ1)−2 0 . . .  0  0  (ŝ2)−2 . . .  0  
Ŝ−2 :=  . . . .  .  .. . . . . . . 

0 0 . . .  (ŝm)−2 
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Figure 1: Illustration of the Ellipsoid construction at the analytic center. 

Next define the following sets: 

P := {x | Mx  = g, Ax ≤ b} 

x)T AT Ŝ−2A(x − ˆEIN := x | Mx  = g, (x − ˆ x) ≤ 1 

x)T AT Ŝ−2A(x − ˆEOUT := x | Mx  = g, (x − ˆ x) ≤ m 

x, ̂Theorem 1.1 If (ˆ s) is the analytic center, then: 

EIN ⊂ P ⊂ EOUT . 

This theorem is illustrated in Figure 1.


The theorem is actually pretty easy to prove.
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Proof: Suppose that x ∈ EIN, and  let  s = b − Ax. Since  Mx  = g, we need  
only prove that s ≥ 0 to show that x ∈ P . By construction of EIN, s satisfies 
(s − ŝ)T Ŝ−2(s − ŝ) ≤ 1, where ˆ = b − Aˆs x. This in turn can be written as: 

m ∑ (si − ŝi)2 

≤ 1 ,2 
i=1 

ŝi 

whereby we see that each si must satisfy si ≥ 0. Therefore Ax ≤ b and so 
x ∈ P . 

We can write the optimality conditions (KKT conditions) for problem 
ACP as: 

−Ŝ−1e + λ = 0 

0 +  AT λ + MT u = 0  

Aˆ sx + ˆ = b 

Mx̂ = g ,  

where e = (1, . . . , 1)T , i.e., the e is the vector of ones. 

From this we can derive the following fact: if (x, s) is feasible for problem 
ACP, then 

T Ŝ−1 T ˆ T e s = e S−1(b − Ax) =  λT b + u T Mx  = λT b + u g .  

Since this is true for any (x, s) feasible for ACP, it will also be true for (ˆ s)x, ˆ
(where ˆ = b − Aˆs x), and so 

T Ŝ−1 e s = λT b + u T g = e T Ŝ−1ŝ = m .  

This means that s must lie in the set 

S−1T := s | s ≥ 0, e  T ˆ s = m . 

Now the extreme points of T are simply the vectors: 
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1 m v 1 := mŝ1e , . . . , v  m := mŝme , 

iwhere ei is the ith unit vector. Notice that each of these extreme points v
satisfies: 

2(v i − ŝ)T Ŝ−2(v i − ŝ) = (me i − e)T (me i − e) =  m 2 − m ≤ m , 

and so any s ∈ T will satisfy 

2(s − ŝ)T Ŝ−2(s − ŝ) ≤ m . 

Therefore for x ∈ P , s = b − Ax will satisfy (s − ŝ)T Ŝ−2(s − ŝ) ≤ m, 

x)T AT Ŝ−2A(x − ˆwhich is equivalent to (x − ˆ x) ≤ m. This in turn implies 
that x ∈ EOUT. 
q.e.d. 

2 Newton’s Method 

Suppose we want to solve: 

(P:) min f(x) 

nx ∈ � . 

At x = x̄, f(x) can be approximated by: 

1 
x) +  ∇f(¯ x) +  

2
(x − ¯ x)(x − ¯f(x) ≈ h(x) :=  f(¯ x)T (x − ¯ x)tH(¯ x), 

which is the quadratic Taylor expansion of f(x) at  x = x̄. Here ∇f(x) is  
the gradient of f(x) and  H(x) is the Hessian of f(x). 

Notice that h(x) is a quadratic function, which is minimized by solving 
∇h(x) = 0. Since the gradient of h(x) is:  

∇h(x) =  ∇f(¯ x)(x − ¯x) +  H(¯ x) , 
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we therefore are motivated to solve: 

∇f(¯ x)(x − ¯x) +  H(¯ x) = 0  , 

which yields 
x − ¯ x)−1∇f(¯x = −H(¯ x). 

The direction −H(¯ x) is called the Newton direction, or the Newtonx)−1∇f(¯
step at x = x̄.


This leads to the following algorithm for solving (P):


Newton’s Method: 

Step 0 Given x0, set  k ← 0


Step 1 dk = −H(xk)−1∇f(xk). If dk = 0, then stop.


Step 2 Choose stepsize αk = 1. 


Step 3 Set xk+1 ← xk + αkdk, k  ← k + 1.  Go  to  Step 1.


Note the following: 

•	 The method assumes H(xk) is nonsingular at each iteration.


k+1) ≤ f(x
•	 There is no guarantee that f(x k). 

•	 Step 2 could be augmented by a linesearch of f(xk + αdk) to find  an  
optimal value of the stepsize parameter α. 

Proposition 2.1 If H(x) is SPD, then d = −H(x)−1∇f(x) is a descent 
direction, i.e. f(x + αd) < f(x) for all sufficiently small values of α. 

Proof: It is sufficient to show that ∇f(x)td = −∇f(x)tH(x)−1∇f(x) < 0. 
This will clearly be the case if H(x)−1 is SPD. Since H(x) is SPD, if v 
= 0,  

0 < (H(x)−1 v)tH(x)(H(x)−1 v) =  v tH(x)−1 v, 

thereby showing that H(x)−1 is SPD. 
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2.1 Rates of convergence 

A sequence of numbers {si} exhibits linear convergence if limi→∞ si = s̄ 
and 

|si+1 − s̄|
lim = δ < 1. 
i→∞ |si − s̄|

If δ = 0 in the above expression, the sequence exhibits superlinear conver-
gence. 

A sequence of numbers {si} exhibits quadratic convergence if limi→∞ si = 
s̄ and |si+1 − s̄|

lim = δ < ∞. 
i→∞ |si − s̄|2 

Examples: 
( )i 

Linear convergence: si = 1 : 0.1, 0.01, 0.001, etc. s̄ = 0.  10 

|si+1 − s̄| 
= 0.1. |si − s̄| 

1 1 1 1Superlinear convergence: si = i! : 1,  1 
2 , 6 , 24 , 125 , etc.  s̄ = 0.  

|si+1 − s̄| i! 1 
= = → 0 as  i → ∞. |si − s̄| (i + 1)!  i + 1  

( )(2i)
1Quadratic convergence: si = 10 : 0.1, 0.01, 0.0001, 0.00000001, etc. 

s̄ = 0.  
|si+1 − s̄| (102i

)2 

= = 1.
102i+1|si − s̄|2 

3Theorem 2.1 (Quadratic Convergence Theorem) Suppose f(x) ∈ C
∗ on �n (i.e., f(x) is three times continuously differentiable) and x is a point  

that satisfies: 

∇f(x ∗) = 0  and H(x ∗) is nonsingular. 

∗If Newton’s method is started sufficiently close to x , the sequence of iterates 
∗converges quadratically to x . 
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Example 1: Let f (x) = 7x − ln(x). Then ∇f (x) =  f ′(x) = 7  − 1 and x ∗ 1H(x) =  f ′′(x) =  
x
1 
2 . It is not hard to check that x = 7 = 0.142857143 is 

the unique global minimum. The Newton direction at x is 

1 22d = −H (x)−1∇f (x) =  − 
f

f 
′′
′(
(
x

x

)
) 

= −x 7 − = x − 7x . 
x 

kNewton’s method will generate the sequence of iterates {x } satisfying: 

k+1 k)2 x = x k + (x k − 7(x k)2) = 2x k − 7(x . 

Below are some examples of the sequences generated by this method for 
different starting points. 

k xk xk xk xk 

0 1.0 0 0.1 0.01 
1 −5.0 0 0.13 0.0193 
2 −185.0 0 0.1417 0.03599257 
3 −239, 945.0 0 0.14284777 0.062916884 
4 −4.0 × 1011 0 0.142857142 0.098124028 
5 0.142857143 0.128849782 
6 0.1414837 
7 0.142843938 
8 0.142857142 
9 0.142857143 
10 0.142857143 

By the way, the “range of convergence” for Newton’s method for this 
function happens to be 

x ∈ (0.0 , 0.2857143) . 

Example 2: f (x) =  − ln(1 − x1 − x2) − ln x1 − ln x2.   
1 − 1 

1−x1−x2 x1  ∇f (x) =    , 
1 − 1 

1−x1−x2 x2 
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 

 

( 
1 

1−x1−x2 

)2 
+ 

( 
1 
x1 

)2 ( 
1 

1−x1−x2 

)2 
 

 
H (x) =    

  .  ( 
1 

1−x1−x2 

)2 ( 
1 

1−x1−x2 

)2 
+ 

( 
1 
x2 

)2  

( ) 
x ∗ = 1 

3 , 1 
3 , f (x ∗) = 3.295836866. 

k xk 
1 xk 

2 ‖xk − x ∗‖ 

0 0.85 0.05 0.58925565098879 
1 0.717006802721088 0.0965986394557823 0.450831061926011 
2 0.512975199133209 0.176479706723556 0.238483249157462 
3 0.352478577567272 0.273248784105084 0.0630610294297446 
4 0.338449016006352 0.32623807005996 0.00874716926379655 
5 0.333337722134802 0.333259330511655 7.41328482837195e−5 

6 0.333333343617612 0.33333332724128 1.19532211855443e−8 

7 0.333333333333333 0.333333333333333 1.57009245868378e−16 

Some remarks: 

•	 Note from the statement of the convergence theorem that the iterates 
of Newton’s method are equally attracted to local minima and local 
maxima. Indeed, the method is just trying to solve ∇f (x) = 0.  

•	 What if H(xk) becomes increasingly singular (or not positive definite)? 
In this case, one way to “fix” this is to use H (xk) +  εI. 

• The work per iteration of Newton’s method is O(n3) 

•	 So-called “quasi-Newton methods” use approximations of H(xk) at  
each iteration in an attempt to do less work per iteration. 

3	 Modification of Newton’s Method with Linear 
Equality Constraints 

Here we consider the following problem: 
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(P:) minimizex f (x) 

s.t. Ax = b. 

Just as in the regular version of Newton’s method, we approximate the 
objective with the quadratic expansion of f (x) at  x = x̄: 

P :) minimizex h(x) :=  f (¯ x)T (x − ¯(˜ x) +  ∇f (¯ x) + 1 
2(x − ¯ x)(x − ¯x)tH(¯ x) 

s.t. Ax = b. 

Now we solve this problem by applying the KKT conditions, and so we 
solve the following system for (x, u): 

Ax = b 

∇h(x) +AT u = 0  . 

Now let us substitute the fact that: 

x) +  H(¯ x) and  A¯∇h(x) =  ∇f (¯ x)(x − ¯ x = b. 

Substituting this and replacing d = x − x̄, we have the system: 

Ad = 0  

x)d +AT u = −∇f (¯H (¯ x) . 

The solution (d, u) to this system yields the Newton direction d at x̄. 
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Notice that there is actually a closed form solution to this system, if we 
want to pursue this route. It is: 

( )−1 
x)−1∇f (¯ x)−1AT AH (¯ x)−1∇f (¯d = −H(¯ x) +  H (¯ x)−1AT AH(¯ x) 

( )−1 
u = − AH (¯ x)−1∇f (¯x)−1AT AH(¯ x) . 

4 Web-Based ACA (Adaptive Conjoint Analysis) 
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