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Simple Mechanica System

Optimization of The Dynamics Model

Truss Vibration

Newton's Second Law of Motion

F=mxa.




Optimization of The Dynamics Model

Truss Vibration

illed down, th
Q 1g to move th
e u=10).
nent w causas an upward force k » u, where k
stant
We obtain from F = m x a that:

ku(t) = mii(t)

Optimization of The Dynamics Model

Truss Vibration

Law of Motion:
ku(t) = mii(t)
Solution:

u(t) = sin -,I.I |
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Natural Frequencies— How a Mechanical
System wants to vibrate when forced.

1 DOF System
T T T

(k/m) 5

1 | |
0 12 14 16 18 20
Frequency (Hz or Cycles/Sec)

Examples

» Ball onastring
* Beam(s)

» For asimple mechanical systemsitis
relatively easy to systematically effect a
change in the natural frequency.
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Beam Vibration

Narrow Beam

B manrebeean. avi

How would we change the frequency of vibration?

Beam Vibration

B manrebeean. avi

Narrow Beam Natural Frequency = 5.6 Hz
Narrow and Short Beam Natural Frequency = 11.7 Hz
Wide Beam Natural Frequency = 7.8 Hz
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Another Mechanical System

Write Newton’s Law for Each Mass

F=ma

The Dynamics Modéd (The Equations of motion).

m,(d?u, /dt?) + Kk u,+ Ky(u;-u,) =0
my(dPu, /dt?) + Ko(Uy-Uy) + Ka(Uy-Ug) = 0
my(dPu, /dt?) + ka(Ug-Up) = F(t)

In Matrix Form

M (d2U /dt2) + K U = F(t)
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Equations of Motion
And Eigenvalue Analysis

The Equations of motion

M (c?U /dt?) + KU = F(t) M du , KU = F(t)

dt?

» The Eigenvalues of M-1K are the natural
frequencies of vibration (squared).

» The Eigenvectors of M-1K are the mode shapes
(the relative displacement of each degree of
freedom)

Natural Frequencies— The Rate a
Mechanical System wantsto vibrate

3 DOF System

| | | | | |
4 5 6 7 8 9 10
Frequency (Hz or Cycles/Sec)
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Natural Modes — (The Eigen-Modes)
Are the shape of the Vibration

Modification?

It is no longer obvious what we
have to do in order to change
the lowest natural frequency.
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Truss Structure

Truss Structures

* Rigid beams
— Axial forces only
e Pin-connected

— Concentric joints
— Welded or bolted

 Bridges, towers, exoskeletons
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A truss has large number of natural
frequencies and comnlex motion.

Truss: Model asLumped Masses
with Connecting Springs

Link Stiffnessis afunction
of Length, Area, density

Half of the mass of Each
Link is assumed to Sit at a
node. (A function of Areas)
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Truss: Modeled asLumped Masses
with Connecting Springs

AAAAAAA
VVVVVVVVAV

Step 6. Determine System of Equations by applying Newton’'s
Law at each node (on each ball of mass)

M(cRU /dt?) + KU = F(t)
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Optimization of The Dynamics Model

Truss Vibration

Law of Motion:

ku(t) = mii(t)

Solution:; .
u(t) =sin | 4/ t |
' \ ¥ e

W

1/
Y rm

s structure, we need multidimensional ana logs for k. u ( ”

Optimization of The Dynamics Model

Truss Vibration

epand on material

1 05 0 05 1 15 2 25 3
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Optimization of The Dynamics Model

Truss Vibration

Optimization of The Dynamics Model

Truss Vibration

Each Node (Mass) has, in general, 3 Degrees of Freedom
E1
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Optimization of The Dynamics Model

Truss Vibration

ku(t) = mii(t)

hecomes:

Ku(t) = Mii(t)

Both K and M are SPD matrice

the truss geometry and the nodal cons

Equations of Motion
And Eigenvalue Analysis

The Equations of motion

M(cRU /dt?) + KU = F(t)

» The Eigenvalues of M-1K are the natural
frequencies of vibration (squared).

» The Eigenvectors of M-1K are the mode shapes
(the relative displacement of each degree of
freedom)
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Optimization of The Dynamics Model

Truss Vibration

Ku(t) = Mii(t]
: e functions with

Optimization of The Dynamics Model

Truss Vibration

Ku(t) = Mu(t)

gajeli :::[ ial=
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Optimization of Truss Vibration Design

Truss Vibration

tiffness matrix as a linear function of the volumes

K= "\ t;

=1
L; is the length of bar ¢
E; is the Young's modulus of bar s

t; is the volume of bar 2

Optimization of Truss Vibration Design

Truss Vibration

Here we use y; to represent the area of bar i (y; = )

7 (@:)(a:) ‘} Y= \— Ky
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Optimization of  [Hiietat

Truss Vibration

M=M(y)=" My

LR Truss Vibration Design

Truss Vibration

TSDP: minimize % b
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Optimization of Truss Vibration Design

Truss Vibration

decision variables are 9. ..., ¥m

; of bar i (perhaps from the output

b; 15 the length of bar 1+ times the material densiy of bar 1

Optimization of Truss Vibration Design

Truss Vibration

TSDP: minimize, % by

‘_; ' K; 5..!3"1[';13 yi =0
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Optimization of Computational Example

Truss Vibration

SDPT3 is the semidefinite programming software developed by

::[.3'

e Kim Chuan Toh of National University of Singapore

gie Mellon University

A proposed design of a Cell
Phone Tower

Planar Approximation:

WL S

.__.___
LI TR e T T e,

All beams have an
Area of 1 square centimeter

50 Bars
40 Degrees of Freedom
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A proposed design of a Cell

Phone Tower
Natural Frequency = 159 Hz
( smallest eigenvalue of M-1K)

-1 -05 0 0.5 1 15 2 2.5 3

Natural Frequencies— The Rate a
Mechanical System wantsto vibrate

N DOF System

L L
1 1.5
Frequency (Hz or Cycles/Sec)
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Natural Modes (Eigenvectors or
Eigen-modes) - The Shape of the Vibration

Movies...
159.7156 Hz 920.3246 Hz 1618.3 Hz 2333.4 Hz

Cdll Phone Tower

» Theinitial design of the cell tower hasa
natural frequency of 159 Hz.

» We expect ground vibration induced by a
nearby railroad near 100 Hz and 159 Hz.
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Optimized Tower

Natural Frequency = 250 Hz

towershrt250
T

ﬂ%

L
-1 -0.5 0 0.5 1 15 2 25

Cdll Phone Tower

» The optimized design of the cell tower hasa
natural frequency of 250 Hz.

e Thisvibration of 100 Hz and 159 Hz will
now have minimal effect.
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Optimized Tower
Natural Frequency = 500 Hz

towershrt500
T T

New Areas:
2.0561
4.0845
7.3261
11.8377
17.2199
22.8216
28.2383

optimization of [

Truss Vibration
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Continuous Mechanical System — Truss
Approximation

Step 0. Complex (Continuous) Mechanical Structure
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Step 1. Apply aMesh (Truss) to the Mechanical Structure

)

Step 2. Form Local Regions around ‘Nodes' of the Mesh
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All of thismassis applied to the contained node.

\"‘%

<N

Step 3. Use Local Regions around ‘Nodes' to approximate
Node Mass (m) and Link Stiffness (k;;)

Step 4. The Finite Element (Truss) Approximation
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1
Step 5. Label the Nodes

X

Step 6. Determine System of Equations by applying Newton’'s Law

Mg(d2Xg /) + Kgy, (XgXq) + Kgp(Xg-X5) + - = B, (1)
Me(d?Y /at2) + K1y (VoY1) + Koy (Yo Y2) + -+ = Fey (1)




Step 6. Determine System of Equations by applying Newton’'s Law

M(cRU /dt?) + KU = F(t)

35



If Time Remains

Optimization of Computational Example
Truss Vibration

TSDP :

1
MInmize, » f-:"i.;'.J.'
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Optimization of Computational Example

Truss Vibration

B Bl
mMinimiEe, )

10E per square

Optimization of Computational Example

Truss Vibration

SDPT3 is the semidefinite programming software developed by

“T3"
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Optimization of Computational Example

Truss Vibration

Optimization of Computational Example

Truss Vibration

10 feet
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Optimization of More Computation

Truss Vibration

Optimization of More Computation

Truss Vibration
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Optimization of More Computation

Truss Vibration

bound on Threshold |_|-.;:_::_'4[,.5|~._-_;-r- 7] versus "-"'a"::':-ir:'_j"T of






