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2	 Pattern Classification, Linear Classifiers, and Quadratic 
Optimization 

2.1 The Pattern Classification Problem 

We are given: 

• points a1, . . . , ak ∈ �n that have property “P” 

• points b1, . . . , bm ∈ �n that do not have property “P” 

We would like to use these k + m points to develop a linear rule that can 
be used to predict whether or not other points x might or might not have 
property P. In particular, we seek a vector v and a scalar β for which: 

• vT ai > β  for all i = 1, . . . , k  

• vT bi < β  for all i = 1, . . . , m  

We will then use v, β to predict whether or not other points c have 
property P or not, using the rule: 

• If vT c > β, then we declare that c has property P. 

• If vT c < β, then we declare that c does not have property P. 
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We therefore seek v, β that defines the hyperplane 

Hv,β := {x|v T x = β} 

for which: 

• vT ai > β  for all i = 1, . . . , k  

• vT bi < β  for all i = 1, . . . , m 


This is illustrated in Figure 1.


Figure 1: Illustration of the pattern classification problem. 
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2.2 The Maximal Separation Model 

We seek v, β that defines the hyperplane 

Hv,β := {x|v T x = β} 

for which: 

• vT ai > β  for all i = 1, . . . , k  

• vT bi < β  for all i = 1, . . . , m  

We would like the hyperplane Hv,β not only to separate the points with 
mdifferent properties, but to be as far away from the points a1, . . . , ak , b1, . . . , b

as possible. It is easy to derive via elementary analysis that the distance 
from the hyperplane Hv,β to any point ai is equal to 

vT ai − β 
. ‖v‖ 

Similarly, the distance from the hyperplane Hv,β to any point bi is equal to 

T biβ − v
. ‖v‖ 

If we normalize the vector v so that 

‖v‖ = 1  , 

then the minimum distance from the hyperplane Hv,β to any of the points 
a1, . . . , ak , b1, . . . , bm is then: 

T T b1 mmin v a 1 − β, . . . , v  T a k − β, β − v , . . . , β  − v T b . 

We therefore would like v and β to satisfy: 

• ‖v‖ = 1,  and  

• min vT a1 − β, . . . , vT ak − β, β − vT b1, . . . , β  − vT bm is maximized. 
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This yields the following optimization model:


PCP : maximizev,β,δ δ


s.t.	 vT ai − β ≥ δ, i = 1, . . . , k  

T biβ − v ≥ δ, i = 1, . . . , m  

‖v‖ = 1, 

v ∈ �n, β  ∈ �  

Now notice that PCP is not a convex optimization problem, due to the 
presence of the constraint “‖v‖ = 1”. 

2.3 Convex Reformulation of PCP 

To obtain a convex optimization problem equivalent to PCP, we perform 
the following transformation of variables: 

v β 
x = , α  = . 

δ δ 
1Then notice that δ = ‖v‖ = ‖x‖ , and so maximizing δ is equivalent to ‖x‖ 

1maximizing ‖x‖ , which is equivalent to minimizing ‖x‖. This yields the 
following reformulation of PCP: 

minimizex,α	 ‖x‖ 

s.t. 
xT ai − α ≥ 1, i = 1, . . . , k  

T biα − x ≥ 1, i = 1, . . . , m  

x ∈ �n, α  ∈ �  
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2Since the function f(x) = 
 ‖x‖
 =
 T x is monotone in ‖x‖ we have x

that the point that minimizes the function ‖x‖ also minimizes the function


2xT x. We therefore write the pattern classification problem in the following 
form: 

CQP : minimizex,α 
1 
2x
T x


s.t. xT ai − α ≥ 1, i = 1, . . . , k  

T biα − x ≥ 1, i = 1, . . . , m  

x ∈ �n, α  ∈ �  

Notice that CQP is a convex program with a differentiable objective 
∗ ∗function. We can solve CQP for the optimal x = x and α = α , and  

compute the optimal solution of PCP as: 

∗ x∗ ∗ α∗ ∗ 1 
v = , β  = , δ  = . ‖x ∗‖ ‖x ∗‖ ‖x ∗‖ 

Problem CQP is a convex quadratic optimization problem in n + 1  vari-
ables, with k+m linear inequality constraints. There are very many software 
packages that are able to solve quadratic programs such as CQP. However, 
one difficulty that might be encountered in practice is that the number of 
points that are used to define the linear decision rule might be very large 
(say, k + m ≥ 1, 000, 000 or more). This can cause the model to become too 
large to solve without developing special-purpose algorithms. 

3 Constructing the Dual of CQP 

As it turns out, the Lagrange dual of CQP yields much insight into the 
structure of optimal solution of CQP, and also suggests several algorithmic 
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approaches for solving the problem. In this section we derive the dual of 
CQP. 

We start by creating the Lagrangian function. Assign a nonnegative 
multiplier λi to each constraint “1 − xT ai + α ≤ 0” for i = 1, . . . , k  and 
a nonnegative multiplier γi to each constraint “1 + xT bi − α ≤ 0” for i = 
1, . . . , m. Think of the λi as forming the vector λ = (λ1, . . . , λk ) and the γi 

as forming the vector γ = (γ1, . . . , γm). The Lagrangian then is: 

m 
TL(x, α, λ, γ) =  

1 
x T x + 

k 

λi(1 − x a i + α) +  γj (1 + x T bj − α)
2 

i=1 j=1     
m k m k m 

=
1 
x T x − x T  

k 

λia i − γj b
j  +  λi − γj  α + λi + γj2 

i=1 j=1 i=1 j=1 i=1 j=1 

∗We next create the dual function L (λ, γ): 

∗L (λ, γ) = minimumx,αL(x, α, λ, γ) . 

In solving this unconstrained minimization problem, we observe that 
L(x, α, λ, γ) is a convex function of x and α for fixed values of λ and γ. 
Therefore L(x, α, λ, γ) is minimized over x and α when 

∇Lx(x, α, λ, γ) = 0  

∇Lα(x, α, λ, γ) = 0  . 

The first condition above states that the value of x will be: 

k m 

x = λia i − γj b
j , (1) 

i=1 j=1 

and the second condition above states that (λ, γ) must satisfy: 
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(	 ) ∑ ∑ 

∑ ∑ 

k m 

λi − γj = 0  . (2) 
i=1 j=1 

Substituting (1) and (2) back into L(x, α, λ, γ) yields: 

 T   
k m 1 k m k m 

∗L (λ, γ) =  λi + γj −  λia i − γj b
j   λia i − γj b

j  
2 

i=1 j=1 i=1 j=1 i=1 j=1 

where (λ, γ) must satisfy (2). 

Finally, the dual problem problem is constructed as: ( )T ( ) 
k m k m k m 

D1 : maximumλ,γ λi + γj − 1 λia
i − γj b

j λia
i − γj b

j 
2 

i=1 j=1 i=1 j=1 i=1 j=1 

k m 

s.t.	 λi − γj = 0  
i=1 j=1 

λ ≥ 0, γ  ≥ 0 

mλ ∈ �k , γ  ∈ � 	 . 

By utilizing (1), we can re-write this last formulation with the extra variables 
x as: 

k m 
TD2 : maximumλ,γ,x λi + γj − 1 x x2

i=1 j=1 

k m 
s.t.	 x − λia

i − γj b
j = 0  

i=1 j=1 

k m 

λi − γj = 0  
i=1 j=1 

λ ≥ 0, γ  ≥ 0 

mλ ∈ �k , γ  ∈ � 	 . 
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Comparing D1 and D2, it might seem wiser to use D1 as it uses fewer 
variables and fewer constraints. But notice one disadvantage of D1. The 
quadratic portion of the objective function in D1, expressed as a quadratic 
form of the variables (λ, γ) will look something like: 

(λ, γ)T Q(λ, γ) 

where Q has dimension (m + k) × (m + k). The size of this matrix grows 

with the square of (m + k), which is bad. In contrast, the growth in the 
problem size of D2 is only linear in (m + k). 

Our next result shows that if we have an optimal solution to the dual 
problem D1 (or D2, for that matter), then we can easily write down an 
optimal solution to the original problem CQP. 

∗ ∗Property 1 If (λ , γ ) �= 0  is an optimal solution of D1, then: 

k m 
∗ 

∑ ∗ 
∑ ∗ x = λi a i − γj b

j (3) 
i=1 j=1   

k m 
∗ 1 ∗ ∑ ∗ 

∑ ∗ α = (x )T  λi a i + γj b
j  (4)

k 
2 

∑ 
λ∗ i=1 j=1 

i 
i=1 

is an optimal solution to CQP. 

We will prove this property in the next section, as a consequence of the 
Karush-Kuhn-Tucker optimality conditions for CQP. 

4 The Karush-Kuhn-Tucker Conditions for CQP 

The problem CQP is: 
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1 TCQP : minimizex,α	 x x2

s.t.	 xT ai − α ≥ 1, i = 1, . . . , k  

T biα − x ≥ 1, i = 1, . . . , m  

x ∈ �n, α  ∈ �  

The KKT conditions for this problem are: 

•	 Primal feasibility: 

xT ai − α ≥ 1, i = 1, . . . , k  

α − xT bj ≥ 1, j = 1, . . . , m  

x ∈ �n, α  ∈ �  

• The Gradient Condition: 

k m 

x − λia i + γj b
j = 0  

i=1 j=1 

k m 

λi − γj = 0  
i=1 j=1 

•	 Nonnegativity of Multipliers: 

λ ≥ 0 , γ  ≥ 0 
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• Complementarity: 

λi(1 − xT ai + α) = 0  i = 1, . . . , k  

γj (1 + xT bj − α) = 0  j = 1, . . . , m  

5 Insights from Duality and the KKT Conditions 

5.1 The KKT Conditions Yield Primal and Dual Solutions 

Since CQP is the minimization of a convex function under linear inequality 
constraints, the KKT conditions are necessary and sufficient to characterize 
an optimal solution. 

Property 2 If (x, α, λ, γ) satisfies the KKT conditions, then (x, α) is an 
optimal solution to CQP and (λ, γ) is an optimal solution to D1. 

Proof: From the primal feasibility conditions, and the nonnegativity 
conditions on (λ, γ), we have that (x, α) and  (λ, γ) are primal and dual 
feasible, respectively. We therefore need to show equality of the primal and 
dual objective functions to prove optimality. 

If we call z(x, α) the objective function of the primal problem evaluated 
at (x, α) and  v(λ, γ) the objective function of the dual problem evaluated at 
(λ, γ) we have:  

1 T z(x, α) =  x x
2 

and  T   
k m m k m1 k 

v(λ, γ) =  λi + γj −  λia i − γj b
j   λia i − γj b

j  .
2 

i=1 j=1 i=1 j=1 i=1 j=1 

However, we also have from the gradient conditions that: 

11 



∑ 

∑ ∑ 

∑ ∑ ∑ ∑ 

∑ ∑ ∑ ∑ 
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∑ 
  

k m 

x =  

i=1 

λia i − γj b
j  . 

j=1 

Substituting this in above yields: 

k m 

γj − x T v(λ, γ) − z(x, α) =  λi + x 
i=1 j=1   
k m k m 

γj − x T  λia i − γj b
j  = λi + 

i=1 j=1 i=1 j=1   
k ( ) m ( ) k m 

T i T bj  = λi 1 − x a + γj 1 +  x + α  λi − γj 
i=1 j=1 i=1 j=1 

k ( ) m ( ) 
= λi 1 − x T a i + α + γj 1 +  x T bj − α 

i=1 j=1 

= 0  

and so (x, α) and  (λ, γ) are optimal for their respective problems. 

5.2 Nonzero values of x, λ, and  γ 

If (x, α, λ, γ) satisfy the KKT conditions, then x �= 0 from the primal fea-
= 0 and γ �sibility constraints. This in turn implies that λ � = 0 from the 

gradient conditions. 

5.3 Complementarity 

The complementarity conditions imply that the dual variables λi and γj are 
only positive if the corresponding primal constraint is tight: 

λi > 0 ⇒ (1 − xT ai + α) = 0  

γj > 0 ⇒ (1 + xT bj − α) = 0  
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iEquality in the primal constraint means that the corresponding point, a
or bj , is at the minimum distance from the hyperplane. In combination with 

= 0 and γ �the observation above that λ � = 0, this implies that the optimal 
hyperplane will have points of both classes at the minimum distance. 

5.4 A Further Geometric Insight 

Consider the example of Figure 2. In Figure 2, the hyperplane is determined 
by the three points that are at the minimum distance from it. Since the 
points we are separating are not likely to exhibit collinearity, we can conclude 
in general that most of the dual variables will be zero at the optimal solution. 

Figure 2: A separating hyperplane determined by three points. 

More generally, we would expect that at most n + 1 points will lie at the 
minimum distance from the hyperplane. Therefore, we would expect that 
all but at most n + 1 dual variables will be zero at the optimal solution. 
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5.5 The Geometry of the Normal Vector 

Consider the example shown in Figure 3. In Figure 3, the points correspond-
1ing to active primal constraints are labeled a , a2, a3, b1, b2 . 

a3

a2

b1

2b

0

0 

0 

0 0 0 

0 0 

0 0


0

x 

0 0 
* 

*0 0 * 
* * 

* * * * 

a1 * * 
* * 

* 

Figure 3: Separating hyperplane and points with tight primal constraints. 

In this example, we see that xT (a1 − a2) =  xT a1 − xT a2 = (1  +  α) − (1 + 
α) = 0. Here we only used the fact that 1 − xT ai + α = 0.  

In general we have the following property: 

Property 3 The normal vector x to the separating hyperplane is orthogonal 
to any difference between points of the same class whose primal constraints 
are active. 

1 ı̂Proof: Without loss of generality, we can consider the points a , . . . , a
and b1, . . . , bˆ to be the points corresponding to tight primal constraints. 

T i T bjThis means that x a = 1  +  α, i = 1, . . . , ı̂, and also that x = α − 1, 
j = 1, . . . , ̂. From this it is clear that xT (ai − aj ) = 0,  i, j = 1, . . . , ı̂ and 
xT (bi − bj ) = 0,  i, j = 1, . . . , ̂. 
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5.6 More Geometry of the Normal Vector 

From the gradient conditions, we have: 

k m 

x = λia i − γj b
j 

i=1 j=1 

ı̂ ̂

= λia i − γj b
j 

i=1 j=1 

iwhere we amend our notation so that the points a correspond to active 
constraints for i = 1, . . . , ı̂ and the points bj correspond to active constraints 
for j = 1, . . . , ̂. 

ı̂ ̂

If we set δ = λi = γj , we have: 

i=1 j=1


  
ı̂ ̂∑ λi x = δ a i − 

∑ γj 
bj  

δ δ 
i=1 j=1 

From this last equation we see that x is the scaled difference between a 
ˆ convex combination of a1, . . . , aı and a convex combination of b1, . . . , b .̂ 

5.7 Proof of Property 1 

We will now prove Proposition 1, which asserts that (3 - 4) yields an optimal 
solution to CQP given an optimal solution (λ, γ) of D1.  We  start by writing  
down the KKT optimality conditions for D1: 

15 



∑ ∑ 

∑ ∑ 
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∑ ∑ 

• Feasibility: 
k m 

λi − γj = 0  
i=1 j=1 

λ ≥ 0, γ  ≥ 0 

mλ ∈ �k , γ  ∈ �

• Gradient Conditions:   
k m 

1 − (a i)T  λla l − γj b
j  + α + µi = 0  i = 1, . . . , k  

l=1 j=1 

k m 
) 

1 + (bj )T λia i − γlb
l − α + νj = 0  j = 1, . . . , m  

i=1 l=1 

µ ≥ 0, ν  ≥ 0 

mµ ∈ �k , ν  ∈ �

• Complementarity: 

λiµi = 0  i = 1, . . . , k  

γj νj = 0  j = 1, . . . , m  

Now suppose that (λ, γ) is an optimal solution of D1, whereby (λ, γ) 
satisfy the above KKT conditions for some values of α, µ, ν. We will now 
show that the point (x, α) is optimal for CQP, where x is defined by (3), 
namely 

k m 

x = λia i − γj b
j , 

i=1 j=1 
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∑ ∑ ∑ ∑ 

and α arises in the KKT conditions. Substituting the expression for x in 
the gradient conditions, we obtain: 

1 =  xT ai − α − µi ≤ xT ai − α i = 1, . . . , k,  

1 =  −xT bj + α − νj ≤ −xT bj + α j  = 1, . . . , m.  

Therefore (x, α) is feasible for CQP. Now let us compare the objective func-
tion values of (x, α) in the primal and (λ, γ) in the dual. The primal objective 
function value is: 

1 T z =
2 
x x ,  

and the dual objective function value is: 

 T   
k m m k m1 k 

v = λi + γj −  λia i − γj b
j   λia i − γj b

j  .
2 

i=1 j=1 i=1 j=1 i=1 j=1 

Substituting in the equation: 

k m 

x = λia i − γj b
j 

i=1 j=1 

and taking differences, we compute the duality gap between these two solu-
tions to be: 

k m 

γj − x T v − z = λi + x 
i=1 j=1   
k m k m 

γj − x T  λia i − γj b
j  = λi +


i=1 j=1 i=1 j=1
   
k ( ) m ( ) k m 

T i T bj  = λi 1 − x a + γj 1 +  x + α  λi − γj 
i=1 j=1 i=1 j=1 
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( ) 

( ) 

∑ ∑ ∑ ∑ ∑ ∑ 

∑ ∑ ∑ 

∑ 

∑ ∑ 

k ( ) m ( ) 
T= λi 1 − x a i + α + γj 1 +  x T bj − α 

i=1 j=1 

k m 

= − λiµi − γj νj

i=1 j=1


= 0  

which demonstrates that (x, α) must therefore be an optimal primal solution. 

To finish the proof we must validate the expression for α in (4). If we 
multiply the first set of expressions of the gradient conditions by λi and the 
second set by −γj we obtain: 

T = λi − λix T0 =  λi 1 − x a i + α + µi a i + λiα i = 1, . . . , k  

0 =  −γj 1 +  x T bj − α + νj = −γj − γj x T bj + γj α j = 1, . . . , m  

Summing these, we obtain: 

    
k m k m k m 0 =  λi − γj − x T  λia i + γj b

j  + α  λi + γj

i=1 j=1 i=1 j=1 i=1 j=1
  

k m k 

= −x T  λia i + γj b
j  + 2  λiα


i=1 j=1 i=1


which implies that: 

  
1 k m 

α = x T  λia i + γj b
j  

k 
i=1 j=12 λi 

i=1 
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5.8 Final Comments 

The fact that we can expect to have at most n + 1 dual variables different 
than zero in the optimal solution (out of a possible number which could 
be as high as k + m) is very important. It immediately suggests that we 
might want to develop solution methods that try to limit the number of dual 
variables that are different from zero at any iteration. Such algorithms are 
called “Active Set Methods”, which we will visit in the next lecture. 

6	 Pattern Classification without strict Linear Sep­
aration 

The are very many instances of the pattern classification problem where the 
observed data points do not give rise to a linear classifier, i.e., a hyperplane 
Hv,β that separates a1, . . . , ak from b1, . . . , bm. If we still want to construct a 
classification function that is based on a hyperplane, we will have to allow for 
some error or “noise” in the data. Alternatively, we can allow for separation 
via a non-linear function rather than a linear function. 

6.1 Pattern Classification with Penalties 

Consider the following optimization problem: 

1 T
k+m 

QP3 : minimizex,α,ξ x x + C ξi2 
i=1 

s.t. xT ai − α ≥ 1 − ξi i = 1, . . . , k  (5) 

α − xT bj ≥ 1 − ξk+j j = 1, . . . , m  

ξi ≥ 0	 i = 1, . . . , k  + m. 

In this model, the ξi variables allow the constraints to be violated, but at 
a cost of C, where we presume that C is a large number. Here we see that 
C represents the tradeoff between the competing objectives of producing a 
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hyperplane that is far from the points ai, i  = 1, . . . , k  and bi, i  = 1, . . . , m, 
and that penalizes points for being close to the hyperplane. 

The dual of this quadratic optimization problem turns out to be: 

 T  
k k m k m1 k 

D3 : maximizeλ,γ λi + γj −  λia i − γj b
j   λia i −

2 
i=1 j=1 i=1 j=1 i=1 j=1 

k m 

s.t.	 λi − γj = 0 

i=1 j=1


λi ≤ C i = 1, . . . , k  

γj ≤ C j = 1, . . . , m  

λ ≥ 0, γ  ≥ 0 . 

In an analogous fashion to Property 1 stated earlier for the separable 
case, one can derive simple formulas to directly compute an optimal primal 

∗ ∗ ∗	 ∗ ∗solution (x , α , ξ ) from an optimal dual solution (λ , γ ). 

As an example of the above methodology, consider the pattern classifi-
cation data shown in Figure 4. 

Figure 5 and Figure 6 show solutions to this problem with different values 
of the penalty parameter C = 10  and  C = 100, respectively. 

6.2 Pattern Classification via Non-linear Mappings 

Another way to separate sets of points that are not separable using a linear 
classifier (a hyperplane) is to create a non-linear transformation, usually to 
a higher-dimensional space, in such a way that the transformed points are 
separable by a hyperplane in the transformed space (or are nearly separable, 
with the aid of penalty terms). 

Suppose we have on hand a mapping: 
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γj b
j  

(6) 
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−0.2 

0 

0.2 

0.4 

0.6 
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−1 
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 

Figure 4: Pattern classification data that cannot be separated by a hyper-
plane. 
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Figure 5: Solution to the problem with C = 1.0.
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Figure 6: Solution to the problem with C = 1, 000.0.
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{ } 

( ) ( ) 

nφ(·) :  � 
→ �l 

where one should think of l as satisfying l >>  n. Under this mapping, we 
have: 

ia 
 ˜i → a = φ(ai), i  = 1, . . . , k  

bi 
→ b̃i = φ(bi), i  = 1, . . . , m.  

We then solve for our separating hyperplane 

H˜ ˜ = x ∈ �l | ṽT ˜˜ x = β̃v,β 

via the methods described earlier. If we are given a new point c that we 
would like to classify, we compute 

c̃ = φ(c) 

and use the rule: 

• If ˜T ˜v c > β̃, then we declare that c has property P. 

• If ˜T ˜v c < β̃, then we declare that c does not have property P. 

Quite often we do not have to explicitly work with the function φ(·), as 
we now demonstrate. Consider the pattern classification problem shown in 
Figure 7. In Figure 7, the two classes of points are clearly not separable 
with a hyperplane. However, it does seem that there is a smooth function 
that would easily separate the two classes of points. 

We can of course solve the linear separation problem (with penalties) for 
this problem. Figure 8 shows the linear classifier for this problem, computed 
using the penalty value C = 100. As Figure 8 clearly shows, this separator 
is clearly not adequate. 

We might think of trying to find a quadratic function (as opposed to a 
linear function) that will separate our points. In this case we would seek to 
find values of: 

Q12Q = 
Q11 , q  = 

q1 , d
Q12 Q22 q2 

satisfying: 
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Figure 7: Two classes of points that can be separated by a nonlinear surface. 
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Figure 8: Illustration of a linear classifier for a non-separable case. 
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( 

( 

( 

• (ai)T Qai + qT ai + d >  0 for all i = 1, . . . , k  

• (bi)T Qbi + qT bi + d <  0 for all i = 1, . . . , m  

We would then use this data to classify any new point c as follows: 

• If cT Qc + qT c + d >  0, then we declare that c has property P. 

• If cT Qc + qT c + d <  0, then we declare that c does not have property 
P. 

Although this problem seems much more complicated than linear classifi-
cation, indeed it is really linear classification in a slightly higher-dimensional 
space! To see why this is true, let us look at our 2-dimensional example in 

i idetail. Let one of the ai values be denoted as the data (a1, a2). Then 

i i i i i i(ai)T Qai + qT ai + d = (a1)
2 × Q11 + 2a1a2 × Q12 + (a2)

2 × Q22 + a1 × q1 + a2 × q2 + d 

i i i i i= (a1)
2 , 2a1a2, (a2)

2, a1, a
i )T (Q11, Q12, Q22, q1, q2) +  d2 

= (˜ a2, ˜ a4, ˜

where 

a1, ˜ a3, ˜ a5)T (Q11, Q12, Q22, q1, q2) +  d 

2 2ã := φ(a) =  φ(a1, a2) := (a1, 2a1a2, a2, a1, a2) . 

Notice here that this problem is one of linear classification in �5 . We there-
fore can solve this problem using the usual optimization formulation, but 
now stated in the higher-dimensional space. The problem we wish to solve 
then becomes: 

HPCP : maximizeQ,q,d,δ δ 

i i i i is.t. (a1)
2 , 2a1a2, (a2)

2, a1, a
i )T (Q11, Q12, Q22, q1, q2) +  d ≥ δ, i = 1, . . . , k2 

− (bi 
1b

i 
2)

2, bi 
1)

2 , 2bi 
2, (b

i 
1, b

i )T (Q11, Q12, Q22, q1, q2) − d ≥ δ, i = 1, . . . , m2 

‖ (Q11, Q12, Q22, q1, q2) ‖ = 1, 
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This problem then can be transformed into a convex quadratic program 
by using the transformation used in Section 2.3. If one solves the problem 
this way, the optimized quadratic separator turns out to be: 

2 2−24.723c1 − 0.261c1c2 − 1.706c + 14.438c1 − 2.794c2 − 0.1632 

Figure 9 shows the solution to this problem. Notice that the solution 
indeed separates the two classes of points. 
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Figure 9: Illustration of separation by a quadratic separator. 

6.3 Pattern Classification via Ellipsoids 

As it turns out, the quadratic surface separator described in the previous 
section can be developed further. Recall the model: 
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( 

( 

( ) 

( 

( 

HPCP : maximizeQ,q,d,δ δ 

i i i i is.t. (a1)
2 , 2a1a2, (a2)

2, a1, a
i )T (Q11, Q12, Q22, q1, q2) +  d ≥ δ, i = 1, . . . , k2 

− (bi 
1b

i 
2)

2, bi 
1)

2 , 2bi 
2, (b

i 
1, b

i )T (Q11, Q12, Q22, q1, q2) − d ≥ δ, i = 1, . . . , m2 

‖ (Q11, Q12, Q22, q1, q2) ‖ = 1, 

Suppose that we would like the resulting quadratic surface to be an 
ellipsoid. This corresponds to requiring that the matrix 

Q11 Q12Q = 
Q12 Q22 

be an SPSD matrix. Suppose that we would like this ellipsoid to be as 
“round” as possible, which means that we would like the condition number 

λmax (Q)
κ(Q) :=  

λmin (Q) 

to be as small as possible. Then our problem becomes: 

RP : minimizeQ,q,d 
λmax (Q) 
λmin (Q) 

i i i i is.t. (a1)
2 , 2a1a2, (a2)

2, a1, a
i )T (Q11, Q12, Q22, q1, q2) +  d ≥ 0, i = 1, . . . , k2 

− (bi 
1b

i 
2)

2, bi 
1)

2 , 2bi 
2, (b

i 
1, b

i )T (Q11, Q12, Q22, q1, q2) − d ≥ 0, i = 1, . . . , m2 

‖ (Q11, Q12, Q22, q1, q2) ‖ = 1, 

Q is SPSD . 
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As it turns out, this problem can be re-cast as a convex optimization 
problem, using the tools of the new field of semi-definite programming. Fig-
ure 10 shows an example of a solution to a pattern classification problem 
obtained by solving the problem RP. 
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Figure 10: Illustration of an ellipsoidal separator using semi-definite pro-
gramming. 
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