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2 Active Set Methods for Quadratic Optimization 

In a constrained optimization problem, some constraints will be inactive 
at the optimal solution, and so can be ignored, and some constraints will 
be active at the optimal solution. If we knew which constraints were in 
which category, we could throw away the inactive constraints, and we could 
reduce the dimension of the problem by maintaining the active constraints 
at equality. 

Of course, in practice, we typically do not know which constraints might 
be active or inactive at the optimal solution. Active set methods are 
designed to make an intelligent guess of the active set of constraints, and to 
modify this guess at each iteration. 

Herein we describe a relatively simple active-set method that can be used 
to solve quadratic optimization problems. 

Consider a quadratic optimization problem in the format: 

TQP : minimizex xT Qx + c x 

s.t. Ax = b (1) 

x ≥ 0 . 

2 

1 
2 



[ ]	 ( ) 

The KKT optimality conditons for QP are as follows: 

Ax = b 

x ≥ 0 

Qx + c − AT p − s = 0  

s ≥ 0 

xjsj = 0, j  = 1, . . . , n.  

We suppose for this problem that n is very large, but that intuition 
suggests that very few variables xj will be non-zero at the optimal solution. 

Suppose that we have a feasible solution x, and that we partition the 
components of x into x = (xβ , xη), where xβ ≥ 0 and  xη = 0. In this 
partition, the number of elements in β will be small, relative to the value of 
n. 

Using this partition, we can re-write the data for our problem as: 

cβQ = 
Qββ Qβη , A  = [Aβ Aη] , c  = . 
Qηβ Qηη cη 

Now let us “guess” that the variables xj , j  ∈ η will be zero in the opti-
mal solution. That being the case, we can eliminate the variables xη from 
further consideration for the moment. We will then concentrate our efforts 
on solving the much smaller problem: 

QPβ : z ∗ 
β = minimumxβ 

1 
2x
T T 

β Qββxβ + cβ xβ 

s.t.	 Aβxβ = b 

xβ ≥ 0 . 

∗Let xβ be the optimal solution of QPβ, and  let  p ∗ be the associated 
KKT multipliers for the constraints “Aβxβ = b”. Also, let sβ denote the 
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associated KKT multipliers on the nonnegativity constraints xβ ≥ 0. Then 
∗ ∗ x and p , sβ will satisfy the KKT optimality conditions for QPβ, namely: β 

∗ ∗ 
β p − sβ = 0Qββxβ + cβ − AT 

∗ = bAβxβ 

∗ x ≥ 0, sβ ≥ 0β 

∗(xβ)T sβ = 0  . 

∗We can expand x into the following feasible solution to the original β 
problem: 

∗ x = (xβ , xη) = (xβ , 0) 

by setting all of the variables xη := 0. This solution will of course be feasible 
for the original problem, but will it be optimal? The answer lies, of course, 
in checking the KKT optimality conditions for the original problem using 

∗ ∗ x = (xβ , 0) and p = p , which we write as follows: 

[ ](  ) ( ) [ ] ( ) 
x ∗ ATQββ Qβη β cβ − β p ∗ = 

sβ+ ≥ 0 
cη ATQηβ Qηη 0 η sη 

∗ 
β[Aβ Aη] 

x 
= b

0 

∗(xβ , 0) ≥ 0 

∗(xβ)T sβ = 0, 0T sη = 0  . 

Here we see that all of these conditions are automatically satisfied except 
for the condition that sη ≥ 0. We remark that sη is defined above to be: 

∗ ∗ sη := Qηβxβ + cη − AT 
η p . 

We therefore have: 
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∗Proposition 2.1 If sη ≥ 0, then (xβ , 0) is an optimal solution to (1). 

∗Proof: Since xβ is an optimal solution of QPβ , then the KKT multipliers 
∗ p and sβ satisfy 

∗ TQββxβ + cβ − Aβ p ∗ − sβ = 0  

∗Aβxβ = b 

∗ x ≥ 0, sβ ≥ 0β 

∗(xβ)T sβ = 0  . 

∗ T ∗If furthermore 0 ≤ sη := Qηβxβ + cη − Aη p ∗ we have that the vector (xβ , 0) 
satisfies 

[ ](  ) ( ) [ ] ( ) ∗ Tx Aβ ∗ sβQββ Qβη β + 
cβ − T p = ≥ 0 

Qηβ Qηη 0 cη Aη sη 

∗ 
β[Aβ Aη] 

x 
= b

0 

∗(xβ , 0) ≥ 0 

∗(xβ)T sβ = 0, 0T sη = 0  . 

which are precisely the optimality conditions for (1). 

Just as importantly, if sj < 0 for some j ∈ η, then the optimal solution to 
the expanded problem QPβ∪{j} will have a strictly better objective function 
value than that of QPβ. 

Proposition 2.2 If sj < 0 for some j ∈ η, then zβ∪{j} < zβ. 

We defer the proof of this proposition to the end of this section. 

This all suggests the following active-set algorithm for solving our origi-
nal problem QP: 
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0. Define some partition of the indices, {1, . . . , n} = β ∪ η. 

1. Solve the reduced problem 

∗ 1 T TQPβ : z = minimumxβ xβ Qββxβ + cβ xββ 2 

s.t. Aβxβ = b 

xβ ≥ 0 , 

∗ ∗obtaining the optimal solution x and optimal KKT multiplier p onβ


the equations “Aβxβ = b”.


2. Compute 
∗ ∗ sη := Qηβxβ + cη − AT 

η p . 

∗If sη ≥ 0, STOP. In this case, (xβ , 0) is optimal for (1). Otherwise if 
sj < 0 for some j ∈ η, then set β ← β ∪ {j}, η := η \ {j}, and go to 1. 

In practice we might add more than one index j to the set β at each 
iteration. Some active set methods add all indices j for which sj < 0. 

Also, in order to keep the set β from becoming too large, we might 
remove indices i from β if xi has been zero in the optimal solutions of the 
reduced problems for a large number of previous iterations. 

There are also very many other variants of this type of method. 

Proof of Proposition 2.2: For ease of notation we will drop the subscript 
β from the subproblem solved in step 1 of the algorithm. Let us call x̄ the 
optimal solution of this problem, together with KKT multipliers p̄ and s̄. 
These all satisfy the KKT conditions: 

Qx̄ + c − AT p̄ − s̄ = 0  

Ax̄ = b 

¯ ¯x ≥ 0, s̄ ≥ 0, xT s̄ = 0  . 

We separate the indices of x into sets such that ¯ x2 = 0 and x1 > 0 and  ̄
we separate the data for the problem as follows: 
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c1Q = 
Q11 Q12 , c  = , A  = [A1 A2] . 
Q21 Q22 c2 

We then write the above system as: 

¯Q11x1 + c1 − AT p̄ = 01 

¯Q21x1 + c2 − AT p̄ − s̄2 = 02 

A1x1 = b¯

x̄1 > 0, s̄2 ≥ 0 . 

We now consider a new variable θ to add to this system. The data 
associated with this variable is q, δ, ĉ, a, such that: 

Q q  c 
Q → 

qT δ
, c  → 

ĉ
, A  → [A a] 

Since this variable by supposition has a “reduced cost” that is negative, 
then the new data satisfies: 

q x + ˆT ¯ c − a T p̄ = −ε <  0 . 

We will now show that this implies that there exists a feasible descent 
direction. The objective function of our problem and the formulas for the 
gradients of the objective function are: 

[ ]( ) ( ) 
1 x Tf(x, θ) =  
2
(x T , θ) 

Q q  
+ (c , ĉ) 

x 
Tq δ θ θ [ ](  ) ( ) 

c ∇f(x, θ) =  
Q q  x 

+Tq δ θ ĉ  
¯

x, 0) = 
q
Q¯

x + ˆ
=  Q21x1 + c2  . 

Q11x1 + c1 

∇f(¯
x + c  ¯  

T ¯ c T ¯q x + ĉ 
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Invoking a nondegeneracy assumption, we assume that there exists a 
vector d1 for which A1d1 + a = 0. Then, since x̄1 > 0 we have that  
(x1, x2, θ) = (x̄1 + αd1, 0, α) ≥ 0, for α >  0 and small. Next we compute: 

  
¯Q11x1 + c1  ¯  

x, 0)T (d1, 0, 1) = (dT∇f(¯ 1 , 0, 1)  Q21x1 + c2  
q x + ˆT ¯ c 

T ¯= (AT p̄)T d1 + q x + ˆ1 c 

= −a T p̄ + q T ¯ cx + ˆ = −ε <  0 . 

Therefore (d1, 0, 1) is a feasible descent direction, and so the optimal objec-
tive function value of the expanded problem is strictly less than that of the 
current problem. 

3 Pivoting Algorithms for Quadratic Optimization 

To facilitate the presentation, we will consider the following format for QP: 

1 TQP : minimizex 2 x
T Qx + c x 

s.t. Ax ≥ b (π) (2) 

x ≥ 0 (y) 

Let us first look at the KKT optimality conditions for (2): 
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s := Ax − b ≥ 0 

x ≥ 0 

Qx + c − AT π − y = 0  

π ≥ 0 

y ≥ 0 

πisi = 0  i = 1, . . . , m  

yj xj = 0  j = 1, . . . , n.  

We can write the first five conditions in the form of a tableau of linear 
constraints in the nonnegative variables (y, s, x, π): 

y s x π Relation RHS 

I 0 −Q AT = c 
0 I −A 0 = −b 

and keeping in mind the nonnegativity conditions: 

y ≥ 0 s ≥ 0 x ≥ 0 π ≥ 0 

and the complementarity conditions: 

yj xj = 0, j  = 1, . . . , n,  siπi = 0, i  = 1, . . . , m.  

This tableau has exactly (n + m) rows and  2(n + m) columns, that is, there 
are twice as many columns as rows. Therefore a basic feasible solution of 
this tableau will have one half of all columns in the basis. 

We can find a basic feasible solution to this tableau (which has no objec-
tive function row by the way!) by applying Phase I of the simplex algorithm. 
However, what we really want to do is to find basic feasible solution that is 
also “complementary” in the following sense: 
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• Either yj is in the basis or xj is in the basis, but not both, j = 1, . . . , n,  

• Either si is in the basis or πi is in the basis, but not both, i = 1, . . . , m.  

Such a basic feasible solution will have the nice property that either 
yj = 0  or  xj = 0,  j = 1, . . . , n, and  also  si = 0  or  πi = 0,  i = 1, . . . , m. That 
is, a complementary basic feasible solution (CBFS) will satisfy the KKT 
conditions and so will solve QP. 

One strategy for finding a CBFS is to add a nonnegative parameter θ 
and solve the following tableau: 

y s x π Relation RHS 

I 0 −Q AT = c + θe 
0 I −A 0 = −b + θe 

(Here e is the vector of ones of any appropriate dimension.) Now notice that 
for θ sufficiently large, that the RHS is nonnegative and so the complemen-
tary basic solution: 

    
y c + θe  s   −b + θe 

=  x 
  

  
 

0 
  

π 0 

is a complementary basic feasible solution. The strategy then is try to 
start from this solution, and to drive θ to zero by a sequence of pivots 
that maintain a complementary basic feasible solution all the while. As it 
turns out, it is easy to derive pivot rules for such a strategy. The resulting 
algorithm is called the “complementary pivot algorithm”. It was originally 
developed by George Dantzig and Richard Cottle in the 1960s, and analyzed 
and extended by Carl Lemke, also in the 1960s. 

We will not go over the specific pivot rules of the complementary pivot 
algorithm. They are simple but technical, and are easy to implement. What 
can we say about convergence of the complementary pivot algorithm? Just 
like the simplex method for linear optimzation, one can prove that the 
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complementary pivot algorithm must converge in a finite number of piv-
ots (whenever the matrix Q is SPSD). 

Regarding computational performance, notice that the tableau generally 
has twice the number of constraints and twice the number of variables as a 
regular linear optimization problem would have. This is because the primal 
and the dual variables and constraints are written down simultaneously in 
the tableau. This leads to the general rule that a complementary pivot algo-
rithm will take roughly eight times as long to solve a quadratic program via 
pivoting as it would take the simplex method to solve a linear optimization 
problem of the same size as the primal problem alone. 

Up until recently, most software for quadratic optimization was based 
on the complementary pivot algorithm. However, nowadays most software 
for quadratic optimization uses interior-point methods, which we will soon 
discuss. 

4	 Four Key Ideas that Motivate Interior Point 
Methods 

We will work in this section with quadratic optimization in the following 
format: 

QP : minimizex 
1 
2x
 TT Qx + c x 

s.t.	 Ax = b (3) 

x ≥ 0 . 

4.1 A barrier function 

The feasible region of (QP) is the set 

F := {x | Ax = b, x ≥ 0} . 

The boundary of F will be where one or more of the components of x is 
equal to zero. The boundary is composed of linear pieces, and is generally 
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arranged in an exponentially complex manner. The simplex method takes 
explicit advantage of the linearity of the boundary, but can take a long time 
to solve a problem if there are exponentially many extreme points and edges 
to traverse. For this reason, we will take the curious step of introducing a 
barrier function B(x). A barrier function is any (convex) function defined 
on the interior of F and whose values go to infinity as the boundary is 
approached. That is: 

• B(x) < +∞ for all x ∈ intF , and  

• B(x) → ∞ as xj → 0. 

The idea in a barrier method is to dissuade points x from ever approaching 
the boundary of the feasible region. For a fixed value of µ >  0, we consider 
solving: 

QPµ : minimizex 
1 
2x
 TT Qx + c x + µB(x) 

s.t. Ax = b (4) 

x >  0 . 

Let x(µ) denote the optimal solution of QPµ. For large values of µ, the 
optimal solution x(µ) will be more concerned about staying away from the 
boundary than in optimizing the original quadratic objective function. How-
ever, for small values of µ, the optimal solution x(µ) will be ever more 
concerned about optimizing the original quadratic objective function while 
simultaneously not getting too close to the boundary. 

Interior-point methods use the barrier function: 

n 

B(x) =  − ln(xj ) . 
j=1 

This function is convex, and approaches +∞ as any xj approaches zero. 

4.2 Staying Centered relative to the Objective Function Value 

Suppose that x̄ is a the current iterate of an algorithm for solving (QP). If 
x̄ is very far from the boundary of the feasible region F , then no matter 
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what direction we wish to go at the next iteration, we will have plenty of 
room to take a step, see Figure 1. However, since the optimal solution will 
generally lie on the boundary of the feasible region, we will want to keep 
the algorithm iterates as centered as possible for their objective function 
values. In the figure, point a is close to the boundary, point b is far from 
the boundary, and points c and d are far from the boundary relative to their 
objective function level sets. 

Now consider the barrier version of our quadratic problem with the log-
arithmic barrier: 

n 
BPµ : minimizex 

1 
2x
 TT Qx + c x − µ 

j=1 
ln(xj ) 

s.t. Ax = b 

x >  0 . 

The objective function here will minimize the barrier term while also 
accounting for the original quadratic objective function. In this way, the 
solutions x(µ) of BPµ will be nicely centered relative to other feasible values 
x ∈ F with as good or better objective function values. Therefore the 
solutions x(µ) will be relatively far from the boundary for their objective 
function values. 

4.3	 Treating the KKT Conditions of the Barrier Problem as 
a Nonlinear Equation System 

For a general barrier function B(x), our parameterized barrier problem is: 

QPµ : minimizex 
1 
2x
 TT Qx + c x + µB(x) 

s.t.	 Ax = b (5) 

x >  0 . 

Because the positivity conditions x >  0 will never be binding, the opti-
mality conditions for this problem are: 

13 



Objective


d 

c 

a 
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Figure 1: Point a is close to the boundary, point b is far from the boundary. 
Points c and d are far from the boundary relative to their objective function 
level sets. 
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Ax = b 

Qx + c − µ∇B(x) − AT p = 0  

x >  0 . 

This is a nonlinear equation system with n + m equations in the n + m 
variables (x, p). A generic algorithm for this system can be described as 
follows: 

0. Start with some ¯ p.x >  0 and some ¯

1. If ‖A¯ x + c − µ∇B(¯x − b‖ ≤ ε and ‖Q¯ x) − AT p̄‖ ≤ ε for some small 
tolerance ε >  0, STOP. Otherwise go to Step 2. 

2. Use some method, perhaps Newton’s method, to generate a desired 
step d = (dx, dp). 

3. Compute a step-size that will maintain the positivity of the iterate 
value of x. Set  r = 0.99, and compute: 

¯
θ = min  1, r  min 

xj 
. 

∆xj <0 −∆xj 

4. Re-set (¯ p) ← (¯x, ¯ x + θdx, p̄ + θdp), and go to Step 1. 

In this method, we check to see if we satisfy our nonlinear equations (to 
within some tolerance) in Step 1. We generate a presumably good direction 
d = (dx, dp) in Step 2. Although we would like to re-set (¯ p) ← (¯x, ¯ x + dx, p̄+ 
dp), we must ensure that our iterate values of x remain strictly positive. 
This is accomplished in Step 3. Note that the value r = 0.99 could be set 
to any positive value strictly less than 1.0 .  
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4.4 Newton’s Method 

The last motivating idea in interior-point methods is Newton’s method. 
In its various forms, Newton’s method is a method for solving nonlinear 
equations by linearizing the equations at each iteration. Suppose that we 
wish to solve the equation system: 

h1(x) = 0  

. . . . . . . . . (6) 

hn(x) = 0  

where x = (x1, . . . , xn). We can write this succinctly as: 

h(x) = 0  

¯where h(x) = (h1(x), . . . , hn(x)). Let x denote the current iterate value. 
Then from Taylor’s theorem, we have: 

h(¯ h(¯ x) + [H(¯x + ∆x) ≈ ˜ x + ∆x) :=  h(¯ x)] ∆x ,  (7) 

where H(x) is the Jacobian matrix: 

Hij (x) :=  
∂hi(x) 

. 
∂xj 

Here the function ˜ x + ∆x) is the linear approximation of h(x) around the 
x. We can try to solve the system h(¯

h(¯
point x = ¯ x + ∆x) = 0 by instead 
solving ˜ x + ∆x) = 0, which from (7) is: h(¯

h(¯ x)] ∆x = 0  . (8)x) + [H(¯

Solving (8) for ∆x, we obtain: 

x)]−1 h(¯d := ∆x = − [H(¯ x) . (9) 

The direction d is called the Newton direction or the Newton step. In a pure 
version of Newton’s method, we would set the next iteration value to be 

xnew x + d .= ¯
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Newton’s method has remarkably fast convergence properties if the iter-
ates lie near to the solution of the system. However, if the iterates are very 
far away from the solution of the system, Newton’s method typically does 
not have particularly good convergence properties. 

5	 Interior-Point Methods for Quadratic Optimiza­
tion 

5.1 The Central Path Equation System 

For this section it will be most convenient to work with quadratic optimiza-
tion in the following format: 

QP : minimizex 
1 
2x
 TT Qx + c x 

s.t.	 Ax = b (10) 

x ≥ 0 . 

Using the usual Lagrange duality constructions, we can derive the fol-
lowing dual problem: 

DP : maximizep,s,x bT p −
1 
2x
T Qx 

s.t. AT p + s − Qx = c 

s ≥ 0 . 

The following weak duality result follows by direct algebraic manipula-
tion of the feasibility conditions: 

Proposition 5.1 If x if feasible for (QP) and (p, s, x) is feasible for (DP), 
then the duality gap is: 

1 T T1 
x T Qx + c T x − bT p − x Qx = s x .

2	 2 
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The KKT optimality conditons for QP are as follows:


Ax = b


x ≥ 0


AT p + s − Qx = c


s ≥ 0


xj sj = 0, j  = 1, . . . , n. 


The strong duality result is as follows: 

Proposition 5.2 If x if feasible for (QP) and (p, s, x) is feasible for (DP), 
then x if optimal for (QP) and (p, s, x) is optimal for (DP) if and only if: 

T s x = 0  . 

Before we move on, let us introduce some notation that is used in interior-
point methods. For vectors x and s, we denote: 

 
x1 0 

  
s1 0 

  
1 
 

X =   . . . 
  , S  =   . . . 

  , e  =   
. . . 
  . 

0 xn 0 sn 1 

Therefore, for example,   
x1s1  . 

Xe  = x, Se = s, XSe =  .  . 

xns
. 

n 

Now let us relax the KKT conditions above, by picking a value of µ >  0 
and instead solve: 

Ax = b, x > 0 

AT p + s − Qx = c, s > 0 

xj sj = µ, j = 1, . . . , n.  
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With our interior-point notation we can write this system as: 

Ax = b, x > 0 

AT p + s − Qx = c, s > 0 

XSe  = µe . 

A solution (x, p, s) = (xµ, pµ, sµ) to this system for some value µ is called 
a point on the central path or central trajectory of the problem. 

Proposition 5.3 If (x, p, s) is on the central path for some value µ >  0, 
then the duality gap is 

1 T T1 
x T Qx + c T x − bT p − x Qx = s x = nµ . 

2 2 

The proof of this proposition is a straightforward extension of the algebra 
of the system. The value of this proposition is that it shows that if we solve 
the system for smaller values of µ, then our duality gap will go to zero, and 
we will approximately solve our original problem. 

We can also derive the central path by considering the following loga-
rithmic barrier problem associated with QP for a given value of µ: 

n 
BPµ : minimizex 

1 xT Qx + cT x − µ ln(xj )2 
j=1 

s.t. Ax = b 

x >  0 . 

The KKT conditions for this logarithmic barrier problem are: 

Ax = b, x > 0 

Qx + c − µX −1e − AT p = 0  . 
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If we then define s := µX−1e >  0 and rearrange the above system, we 
obtain: 

Ax = b, x > 0 

AT p + s − Qx = c 

XSe  = µe . 

Since x >  0 implies that s >  0, this is exactly the same system of 
equations we had derived earlier that define the central path. 

5.2 The Newton Equation System 

Suppose that we have a current “point” (actually a triplet) (¯ p, ̄x, ¯ s) for which 
¯ s >  0, and we are given a value of µ >  0. We want to compute a x >  0 and  ̄ 

direction (∆x, ∆p, ∆s) so that (¯
x +∆x, p̄+∆p, s̄+∆s) approximately solves 
the central path equations. We set up the system: 

(1) A(x̄ + ∆x) =  b 

(2) −Q(¯ p + ∆p) + (¯x + ∆x) +  AT (¯ s + ∆s) =  c 

(3) ( ¯ X + ∆X)(S ̄+ ∆S)e = µe . 

If we linearize this system of equations and rearrange the terms, we 
obtain the Newton equations for the current point (¯ p, ̄x, ¯ s): 

(1) A∆x = b − Ax̄ =: r1 

(2) −Q∆x + AT ∆p + ∆s = c + Qx̄ − AT p̄ − s̄ =: r2 

¯ ¯ ¯(3) S̄∆x + X∆s = µe − XSe =: r3 

We refer to the solution (∆x, ∆p, ∆s) to the above system as the Newton 
direction at the point (¯ p, ̄x, ¯ s). 
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( ) ( ) 
¯

5.3 The Step-sizes 

Given our current point (¯ p, ̄x, ¯ s) and a given value of µ, we compute the 
Newton direction (∆x, ∆p, ∆s) and we update our variables by choosing a 
step-size θ, to obtain new values: 

x, ˜ s) ← (¯ p, ̄(˜ p, ̃ x, ¯ s) +  θ(∆x, ∆p, ∆s) . 

In order to ensure that ˜ s >  0, we choose a value of r satisfyingx >  0 and  ̃
0 < r  <  1 (r = 0.99 is a common value in practice), and determine θ as 
follows: 

¯
θP = min  1, r  min 

xj 

∆xj <0 −∆xj 

s̄j
θD = min  1, r  min . 

∆sj <0 −∆sj 

We then set the step-size to be: 

θ := min{θP , θD } . 

5.4 Decreasing the Path Parameter µ 

We also want to shrink µ at each iteration, in order to (hopefully) shrink the 
duality gap. The current iterate is (¯ p, ̄x, ¯ s), and the current values satisfy: 

T ¯x̄ s 
µ ≈ 

n 

We then re-set µ to 

1 xT s̄
µ ← 

10 n
, 

where “10” is user-specified. 
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5.5 The Stopping Criterion 

We typically declare the problem solved when it is “almost” primal feasible, 
“almost” dual feasible, and there is “almost” no duality gap. We set our 
tolerance ε to be a small positive number, typically ε = 10−8, for example, 
and we stop when: 

(1) ‖Ax̄ − b‖ ≤ ε 

x + AT p̄ + ¯(2) ‖ − Q¯ s − c‖ ≤ ε 

T ¯(3) s̄ x ≤ ε 

5.6 The Full Interior-Point Algorithm 

a) Given (x0, p0, s0) satisfying x0 > 0, s0 > 0, and µ0 > 0, and r satisfying 
0 < r  <  1, and ε >  0. Set k ← 0. 

b) Test stopping criterion. Check if: 

(1) ‖Axk − b‖ ≤ ε 

(2) ‖ − Qxk + AT pk + sk − c‖ ≤ ε 

(3) (sk )T xk ≤ ε .  

If so, STOP. If not, proceed. 

1 (xk )T (sk )
c) Set µ ← 

10 n


d) Solve the Newton equation system:


(1) A∆x = b − Axk =: r1 

(2) −Q∆x + AT ∆p + ∆s = c + Qxk − AT pk − sk =: r2 

(3)	 Sk ∆x + Xk ∆s = µe − Xk Sk e =: r3 
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{ { }} 

{ { }} 

e) Determine the step-size: 

k 

θP = min  1, r  min 
xj 

∆xj <0 −∆xj 

k 

θD = min  1, r  min 
sj 

∆sj <0 −∆sj 

θ = min{θP , θD } . 

f) Update values: 

k+1(x , pk+1, sk+1) ← (xk , pk , sk ) +  θ(∆x,∆p, ∆s) . 

Re-set k ← k + 1 and return to (b). 

5.7 Solving the Newton Equations 

We now show how to manipulate the Newton equations to yield some for-
mulas for the solution of the Newton equation system. Given our current 

x, ¯ s) for which ¯ s >  0, and a value of µ >  0, we wish to point (¯ p, ¯ x >  0 and  ̄ 

solve the Newton equations below for (∆x,∆p, ∆s):


(1) A∆x = b − Ax̄ =: r1 

(2) −Q∆x + AT ∆p + ∆s = c + Qx̄ − AT p̄ − s̄ =: r2 

¯ ¯ ¯(3) S̄∆x + X∆s = µe − XSe =: r3 

¯Pre-multiplying equation (2) by X, we obtain the following string of 
equations that derive from one another: 

23 



( ¯ )

¯ ¯ ( ¯ ¯ ¯ 

( (	 ) 
¯ ¯ ( ¯ ¯ ¯ 

( ¯ 
(	 ) 

( ¯ 

¯ ¯ ¯ ¯−XQ∆x + XAT ∆p + X∆s = Xr2 

¯ ¯	 ¯−	XQ∆x + XAT ∆p − S̄∆x + r3 = Xr2


¯ ¯ ¯−	 XQ  + S ∆x + XAT ∆p = Xr2 − r3 

( ¯	 )−1 ( ) −∆x + XQ  + S 
)−1 

XAT ∆p = XQ  + S Xr2 − r3 

( ¯	 )−1 ( ))−1¯ ¯	 ¯ ¯−r1 + A XQ  + S XAT ∆p = A 
( ¯ XQ  + S Xr2 − r3 

( ¯	 )−1 ( ))−1¯ ¯	 ¯ ¯ A	 XQ  + S XAT ∆p = A 
( ¯ XQ  + S Xr2 − r3 + r1 

Therefore ∆p is determined by solving the last system above, or equiv-
alently, by the formula: 

( ¯	 )−1 ( ) 
∆p = A XQ  + S 

)−1 
XAT 

)−1 
A XQ  + S Xr2 − r3 + r1 . 

Once ∆p has been computed, we can compute ∆x and ∆s as follows: 

¯ ¯ ¯∆x = XQ  + S 
)−1 

r3 − Xr2 + XAT ∆p 

∆s = Q∆x + r2 − AT ∆p .  

Note that if Q is very sparse or nicely structured (for example, if Q is 
diagonal), then the bulk of the work above lies in forming the matrix: 

)−1 ¯ A XQ  + S ̄ XAT 

and then solving a system of equations with this matrix. In particular 
when Q is diagonal, then the sparsity pattern of this matrix will be the same 
as the sparsity pattern of AAT . 
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5.8 Remarks on Interior-Point Methods 

•	 The algorithm just described is almost exactly what is used in com-
mercial interior-point method software. 

•	 A typical interior-point code will solve a linear or quadratic optimiza-
tion problem in 25-80 iterations, regardless of the dimension of the 
problem. 

•	 There is a very “deep” theory of convergence for interior-point meth-
ods, when the constant “10” is replaced by the number 

√
2 + 4 n √
1 + 4 n 

•	 Interior-point methods are still an area of very active research. 

•	 These days, interior-point methods have been extended to allow for 
the solution of problems with convex quadratic constraints: 

1 
2x
T T QxQCQP : minx x +
c

1 
2x
T 

i x + T Qix ≤ bi , i  = 1, . . . , ms.t. a

6	 Reduced Gradient Algorithm for Nonlinear Op­
timization 

The reduced gradient algorithm is designed to solve a problem of the form: 

NLP : minimizex f(x) 

s.t.	 Ax = b (11) 

x ≥ 0 . 

In the case of a suitably formatted quadratic problem, 

f(x) =  
1 
x T Qx + c T x

2 
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and 
∇f(x) =  Qx + c .  

We will make the following assumptions regarding bases for the system 
“Ax = b, x ≥ 0”: 

• For any basis β ⊂ {1, . . . , n} with |β| = m, Aβ is nonsingular. 

• For any basic feasible solution (xβ , xη ) = (A−1b, 0) we have xβ > 0,β 
where here η := {1, . . . , n} \ β. 

The reduced gradient algorithm tries to mimic certain aspects of the 
simplex algorithm. 

At the beginning of an iteration of the reduced gradient algorithm, we 
have a feasible solution x for our problem NLP. Pick a basis β for which ¯
x̄β > 0. Remember that such a basis must exist by our assumptions, but 
that such a basis might not be uniquely determined by the current solution 
x̄. Set  η := {1, . . . , n} \ β. Now invoke the equations of our system, which 
state that: 

Aβ xβ + Aη xη = b 

for any x = (xβ , xη ), and so we can write: 

= A−1(b − Aη xη ) .xβ β 

Since the basic variables are uniquely determined by the nonbasic variables 
above, we can substitute these into the formula for the objective function: 

f(x) =  f(xβ , xη ) =  f(A−1(b − Aη xη ), xη ) .β 

We therefore can define our reduced objective function to be: 

h(xη ) =  f(A−1(b − Aη xη ), xη ) .β 

The gradient of the reduced objective function is called the reduced gradient, 
and has the following formula: 

∇h(xη ) =  ∇fη (A−1(b − Aη xη ), xη ) − AT 
η A

−T ∇fβ (A−1(b − Aη xη ), xη ) ,β β β 
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which evaluates at x̄ to be: 

∇h(¯ x) − AT x) .xη ) =  ∇fη (¯ η A
−T ∇fβ (¯β 

r = ¯Let us re-name the reduced gradient ¯ rη for notational convenience. 
The reduced gradient can then be used to define a new direction d as follows: 
for j ∈ η, we define:  

 	 −r̄j if x̄j > 0        −r̄j if r̄j ≤ 0 
dj :=     	 0  if  ¯ rj > 0 xj = 0  and  ̄  

For j ∈ β, we define:  

dβ := −A−1Aη dη .β 

This direction has the following properties, which are fairly easy to prove: 

¯•	 d is a feasible direction: Ad = 0  and  x + αd ≥ 0 for all α >  0 and  
sufficiently small. 

¯•	 If d = 0, then x is a KKT point, with associated KKT multipliers 
p̄ = A−T ∇fβ (x̄) for the equations “Ax = b”.β 

•	 If d � x)T d <  0.= 0, then d is a descent direction, that is, ∇f(¯

This leads to the following algorithm for solving NLP: 

¯0. The current point is	 x. Choose β for which xβ > 0 and  |β| = m. 
Define η := {1, . . . , n} \ β. 

1. Compute the reduced gradient: 

x) − AT x) .r̄η := ∇fη (¯ η A
−T ∇fβ (¯β 
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{	 } 

2. Compute the direction d. For  j ∈ η, define:  

 	 −r̄j if x̄j > 0        −r̄j if r̄j ≤ 0 
dj :=     	 0  if  ¯ rj > 0 xj = 0  and  ̄  

For j ∈ β, define:  

dβ := −A−1Aη dη .β 

3. Compute the step-size. Define the following three quantities: 

α1 := max {α|(x̄ + αd)β ≥ 0} 

α2 := max {α|(x̄ + αd)η ≥ 0} 

α3 := arg minα f (x̄ + αd)|0 ≤ α ≤ min{α1, α2} 

4. Update values. If d = 0, then STOP (¯	 = 0,  x is a KKT point). If d �
then set ¯ x + α3d, and go to (0.). x ← ¯

6.1 Some Comments on the Reduced Gradient Algorithm 

•	 The reduced gradient algorithm has been very effective on problems 
with linear equality and inequality constraints. That is because it is 
actually mimicking the simplex algorithm as much as possible. 

•	 One very useful modification of the reduced gradient algorithm is to 
set β to correspond to the index of the set of the m largest components 
of x̄. 

•	 As it turns out, there is no proof of convergence for the algorithm as 
written above. A slightly modified rule for determining the direction 
d is as follows, and leads to a straightforward proof of convergence: 
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∑ ∑ ∑ ∑ ∑ ∑ 

∑ ∑ 

For j ∈ η, define:  

  −r̄j if ¯ rj ≤ 0xj > 0 and  ̄        −r̄j if ¯ rj ≤ 0 xj = 0  and  ̄   

 −¯ ¯ xj > 0 and  ̄
dj :=  rj xj if ¯ rj > 0        0  if  ¯ rj > 0 xj = 0  and  ̄   

7 Some Computational Results 

In this section we report some computational results on solving quadratic 
pattern classification problems. The problem under consideration is the dual 
of the pattern classification quadratic program with penalties for the case 
when we cannot strictly separate the points, namely D1: 

 T   
k k m k m1 k 

D1 : maximizeλ,γ λi + γj −  λia i − γj b
j   λia i − γj b

j  
2 

i=1 j=1 i=1 j=1 i=1 j=1 

k m 

s.t.	 λi − γj = 0  
i=1 j=1 (12) 

λi ≤ C i = 1, . . . , k  

γj ≤ C j = 1, . . . , m  

λ ≥ 0, γ  ≥ 0 . 

We refer to this problem as the REGULAR model. By defining the 
extra variables x: 
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∑ ∑ 

∑ ∑ 

(	 ) ∑ ∑ 

∑ ∑ 

	  
k m 

x :=  λia i − γj b
j  , 

i=1 j=1 

we can re-write this model as: 

k m 
TD2 : maximumλ,γ,x λi + γj − 1 x x2 

i=1 j=1 

k m 
s.t.	 x − λia

i − γj b
j = 0  

i=1 j=1 

k m 

λi − γj = 0  
i=1 j=1 

λi ≤ C i = 1, . . . , k  

γj ≤ C j = 1, . . . , m  

λ ≥ 0, γ  ≥ 0 

mλ ∈ �k , γ  ∈ � 	 . 

We refer to this model as the EXPANDED model. 

We solved ten instances of the pattern classification model that we cre-
ated, whose main characteristics are as shown in Table 1. In solving these 
problem instances, we used the penalty value C = 1, 000. 

The two-dimensional problems are illustrated in Figure 2, Figure 3, Fig-
ure 4, and Figure 5. 

We solved these instances using the following two algorithms: 

•	 IPM (Interior-Point Method) We solved the problems using the 
software code LOQO, which is an interior-point algorithm implemen-
tation for linear, quadratic, and nonlinear optimization. 
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Figure 2: Separable model with 100 points. 
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Figure 3: Non-separable model with 100 points.
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Figure 4: Separable model with 1,000 points.
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Figure 5: Non-separable model with 1,000 points.
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Separable 
or Not 

Dimension 
n 

Number of points 
m 

Separable 2 100 
Non-separable 2 100 
Separable 2 1,000 
Non-separable 2 1,000 

Separable 20 300 
Non-separable 20 300 
Separable 20 1,000 
Non-separable 20 1,000 
Separable 20 10,000 
Non-separable 20 10,000 

Table 1: Ten instances of the pattern classification problem. 

•	 ACTSET (Active Set Method) We solved the problems using a 
simple active set method, that adds one new index at each outer iter-
ation, and does not drop any indices from consideration. The method 
starts with 30 indices in the set β. The interior-point algorithm LOQO 
was used to solve the subproblems at each iteration. 

Note that for this particular model, that active set methods should per-
form very well. This is because we would expect very few points to be 
binding in the primal, and so very few of the dual variables λi and/or γi will 
be non-zero in the dual problem. And it is the dual problem which we are 
going to solve. 

Table 2 shows the optimal objective function values for each method on 
each problem. Notice from these tables that both the REGULAR and the 
EXPANDED models achieve the same optimal objective functions on the 
different algorithms, when they have enough memory to solve the problem. 

Table 3 shows the number of iterations of each method on each problem. 
Notice the following: 

•	 The non-separable problems take more iterations to solve. 
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Type n m 
REGULAR MODEL EXPANDED MODEL 

IPM IPM ACTSET 

Separable 2 100 19.4941 19.4941 19.4941 
Non-separable 2 100 992.4144 992.4144 992.4144 

Separable 2 1,000 88.8831 88.8831 
Non-separable 2 1,000 5,751.2161 5,751.2161 

Separable 20 300 1.1398 1.1398 1.1398 
Non-separable 20 300 2,101.6155 2,101.6155 2,101.6155 

Separable 20 1,000 1.9110 1.9110 
Non-separable 20 1,000 7,024.1791 7,024.1791 

Separable 20 10,000 4.0165 
Non-separable 20 10,000 

Table 2: Optimal solution values reported by each method for each problem. 
Blanks indicate the method ran out of memory. 

•	 Interior-point methods use very few iterations in general. 

•	 The iteration counts for interior-point methods do not really grow 
much at all with the size of the problem. 

•	 The exception to these observations is the active set algorithm, for 
which the total iteration count can be misleading. 

Table 4 shows the CPU time for each method and each problem, in 
seconds. Notice the following: 

•	 The REGULAR model takes more time to solve than does the EX-
PANDED model. 

•	 As the dimensions of the problem grows, the time to solve the models 
grows, with one exception. 

•	 The non-separable problem instances take more time to solve. 

•	 The active set method is the clear winner. 

This leaves several questions: 
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Type n m 
REGULAR MODEL EXPANDED MODEL 

IPM IPM ACTSET 

Separable 2 100 27 26 58 
Non-separable 2 100 32 32 194 

Separable 2 1,000 28 101 
Non-separable 2 1,000 60 1,237 

Separable 20 300 30 32 340 
Non-separable 20 300 40 39 778 

Separable 20 1,000 35 417 
Non-separable 20 1,000 54 2,022 

Separable 20 10,000 598 
Non-separable 20 10,000 > 20,000 

Table 3: Iteration count for each problem and each method. Blanks indicate 
the method ran out of memory. 

Type n m 
REGULAR MODEL EXPANDED MODEL 

IPM IPM ACTSET 

Separable 2 100 2.89 0.20 0.04 
Non-separable 2 100 3.23 0.24 0.17 

Separable 2 1,000 240.85 0.09 
Non-separable 2 1,000 278.56 3.39 

Separable 20 300 27.16 8.04 0.99 
Non-separable 20 300 41.39 4.30 3.90 

Separable 20 1,000 175.60 1.27 
Non-separable 20 1,000 289.15 12.00 

Separable 20 10,000 1.02 
Non-separable 20 10,000 > 58,759 

Table 4: CPU times, in seconds. Blanks indicate the method ran out of 
memory. 
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•	 Why does the REGULAR model takes more time to solve than does 
the EXPANDED model? 

•	 Why do the larger models run out of memory? 

The answer to both of these questions probably has to do with the way 
LOQO handles the numerical linear algebra of forming and then factoring 
the Newton equation system at each interior-point iteration. 
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