
Solution Methods for Quadratic Optimization

Robert M. Freund

April 1, 2004

c©2004 Massachusetts Institute of Technology.

1

1 Outline

• Active Set Methods for Quadratic Optimization

• Pivoting Algorithms for Quadratic Optimization

• Four Key Ideas that Motivate Interior Point Methods

• Interior-Point Methods for Quadratic Optimization

• Reduced Gradient Algorithm for Quadratic Optimization

• Some Computational Results

2 Active Set Methods for Quadratic Optimization

In a constrained optimization problem, some constraints will be inactive
at the optimal solution, and so can be ignored, and some constraints will
be active at the optimal solution. If we knew which constraints were in
which category, we could throw away the inactive constraints, and we could
reduce the dimension of the problem by maintaining the active constraints
at equality.

Of course, in practice, we typically do not know which constraints might
be active or inactive at the optimal solution. Active set methods are
designed to make an intelligent guess of the active set of constraints, and to
modify this guess at each iteration.

Herein we describe a relatively simple active-set method that can be used
to solve quadratic optimization problems.

Consider a quadratic optimization problem in the format:

TQP : minimizex xT Qx + c x

s.t. Ax = b (1)

x ≥ 0 .

2

1
2

[]	 ()

The KKT optimality conditons for QP are as follows:

Ax = b

x ≥ 0

Qx + c − AT p − s = 0

s ≥ 0

xjsj = 0, j = 1, . . . , n.

We suppose for this problem that n is very large, but that intuition
suggests that very few variables xj will be non-zero at the optimal solution.

Suppose that we have a feasible solution x, and that we partition the
components of x into x = (xβ , xη), where xβ ≥ 0 and xη = 0. In this
partition, the number of elements in β will be small, relative to the value of
n.

Using this partition, we can re-write the data for our problem as:

cβQ =
Qββ Qβη , A = [Aβ Aη] , c = .
Qηβ Qηη cη

Now let us “guess” that the variables xj , j ∈ η will be zero in the opti-
mal solution. That being the case, we can eliminate the variables xη from
further consideration for the moment. We will then concentrate our efforts
on solving the much smaller problem:

QPβ : z ∗
β = minimumxβ

1
2x
T T

β Qββxβ + cβ xβ

s.t.	 Aβxβ = b

xβ ≥ 0 .

∗Let xβ be the optimal solution of QPβ, and let p ∗ be the associated
KKT multipliers for the constraints “Aβxβ = b”. Also, let sβ denote the

3

()

associated KKT multipliers on the nonnegativity constraints xβ ≥ 0. Then
∗ ∗ x and p , sβ will satisfy the KKT optimality conditions for QPβ, namely: β

∗ ∗
β p − sβ = 0Qββxβ + cβ − AT

∗ = bAβxβ

∗ x ≥ 0, sβ ≥ 0β

∗(xβ)T sβ = 0 .

∗We can expand x into the following feasible solution to the original β
problem:

∗ x = (xβ , xη) = (xβ , 0)

by setting all of the variables xη := 0. This solution will of course be feasible
for the original problem, but will it be optimal? The answer lies, of course,
in checking the KKT optimality conditions for the original problem using

∗ ∗ x = (xβ , 0) and p = p , which we write as follows:

[]() () [] ()
x ∗ ATQββ Qβη β cβ − β p ∗ =

sβ+ ≥ 0
cη ATQηβ Qηη 0 η sη

∗
β[Aβ Aη]

x
= b

0

∗(xβ , 0) ≥ 0

∗(xβ)T sβ = 0, 0T sη = 0 .

Here we see that all of these conditions are automatically satisfied except
for the condition that sη ≥ 0. We remark that sη is defined above to be:

∗ ∗ sη := Qηβxβ + cη − AT
η p .

We therefore have:

4

()

∗Proposition 2.1 If sη ≥ 0, then (xβ , 0) is an optimal solution to (1).

∗Proof: Since xβ is an optimal solution of QPβ , then the KKT multipliers
∗ p and sβ satisfy

∗ TQββxβ + cβ − Aβ p ∗ − sβ = 0

∗Aβxβ = b

∗ x ≥ 0, sβ ≥ 0β

∗(xβ)T sβ = 0 .

∗ T ∗If furthermore 0 ≤ sη := Qηβxβ + cη − Aη p ∗ we have that the vector (xβ , 0)
satisfies

[]() () [] () ∗ Tx Aβ ∗ sβQββ Qβη β +
cβ − T p = ≥ 0

Qηβ Qηη 0 cη Aη sη

∗
β[Aβ Aη]

x
= b

0

∗(xβ , 0) ≥ 0

∗(xβ)T sβ = 0, 0T sη = 0 .

which are precisely the optimality conditions for (1).

Just as importantly, if sj < 0 for some j ∈ η, then the optimal solution to
the expanded problem QPβ∪{j} will have a strictly better objective function
value than that of QPβ.

Proposition 2.2 If sj < 0 for some j ∈ η, then zβ∪{j} < zβ.

We defer the proof of this proposition to the end of this section.

This all suggests the following active-set algorithm for solving our origi-
nal problem QP:

5

0. Define some partition of the indices, {1, . . . , n} = β ∪ η.

1. Solve the reduced problem

∗ 1 T TQPβ : z = minimumxβ xβ Qββxβ + cβ xββ 2

s.t. Aβxβ = b

xβ ≥ 0 ,

∗ ∗obtaining the optimal solution x and optimal KKT multiplier p onβ

the equations “Aβxβ = b”.

2. Compute
∗ ∗ sη := Qηβxβ + cη − AT

η p .

∗If sη ≥ 0, STOP. In this case, (xβ , 0) is optimal for (1). Otherwise if
sj < 0 for some j ∈ η, then set β ← β ∪ {j}, η := η \ {j}, and go to 1.

In practice we might add more than one index j to the set β at each
iteration. Some active set methods add all indices j for which sj < 0.

Also, in order to keep the set β from becoming too large, we might
remove indices i from β if xi has been zero in the optimal solutions of the
reduced problems for a large number of previous iterations.

There are also very many other variants of this type of method.

Proof of Proposition 2.2: For ease of notation we will drop the subscript
β from the subproblem solved in step 1 of the algorithm. Let us call x̄ the
optimal solution of this problem, together with KKT multipliers p̄ and s̄.
These all satisfy the KKT conditions:

Qx̄ + c − AT p̄ − s̄ = 0

Ax̄ = b

¯ ¯x ≥ 0, s̄ ≥ 0, xT s̄ = 0 .

We separate the indices of x into sets such that ¯ x2 = 0 and x1 > 0 and ̄
we separate the data for the problem as follows:

6

[] ()

[] ()

[]

c1Q =
Q11 Q12 , c = , A = [A1 A2] .
Q21 Q22 c2

We then write the above system as:

¯Q11x1 + c1 − AT p̄ = 01

¯Q21x1 + c2 − AT p̄ − s̄2 = 02

A1x1 = b¯

x̄1 > 0, s̄2 ≥ 0 .

We now consider a new variable θ to add to this system. The data
associated with this variable is q, δ, ĉ, a, such that:

Q q c
Q →

qT δ
, c →

ĉ
, A → [A a]

Since this variable by supposition has a “reduced cost” that is negative,
then the new data satisfies:

q x + ˆT ¯ c − a T p̄ = −ε < 0 .

We will now show that this implies that there exists a feasible descent
direction. The objective function of our problem and the formulas for the
gradients of the objective function are:

[]() ()
1 x Tf(x, θ) =
2
(x T , θ)

Q q
+ (c , ĉ)

x
Tq δ θ θ []() ()

c ∇f(x, θ) =
Q q x

+Tq δ θ ĉ 
¯

x, 0) =
q
Q¯

x + ˆ
=  Q21x1 + c2  .

Q11x1 + c1

∇f(¯
x + c  ¯ 

T ¯ c T ¯q x + ĉ

7

Invoking a nondegeneracy assumption, we assume that there exists a
vector d1 for which A1d1 + a = 0. Then, since x̄1 > 0 we have that
(x1, x2, θ) = (x̄1 + αd1, 0, α) ≥ 0, for α > 0 and small. Next we compute:

 
¯Q11x1 + c1  ¯ 

x, 0)T (d1, 0, 1) = (dT∇f(¯ 1 , 0, 1)  Q21x1 + c2 
q x + ˆT ¯ c

T ¯= (AT p̄)T d1 + q x + ˆ1 c

= −a T p̄ + q T ¯ cx + ˆ = −ε < 0 .

Therefore (d1, 0, 1) is a feasible descent direction, and so the optimal objec-
tive function value of the expanded problem is strictly less than that of the
current problem.

3 Pivoting Algorithms for Quadratic Optimization

To facilitate the presentation, we will consider the following format for QP:

1 TQP : minimizex 2 x
T Qx + c x

s.t. Ax ≥ b (π) (2)

x ≥ 0 (y)

Let us first look at the KKT optimality conditions for (2):

8

s := Ax − b ≥ 0

x ≥ 0

Qx + c − AT π − y = 0

π ≥ 0

y ≥ 0

πisi = 0 i = 1, . . . , m

yj xj = 0 j = 1, . . . , n.

We can write the first five conditions in the form of a tableau of linear
constraints in the nonnegative variables (y, s, x, π):

y s x π Relation RHS

I 0 −Q AT = c
0 I −A 0 = −b

and keeping in mind the nonnegativity conditions:

y ≥ 0 s ≥ 0 x ≥ 0 π ≥ 0

and the complementarity conditions:

yj xj = 0, j = 1, . . . , n, siπi = 0, i = 1, . . . , m.

This tableau has exactly (n + m) rows and 2(n + m) columns, that is, there
are twice as many columns as rows. Therefore a basic feasible solution of
this tableau will have one half of all columns in the basis.

We can find a basic feasible solution to this tableau (which has no objec-
tive function row by the way!) by applying Phase I of the simplex algorithm.
However, what we really want to do is to find basic feasible solution that is
also “complementary” in the following sense:

9

• Either yj is in the basis or xj is in the basis, but not both, j = 1, . . . , n,

• Either si is in the basis or πi is in the basis, but not both, i = 1, . . . , m.

Such a basic feasible solution will have the nice property that either
yj = 0 or xj = 0, j = 1, . . . , n, and also si = 0 or πi = 0, i = 1, . . . , m. That
is, a complementary basic feasible solution (CBFS) will satisfy the KKT
conditions and so will solve QP.

One strategy for finding a CBFS is to add a nonnegative parameter θ
and solve the following tableau:

y s x π Relation RHS

I 0 −Q AT = c + θe
0 I −A 0 = −b + θe

(Here e is the vector of ones of any appropriate dimension.) Now notice that
for θ sufficiently large, that the RHS is nonnegative and so the complemen-
tary basic solution:

   
y c + θe  s   −b + θe

=  x
 

 


0
 

π 0

is a complementary basic feasible solution. The strategy then is try to
start from this solution, and to drive θ to zero by a sequence of pivots
that maintain a complementary basic feasible solution all the while. As it
turns out, it is easy to derive pivot rules for such a strategy. The resulting
algorithm is called the “complementary pivot algorithm”. It was originally
developed by George Dantzig and Richard Cottle in the 1960s, and analyzed
and extended by Carl Lemke, also in the 1960s.

We will not go over the specific pivot rules of the complementary pivot
algorithm. They are simple but technical, and are easy to implement. What
can we say about convergence of the complementary pivot algorithm? Just
like the simplex method for linear optimzation, one can prove that the

10

complementary pivot algorithm must converge in a finite number of piv-
ots (whenever the matrix Q is SPSD).

Regarding computational performance, notice that the tableau generally
has twice the number of constraints and twice the number of variables as a
regular linear optimization problem would have. This is because the primal
and the dual variables and constraints are written down simultaneously in
the tableau. This leads to the general rule that a complementary pivot algo-
rithm will take roughly eight times as long to solve a quadratic program via
pivoting as it would take the simplex method to solve a linear optimization
problem of the same size as the primal problem alone.

Up until recently, most software for quadratic optimization was based
on the complementary pivot algorithm. However, nowadays most software
for quadratic optimization uses interior-point methods, which we will soon
discuss.

4	 Four Key Ideas that Motivate Interior Point
Methods

We will work in this section with quadratic optimization in the following
format:

QP : minimizex
1
2x
 TT Qx + c x

s.t.	 Ax = b (3)

x ≥ 0 .

4.1 A barrier function

The feasible region of (QP) is the set

F := {x | Ax = b, x ≥ 0} .

The boundary of F will be where one or more of the components of x is
equal to zero. The boundary is composed of linear pieces, and is generally

11

∑

arranged in an exponentially complex manner. The simplex method takes
explicit advantage of the linearity of the boundary, but can take a long time
to solve a problem if there are exponentially many extreme points and edges
to traverse. For this reason, we will take the curious step of introducing a
barrier function B(x). A barrier function is any (convex) function defined
on the interior of F and whose values go to infinity as the boundary is
approached. That is:

• B(x) < +∞ for all x ∈ intF , and

• B(x) → ∞ as xj → 0.

The idea in a barrier method is to dissuade points x from ever approaching
the boundary of the feasible region. For a fixed value of µ > 0, we consider
solving:

QPµ : minimizex
1
2x
 TT Qx + c x + µB(x)

s.t. Ax = b (4)

x > 0 .

Let x(µ) denote the optimal solution of QPµ. For large values of µ, the
optimal solution x(µ) will be more concerned about staying away from the
boundary than in optimizing the original quadratic objective function. How-
ever, for small values of µ, the optimal solution x(µ) will be ever more
concerned about optimizing the original quadratic objective function while
simultaneously not getting too close to the boundary.

Interior-point methods use the barrier function:

n

B(x) = − ln(xj) .
j=1

This function is convex, and approaches +∞ as any xj approaches zero.

4.2 Staying Centered relative to the Objective Function Value

Suppose that x̄ is a the current iterate of an algorithm for solving (QP). If
x̄ is very far from the boundary of the feasible region F , then no matter

12

∑

what direction we wish to go at the next iteration, we will have plenty of
room to take a step, see Figure 1. However, since the optimal solution will
generally lie on the boundary of the feasible region, we will want to keep
the algorithm iterates as centered as possible for their objective function
values. In the figure, point a is close to the boundary, point b is far from
the boundary, and points c and d are far from the boundary relative to their
objective function level sets.

Now consider the barrier version of our quadratic problem with the log-
arithmic barrier:

n
BPµ : minimizex

1
2x
 TT Qx + c x − µ

j=1
ln(xj)

s.t. Ax = b

x > 0 .

The objective function here will minimize the barrier term while also
accounting for the original quadratic objective function. In this way, the
solutions x(µ) of BPµ will be nicely centered relative to other feasible values
x ∈ F with as good or better objective function values. Therefore the
solutions x(µ) will be relatively far from the boundary for their objective
function values.

4.3	 Treating the KKT Conditions of the Barrier Problem as
a Nonlinear Equation System

For a general barrier function B(x), our parameterized barrier problem is:

QPµ : minimizex
1
2x
 TT Qx + c x + µB(x)

s.t.	 Ax = b (5)

x > 0 .

Because the positivity conditions x > 0 will never be binding, the opti-
mality conditions for this problem are:

13

Objective

d

c

a

b

Figure 1: Point a is close to the boundary, point b is far from the boundary.
Points c and d are far from the boundary relative to their objective function
level sets.

14

{ { }}

Ax = b

Qx + c − µ∇B(x) − AT p = 0

x > 0 .

This is a nonlinear equation system with n + m equations in the n + m
variables (x, p). A generic algorithm for this system can be described as
follows:

0. Start with some ¯ p.x > 0 and some ¯

1. If ‖A¯ x + c − µ∇B(¯x − b‖ ≤ ε and ‖Q¯ x) − AT p̄‖ ≤ ε for some small
tolerance ε > 0, STOP. Otherwise go to Step 2.

2. Use some method, perhaps Newton’s method, to generate a desired
step d = (dx, dp).

3. Compute a step-size that will maintain the positivity of the iterate
value of x. Set r = 0.99, and compute:

¯
θ = min 1, r min

xj
.

∆xj <0 −∆xj

4. Re-set (¯ p) ← (¯x, ¯ x + θdx, p̄ + θdp), and go to Step 1.

In this method, we check to see if we satisfy our nonlinear equations (to
within some tolerance) in Step 1. We generate a presumably good direction
d = (dx, dp) in Step 2. Although we would like to re-set (¯ p) ← (¯x, ¯ x + dx, p̄+
dp), we must ensure that our iterate values of x remain strictly positive.
This is accomplished in Step 3. Note that the value r = 0.99 could be set
to any positive value strictly less than 1.0 .

15

4.4 Newton’s Method

The last motivating idea in interior-point methods is Newton’s method.
In its various forms, Newton’s method is a method for solving nonlinear
equations by linearizing the equations at each iteration. Suppose that we
wish to solve the equation system:

h1(x) = 0

. (6)

hn(x) = 0

where x = (x1, . . . , xn). We can write this succinctly as:

h(x) = 0

¯where h(x) = (h1(x), . . . , hn(x)). Let x denote the current iterate value.
Then from Taylor’s theorem, we have:

h(¯ h(¯ x) + [H(¯x + ∆x) ≈ ˜ x + ∆x) := h(¯ x)] ∆x , (7)

where H(x) is the Jacobian matrix:

Hij (x) :=
∂hi(x)

.
∂xj

Here the function ˜ x + ∆x) is the linear approximation of h(x) around the
x. We can try to solve the system h(¯

h(¯
point x = ¯ x + ∆x) = 0 by instead
solving ˜ x + ∆x) = 0, which from (7) is: h(¯

h(¯ x)] ∆x = 0 . (8)x) + [H(¯

Solving (8) for ∆x, we obtain:

x)]−1 h(¯d := ∆x = − [H(¯ x) . (9)

The direction d is called the Newton direction or the Newton step. In a pure
version of Newton’s method, we would set the next iteration value to be

xnew x + d .= ¯

16

()

Newton’s method has remarkably fast convergence properties if the iter-
ates lie near to the solution of the system. However, if the iterates are very
far away from the solution of the system, Newton’s method typically does
not have particularly good convergence properties.

5	 Interior-Point Methods for Quadratic Optimiza­
tion

5.1 The Central Path Equation System

For this section it will be most convenient to work with quadratic optimiza-
tion in the following format:

QP : minimizex
1
2x
 TT Qx + c x

s.t.	 Ax = b (10)

x ≥ 0 .

Using the usual Lagrange duality constructions, we can derive the fol-
lowing dual problem:

DP : maximizep,s,x bT p −
1
2x
T Qx

s.t. AT p + s − Qx = c

s ≥ 0 .

The following weak duality result follows by direct algebraic manipula-
tion of the feasibility conditions:

Proposition 5.1 If x if feasible for (QP) and (p, s, x) is feasible for (DP),
then the duality gap is:

1 T T1
x T Qx + c T x − bT p − x Qx = s x .

2	 2

17

The KKT optimality conditons for QP are as follows:

Ax = b

x ≥ 0

AT p + s − Qx = c

s ≥ 0

xj sj = 0, j = 1, . . . , n.

The strong duality result is as follows:

Proposition 5.2 If x if feasible for (QP) and (p, s, x) is feasible for (DP),
then x if optimal for (QP) and (p, s, x) is optimal for (DP) if and only if:

T s x = 0 .

Before we move on, let us introduce some notation that is used in interior-
point methods. For vectors x and s, we denote:


x1 0

 
s1 0

 
1


X =   . . .
  , S =   . . .

  , e =  
. . .
  .

0 xn 0 sn 1

Therefore, for example,  
x1s1  . 

Xe = x, Se = s, XSe =  .  .

xns
.

n

Now let us relax the KKT conditions above, by picking a value of µ > 0
and instead solve:

Ax = b, x > 0

AT p + s − Qx = c, s > 0

xj sj = µ, j = 1, . . . , n.

18

()

∑

With our interior-point notation we can write this system as:

Ax = b, x > 0

AT p + s − Qx = c, s > 0

XSe = µe .

A solution (x, p, s) = (xµ, pµ, sµ) to this system for some value µ is called
a point on the central path or central trajectory of the problem.

Proposition 5.3 If (x, p, s) is on the central path for some value µ > 0,
then the duality gap is

1 T T1
x T Qx + c T x − bT p − x Qx = s x = nµ .

2 2

The proof of this proposition is a straightforward extension of the algebra
of the system. The value of this proposition is that it shows that if we solve
the system for smaller values of µ, then our duality gap will go to zero, and
we will approximately solve our original problem.

We can also derive the central path by considering the following loga-
rithmic barrier problem associated with QP for a given value of µ:

n
BPµ : minimizex

1 xT Qx + cT x − µ ln(xj)2
j=1

s.t. Ax = b

x > 0 .

The KKT conditions for this logarithmic barrier problem are:

Ax = b, x > 0

Qx + c − µX −1e − AT p = 0 .

19

If we then define s := µX−1e > 0 and rearrange the above system, we
obtain:

Ax = b, x > 0

AT p + s − Qx = c

XSe = µe .

Since x > 0 implies that s > 0, this is exactly the same system of
equations we had derived earlier that define the central path.

5.2 The Newton Equation System

Suppose that we have a current “point” (actually a triplet) (¯ p, ̄x, ¯ s) for which
¯ s > 0, and we are given a value of µ > 0. We want to compute a x > 0 and ̄

direction (∆x, ∆p, ∆s) so that (¯
x +∆x, p̄+∆p, s̄+∆s) approximately solves
the central path equations. We set up the system:

(1) A(x̄ + ∆x) = b

(2) −Q(¯ p + ∆p) + (¯x + ∆x) + AT (¯ s + ∆s) = c

(3) (¯ X + ∆X)(S ̄+ ∆S)e = µe .

If we linearize this system of equations and rearrange the terms, we
obtain the Newton equations for the current point (¯ p, ̄x, ¯ s):

(1) A∆x = b − Ax̄ =: r1

(2) −Q∆x + AT ∆p + ∆s = c + Qx̄ − AT p̄ − s̄ =: r2

¯ ¯ ¯(3) S̄∆x + X∆s = µe − XSe =: r3

We refer to the solution (∆x, ∆p, ∆s) to the above system as the Newton
direction at the point (¯ p, ̄x, ¯ s).

20

{ { }}

{ { }}

() ()
¯

5.3 The Step-sizes

Given our current point (¯ p, ̄x, ¯ s) and a given value of µ, we compute the
Newton direction (∆x, ∆p, ∆s) and we update our variables by choosing a
step-size θ, to obtain new values:

x, ˜ s) ← (¯ p, ̄(˜ p, ̃ x, ¯ s) + θ(∆x, ∆p, ∆s) .

In order to ensure that ˜ s > 0, we choose a value of r satisfyingx > 0 and ̃
0 < r < 1 (r = 0.99 is a common value in practice), and determine θ as
follows:

¯
θP = min 1, r min

xj

∆xj <0 −∆xj

s̄j
θD = min 1, r min .

∆sj <0 −∆sj

We then set the step-size to be:

θ := min{θP , θD } .

5.4 Decreasing the Path Parameter µ

We also want to shrink µ at each iteration, in order to (hopefully) shrink the
duality gap. The current iterate is (¯ p, ̄x, ¯ s), and the current values satisfy:

T ¯x̄ s
µ ≈

n

We then re-set µ to

1 xT s̄
µ ←

10 n
,

where “10” is user-specified.

21

() ()

5.5 The Stopping Criterion

We typically declare the problem solved when it is “almost” primal feasible,
“almost” dual feasible, and there is “almost” no duality gap. We set our
tolerance ε to be a small positive number, typically ε = 10−8, for example,
and we stop when:

(1) ‖Ax̄ − b‖ ≤ ε

x + AT p̄ + ¯(2) ‖ − Q¯ s − c‖ ≤ ε

T ¯(3) s̄ x ≤ ε

5.6 The Full Interior-Point Algorithm

a) Given (x0, p0, s0) satisfying x0 > 0, s0 > 0, and µ0 > 0, and r satisfying
0 < r < 1, and ε > 0. Set k ← 0.

b) Test stopping criterion. Check if:

(1) ‖Axk − b‖ ≤ ε

(2) ‖ − Qxk + AT pk + sk − c‖ ≤ ε

(3) (sk)T xk ≤ ε .

If so, STOP. If not, proceed.

1 (xk)T (sk)
c) Set µ ←

10 n

d) Solve the Newton equation system:

(1) A∆x = b − Axk =: r1

(2) −Q∆x + AT ∆p + ∆s = c + Qxk − AT pk − sk =: r2

(3)	 Sk ∆x + Xk ∆s = µe − Xk Sk e =: r3

22

{ { }}

{ { }}

e) Determine the step-size:

k

θP = min 1, r min
xj

∆xj <0 −∆xj

k

θD = min 1, r min
sj

∆sj <0 −∆sj

θ = min{θP , θD } .

f) Update values:

k+1(x , pk+1, sk+1) ← (xk , pk , sk) + θ(∆x,∆p, ∆s) .

Re-set k ← k + 1 and return to (b).

5.7 Solving the Newton Equations

We now show how to manipulate the Newton equations to yield some for-
mulas for the solution of the Newton equation system. Given our current

x, ¯ s) for which ¯ s > 0, and a value of µ > 0, we wish to point (¯ p, ¯ x > 0 and ̄

solve the Newton equations below for (∆x,∆p, ∆s):

(1) A∆x = b − Ax̄ =: r1

(2) −Q∆x + AT ∆p + ∆s = c + Qx̄ − AT p̄ − s̄ =: r2

¯ ¯ ¯(3) S̄∆x + X∆s = µe − XSe =: r3

¯Pre-multiplying equation (2) by X, we obtain the following string of
equations that derive from one another:

23

(¯)

¯ ¯ (¯ ¯ ¯

(()
¯ ¯ (¯ ¯ ¯

(¯
()

(¯

¯ ¯ ¯ ¯−XQ∆x + XAT ∆p + X∆s = Xr2

¯ ¯	 ¯−	XQ∆x + XAT ∆p − S̄∆x + r3 = Xr2

¯ ¯ ¯−	 XQ + S ∆x + XAT ∆p = Xr2 − r3

(¯)−1 () −∆x + XQ + S
)−1

XAT ∆p = XQ + S Xr2 − r3

(¯)−1 ())−1¯ ¯	 ¯ ¯−r1 + A XQ + S XAT ∆p = A
(¯ XQ + S Xr2 − r3

(¯)−1 ())−1¯ ¯	 ¯ ¯ A	 XQ + S XAT ∆p = A
(¯ XQ + S Xr2 − r3 + r1

Therefore ∆p is determined by solving the last system above, or equiv-
alently, by the formula:

(¯)−1 ()
∆p = A XQ + S

)−1
XAT

)−1
A XQ + S Xr2 − r3 + r1 .

Once ∆p has been computed, we can compute ∆x and ∆s as follows:

¯ ¯ ¯∆x = XQ + S
)−1

r3 − Xr2 + XAT ∆p

∆s = Q∆x + r2 − AT ∆p .

Note that if Q is very sparse or nicely structured (for example, if Q is
diagonal), then the bulk of the work above lies in forming the matrix:

)−1 ¯ A XQ + S ̄ XAT

and then solving a system of equations with this matrix. In particular
when Q is diagonal, then the sparsity pattern of this matrix will be the same
as the sparsity pattern of AAT .

24

5.8 Remarks on Interior-Point Methods

•	 The algorithm just described is almost exactly what is used in com-
mercial interior-point method software.

•	 A typical interior-point code will solve a linear or quadratic optimiza-
tion problem in 25-80 iterations, regardless of the dimension of the
problem.

•	 There is a very “deep” theory of convergence for interior-point meth-
ods, when the constant “10” is replaced by the number

√
2 + 4 n √
1 + 4 n

•	 Interior-point methods are still an area of very active research.

•	 These days, interior-point methods have been extended to allow for
the solution of problems with convex quadratic constraints:

1
2x
T T QxQCQP : minx x +
c

1
2x
T

i x + T Qix ≤ bi , i = 1, . . . , ms.t. a

6	 Reduced Gradient Algorithm for Nonlinear Op­
timization

The reduced gradient algorithm is designed to solve a problem of the form:

NLP : minimizex f(x)

s.t.	 Ax = b (11)

x ≥ 0 .

In the case of a suitably formatted quadratic problem,

f(x) =
1
x T Qx + c T x

2

25

and
∇f(x) = Qx + c .

We will make the following assumptions regarding bases for the system
“Ax = b, x ≥ 0”:

• For any basis β ⊂ {1, . . . , n} with |β| = m, Aβ is nonsingular.

• For any basic feasible solution (xβ , xη) = (A−1b, 0) we have xβ > 0,β
where here η := {1, . . . , n} \ β.

The reduced gradient algorithm tries to mimic certain aspects of the
simplex algorithm.

At the beginning of an iteration of the reduced gradient algorithm, we
have a feasible solution x for our problem NLP. Pick a basis β for which ¯
x̄β > 0. Remember that such a basis must exist by our assumptions, but
that such a basis might not be uniquely determined by the current solution
x̄. Set η := {1, . . . , n} \ β. Now invoke the equations of our system, which
state that:

Aβ xβ + Aη xη = b

for any x = (xβ , xη), and so we can write:

= A−1(b − Aη xη) .xβ β

Since the basic variables are uniquely determined by the nonbasic variables
above, we can substitute these into the formula for the objective function:

f(x) = f(xβ , xη) = f(A−1(b − Aη xη), xη) .β

We therefore can define our reduced objective function to be:

h(xη) = f(A−1(b − Aη xη), xη) .β

The gradient of the reduced objective function is called the reduced gradient,
and has the following formula:

∇h(xη) = ∇fη (A−1(b − Aη xη), xη) − AT
η A

−T ∇fβ (A−1(b − Aη xη), xη) ,β β β

26

which evaluates at x̄ to be:

∇h(¯ x) − AT x) .xη) = ∇fη (¯ η A
−T ∇fβ (¯β

r = ¯Let us re-name the reduced gradient ¯ rη for notational convenience.
The reduced gradient can then be used to define a new direction d as follows:
for j ∈ η, we define:

 	 −r̄j if x̄j > 0        −r̄j if r̄j ≤ 0
dj :=     	 0 if ¯ rj > 0 xj = 0 and ̄ 

For j ∈ β, we define:

dβ := −A−1Aη dη .β

This direction has the following properties, which are fairly easy to prove:

¯•	 d is a feasible direction: Ad = 0 and x + αd ≥ 0 for all α > 0 and
sufficiently small.

¯•	 If d = 0, then x is a KKT point, with associated KKT multipliers
p̄ = A−T ∇fβ (x̄) for the equations “Ax = b”.β

•	 If d � x)T d < 0.= 0, then d is a descent direction, that is, ∇f(¯

This leads to the following algorithm for solving NLP:

¯0. The current point is	 x. Choose β for which xβ > 0 and |β| = m.
Define η := {1, . . . , n} \ β.

1. Compute the reduced gradient:

x) − AT x) .r̄η := ∇fη (¯ η A
−T ∇fβ (¯β

27

{	 }

2. Compute the direction d. For j ∈ η, define:

 	 −r̄j if x̄j > 0        −r̄j if r̄j ≤ 0
dj :=     	 0 if ¯ rj > 0 xj = 0 and ̄ 

For j ∈ β, define:

dβ := −A−1Aη dη .β

3. Compute the step-size. Define the following three quantities:

α1 := max {α|(x̄ + αd)β ≥ 0}

α2 := max {α|(x̄ + αd)η ≥ 0}

α3 := arg minα f (x̄ + αd)|0 ≤ α ≤ min{α1, α2}

4. Update values. If d = 0, then STOP (¯	 = 0, x is a KKT point). If d �
then set ¯ x + α3d, and go to (0.). x ← ¯

6.1 Some Comments on the Reduced Gradient Algorithm

•	 The reduced gradient algorithm has been very effective on problems
with linear equality and inequality constraints. That is because it is
actually mimicking the simplex algorithm as much as possible.

•	 One very useful modification of the reduced gradient algorithm is to
set β to correspond to the index of the set of the m largest components
of x̄.

•	 As it turns out, there is no proof of convergence for the algorithm as
written above. A slightly modified rule for determining the direction
d is as follows, and leads to a straightforward proof of convergence:

28

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

For j ∈ η, define:

  −r̄j if ¯ rj ≤ 0xj > 0 and ̄        −r̄j if ¯ rj ≤ 0 xj = 0 and ̄  

 −¯ ¯ xj > 0 and ̄
dj :=  rj xj if ¯ rj > 0        0 if ¯ rj > 0 xj = 0 and ̄  

7 Some Computational Results

In this section we report some computational results on solving quadratic
pattern classification problems. The problem under consideration is the dual
of the pattern classification quadratic program with penalties for the case
when we cannot strictly separate the points, namely D1:

 T  
k k m k m1 k

D1 : maximizeλ,γ λi + γj −  λia i − γj b
j   λia i − γj b

j 
2

i=1 j=1 i=1 j=1 i=1 j=1

k m

s.t.	 λi − γj = 0
i=1 j=1 (12)

λi ≤ C i = 1, . . . , k

γj ≤ C j = 1, . . . , m

λ ≥ 0, γ ≥ 0 .

We refer to this problem as the REGULAR model. By defining the
extra variables x:

29

∑ ∑

∑ ∑

() ∑ ∑

∑ ∑

	 
k m

x :=  λia i − γj b
j  ,

i=1 j=1

we can re-write this model as:

k m
TD2 : maximumλ,γ,x λi + γj − 1 x x2

i=1 j=1

k m
s.t.	 x − λia

i − γj b
j = 0

i=1 j=1

k m

λi − γj = 0
i=1 j=1

λi ≤ C i = 1, . . . , k

γj ≤ C j = 1, . . . , m

λ ≥ 0, γ ≥ 0

mλ ∈ �k , γ ∈ � 	 .

We refer to this model as the EXPANDED model.

We solved ten instances of the pattern classification model that we cre-
ated, whose main characteristics are as shown in Table 1. In solving these
problem instances, we used the penalty value C = 1, 000.

The two-dimensional problems are illustrated in Figure 2, Figure 3, Fig-
ure 4, and Figure 5.

We solved these instances using the following two algorithms:

•	 IPM (Interior-Point Method) We solved the problems using the
software code LOQO, which is an interior-point algorithm implemen-
tation for linear, quadratic, and nonlinear optimization.

30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Separable model with 100 points.

31

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Non-separable model with 100 points.

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: Separable model with 1,000 points.

33

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5: Non-separable model with 1,000 points.

34

Separable
or Not

Dimension
n

Number of points
m

Separable 2 100
Non-separable 2 100
Separable 2 1,000
Non-separable 2 1,000

Separable 20 300
Non-separable 20 300
Separable 20 1,000
Non-separable 20 1,000
Separable 20 10,000
Non-separable 20 10,000

Table 1: Ten instances of the pattern classification problem.

•	 ACTSET (Active Set Method) We solved the problems using a
simple active set method, that adds one new index at each outer iter-
ation, and does not drop any indices from consideration. The method
starts with 30 indices in the set β. The interior-point algorithm LOQO
was used to solve the subproblems at each iteration.

Note that for this particular model, that active set methods should per-
form very well. This is because we would expect very few points to be
binding in the primal, and so very few of the dual variables λi and/or γi will
be non-zero in the dual problem. And it is the dual problem which we are
going to solve.

Table 2 shows the optimal objective function values for each method on
each problem. Notice from these tables that both the REGULAR and the
EXPANDED models achieve the same optimal objective functions on the
different algorithms, when they have enough memory to solve the problem.

Table 3 shows the number of iterations of each method on each problem.
Notice the following:

•	 The non-separable problems take more iterations to solve.

35

Type n m
REGULAR MODEL EXPANDED MODEL

IPM IPM ACTSET

Separable 2 100 19.4941 19.4941 19.4941
Non-separable 2 100 992.4144 992.4144 992.4144

Separable 2 1,000 88.8831 88.8831
Non-separable 2 1,000 5,751.2161 5,751.2161

Separable 20 300 1.1398 1.1398 1.1398
Non-separable 20 300 2,101.6155 2,101.6155 2,101.6155

Separable 20 1,000 1.9110 1.9110
Non-separable 20 1,000 7,024.1791 7,024.1791

Separable 20 10,000 4.0165
Non-separable 20 10,000

Table 2: Optimal solution values reported by each method for each problem.
Blanks indicate the method ran out of memory.

•	 Interior-point methods use very few iterations in general.

•	 The iteration counts for interior-point methods do not really grow
much at all with the size of the problem.

•	 The exception to these observations is the active set algorithm, for
which the total iteration count can be misleading.

Table 4 shows the CPU time for each method and each problem, in
seconds. Notice the following:

•	 The REGULAR model takes more time to solve than does the EX-
PANDED model.

•	 As the dimensions of the problem grows, the time to solve the models
grows, with one exception.

•	 The non-separable problem instances take more time to solve.

•	 The active set method is the clear winner.

This leaves several questions:

36

Type n m
REGULAR MODEL EXPANDED MODEL

IPM IPM ACTSET

Separable 2 100 27 26 58
Non-separable 2 100 32 32 194

Separable 2 1,000 28 101
Non-separable 2 1,000 60 1,237

Separable 20 300 30 32 340
Non-separable 20 300 40 39 778

Separable 20 1,000 35 417
Non-separable 20 1,000 54 2,022

Separable 20 10,000 598
Non-separable 20 10,000 > 20,000

Table 3: Iteration count for each problem and each method. Blanks indicate
the method ran out of memory.

Type n m
REGULAR MODEL EXPANDED MODEL

IPM IPM ACTSET

Separable 2 100 2.89 0.20 0.04
Non-separable 2 100 3.23 0.24 0.17

Separable 2 1,000 240.85 0.09
Non-separable 2 1,000 278.56 3.39

Separable 20 300 27.16 8.04 0.99
Non-separable 20 300 41.39 4.30 3.90

Separable 20 1,000 175.60 1.27
Non-separable 20 1,000 289.15 12.00

Separable 20 10,000 1.02
Non-separable 20 10,000 > 58,759

Table 4: CPU times, in seconds. Blanks indicate the method ran out of
memory.

37

•	 Why does the REGULAR model takes more time to solve than does
the EXPANDED model?

•	 Why do the larger models run out of memory?

The answer to both of these questions probably has to do with the way
LOQO handles the numerical linear algebra of forming and then factoring
the Newton equation system at each interior-point iteration.

38

