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1 Equations Involving the Basis Matrix

At each iteration of the simplex method, we have a basis consisting of an
index of variables:

B(1),.... B(m) .
from which we form the basis matrix B by collecting the columns Ag 1y, ..., Ap@m)
of A into a matrix:

B := [AB(I) ‘ AB(2)‘ ‘ AB(mfl) ‘ AB(m) :| .

In order to execute the simplex method at each iteration, we need to be
able to compute:
z=DB"1r and/or  pl =rIB7!, (1)
for iteration-specific vectors r1 and ro, which is to say that we need to solve
equation systems of the type:
Bx =r; and/or  p'B=rl (2)

for z and p.

2 LU Factorization

One way to solve (2) is to factor B into the product of a lower and upper
triangular matrix L, U:
B=LU,
and then compute x and/or p as follows. To compute x, we solve the fol-
lowing two systems by back substitution:
e First solve Lv = rq for v

e Then solve Uz = v for z.



To compute p, we solve the following two systems by back substitution:

e First solve u'U = rl for u

e Then solve p’ L = u” for p.

It is straightforward to verify that these procedures yield x and p that
satisfy (2). If we compute according to these procedures, then:

Br=LUx=ILv=mr and p'B=p'LU=4TU = r{ .

3 Updating the Basis and its Inverse

As the simplex method moves from one iteration to the next, the basis
matrix B changes by one column. Without loss of generality, assume that
the columns of A have been re-ordered so that

B::[Al ‘...|Aj,1 |Aj|Aj+1| ’Am]

at one iteration. At the next iteration we have a new basis matrix B of the
form:

Bi=[A | ... Ajqy | Ax| Ajsr | | A ]
Here we see that column A; has been replaced by column Ay in the new
basis.

Assume that at the previous iteration we have B and we have computed
an LU factorization of B that allows us to solve equations involving B~1. At
the current iteration, we now have B and we would like to solve equations
involving B~!. Although one might think that we might have to compute
an LU factorization of B, that is not the case. Herein we describe how
the linear algebra of working with B! is computed in practice. Before we
describe the method, we first need to digress a bit to discuss rank-1 matrices
and rank-1 updates of the inverse of a matrix.



3.1 Rank-1 Matrices

Consider the following matrix:

-2 2 0 =3
—4 4 0 -6
W= -14 14 0 -21
10 —-10 0 15

W is an example of rank-1 matrix. All rows are linearly dependent and all
columns are linearly dependent. Now define:

U R

and vl =(-2 2 0 -3).
-5

If we think of v and v as n x 1 matrices, then notice that it makes sense
to write:

1 -2 2 0 -3
2 —4 4 0 -6

— T— J— _— p—
W =uv! = . x(=2 2 0 3) 14 14 0 —91
) 10 —-10 O 15

In fact, we can write any rank-1 matrix as uv’ for suitable vectors u and v.

3.2 Rank-1 Update of a Matrix Inverse

Suppose we have a matrix M and we have computed its inverse M ~!. Now
consider the matrix .
M = M + uw”

for some rank-1 matrix W = uv?. Then there is an exact formula for M~}
based on the data M~! u, and v, which is called the Sherman-Morrison
formula:

Property. M is invertible if and only if vZM~1u # —1, in which case

~ M~ tyoT
Ml=|I—-— | M. 3
[ 1+UTM1U] (3)



Proof: Let

— -2 %
@ 14+ 0T M1y

[ M~ yp” ] e
Then it suffices to show that MQ = I, which we now compute:
MQ = [M—f—uvT] X [I— %} M1

— {M%—UUT} % [M—l _ M_luvTM_l}

1+vTM—1u
- Lo B waip
=T +uwl M1 (1 - 1+UT§\471U - 112%\;&%)
=17
q.e.d.

3.3 Solving Equations with M using M ™!

Suppose that we have a convenient way to solve equations of the form Mx =
b (for example, if we have computed an LU factorization of M), but that
we want to solve the equation system:

Mx=0b.
Using (3), we can write:
~ M~ ™
=M= |- —Fc— | M.
v [ 1+ UTM—lul

Now notice in this expression that we only need to work with M !, which
we presume that we can do conveniently. In fact, if we let

' =M1 and 2?=M"1u,

we can write the above as:

M1 _ x2oT vl gt
Iy — |1 |

M= |1-——_"" -
v [ 14+ 0T M1y 14+ vTx2
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Therefore we have the following procedure for solving Ma = b:

e Solve the system Maz!' = b for x!

e Solve the system Mz? = u for x?

S vl 2
e Compute x = x T2 e

3.4 Computational Efficiency

The number of operations needed to form an LU factorization of an n x n
matrix M is on the order of n3. Once the factorization has been computed,
the number of operations it takes to then solve Mz = b using back substi-
tution by solving Lv = b and Uz = v is on the order of n?. If we solve
Mz =b by factorizing M and then doing back substitution, the number
of operations needed would therefore be n® 4+ n?. However, if we use the
above rank-1 update method, the number of operations is n? operations for
each solve step and then 3n operations for the final step, yielding a total
operation count of 2n? + 3n. This is vastly superior to n® + n? for large n.

3.5 Application to the Simplex Method

Returning to the simplex method, recall that we presume that the current
basis is:

B:=[A1 |...|Aj-1 |45 | Ajpa | ... | An ]

at one iteration, and at the next iteration we have a new basis matrix B of
the form:

BZ:[Al |...|Aj,1 |Ak ‘ Aj+1‘ | Am] .
Now notice that we can write:
- \T
B=B+ A —A)x (¢)

where ¢/ is the 5™ unit vector (e/ has a 1 in the 4™ component and a 0 in
every other component). This means that B is a rank-1 update of B with

uw= (A —A;) and v= (ej) . (4)
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If we wish to solve the equation system Bx = r1, we can apply the method
of the previous section, substituting M = B, b = r;, u = (A; — A;) and
v = (e?). This works out to:

e Solve the system Bz! = r{ for z!

e Solve the system Bz? = Aj, — A; for x2

e Compute z = 2! — %ﬁ

This is fine if we want to update the basis only once. In practice, how-
ever, we would like to systematically apply this method over a sequence of
iterations of the simplex method. Before we indicate how this can be done,
we need to do a bit more algebraic manipulation. Notice that using (3) and
(4) we can write:

B = |1 | B

B~

_[; B~ (A,—Ay)(e?)”
- o 1+(6j)TB71(Ak7AJ')

Now notice that because A; = BeJ, it follows that BflAj = ¢/, and substi-
tuting this in the above yields:

(B’lAk—ej)(ej)T
(ej)TBflAk

B‘IZ[I— B!

— EB!

where

- (B~1 A}, — ) ()"
E=|I- —
(67) B-14,
Furthermore, if we let @ be the solution of the system Bw = Ay, that is,
W = B~ A, then we can write F as

[

We state this formally as:



Property A. Suppose that the basis B is obtained by replacing the ;"
column of B with the new column Aj. Let @ be the solution of the system
Bw = A, and define:

: (@ — ) (ej)T]
E=|1-—2—1|.
e
Then
B l'=EB!. (5)

Once we have computed @ we can easily form E. And then we have

from above: . .
Tr = B_lT‘l = EB_17"1 .

Using this we can construct a slightly different (but equivalent) method for
solving Bx = r1:

e Solve the system Bw = Ay, for w

e Form and save the matrix £ = |I —

(e9)" w
e Solve the system Bz' = for x!
e Compute z = Ez'.
Notice that
1 ¢1
1 Co
E = .
5
Cm 1
where ‘
(@)
CcC = RPN
(ed)" w

E is an elementary matrix, which is matrix that differs from the identity
matrix in only one column or row. To construct E we only need to solve



B = Ay, and that the information needed to create E is the n-vector @
and the index j. Therefore the amount of memory needed to store E is just
n + 1 numbers. Also the computation of Ez! involves only 2n operations if
the code is written to take advantage of the very simple special structure of
E.

4 Implementation over a Sequence of Iterations

Now let us look at the third iteration. Let é be the basis at this iteration.
We have: )

at the second iteration, and let us suppose that at the third iteration we
replace the column A; with the column A;, and so B is of the form:

Bi=[Ay|...| Ay [A] A | - | A ]

__Then using Property A above, let w be the solution of the system
Bw = A;. Then

B =EB! (6)

where

It then follows that é

— EEB! | (7

~—

Therefore we can easily solve equations involving B by forming E and E
and working with the original LU factorization of B.

This idea can be extended over a large sequence of pivots. We start
with a basis B and we compute and store an LU factorization of B. Let
our sequence of bases be By = B, Bj,...,B; and suppose that we have
computed matrices F, ..., Ex with the property that

B) '=EE_,---E.B™" | l=1,... k.



Then to work with the next basis inverse B, we compute a new matrix
Ey11 and we write:

(Byt1) ' = Exy1 By - 4B

This method of working with the basis inverse over a sequence of it-
erations eventually degrades due to accumulated roundoff error. In most
simplex codes this method is used for K = 50 iterations in a row, and then
the next basis is completely re-factorized from scratch. Then the process
continues for another K iterations, etc.

5 Homework Exercise

1. In Section 3.2 we considered how to compute a solution x of the equa-
tion Mx = b where M = M + wv” and we have on hand an LU
factorization of M. Now suppose instead that we wish to compute a
solution p of the equation p? M = ¢! for some RHS vector c. Using
the ideas in Section 3.2, develop an efficient procedure for computing
p by working only with an LU factorization of M.

2. In Section 3.5 we considered how to compute a solution z of the equa-
tion Bz = rq where B differs from B by one column, and we have on
hand an LU factorization of B. Now suppose instead that we wish
to compute a solution p of the equation pTB = 7“2T for some vector
ro. Using the ideas in Section 3.5, develop an efficient procedure for
computing p by working only with an LU factorization of B.
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