2.098/6.255/15.093J Optimization Methods, Fall 2005 (Brief) Solutions to Final Exam, Fall 2003

1.

- 1. False. The problem of *minimizing* a convex, piecewise linear function over a polyhedron can be formulated as a LP.
- 2. True. The dual of the problem is $\max\{0: p \leq 1\}$. p = 1 is nondegenerate, for example.
- 3. False. Consider $\min\{-x_1 x_2 : x_1 + x_2 = 1, x_1 \ge 0, x_2 \ge 0\}$.
- 4. False. Take the primal-dual pair in part 2 of this question, for example.
- 5. False. Barrier interior-point methods are unaffected by degeneracy; see BT p. 439.
- 6. True. KKT conditions hold for a local minimum under the linearly independent constraint qualification condition (LICQ).
- 7. False. Barrier interior-point methods find an interior point of the face of optimal solutions. See BT p. 537 and p. 544 for a discussion on the numerical behavior of the simplex and interior point methods.
- 8. True. BT Theorem 7.5.
- 9. True. Lecture 18, Slides 40-50.
- 10. True. Recall the zig-zag phenomenon shown in lecture.

2.

(a) Proof by contradiction. Assume that f is strictly convex. Suppose all optimal solutions are not extreme points of P. Consider an arbitrary optimal solution, $x^* = (x_1^*, \ldots, x_n^*)$. Since x^* is not an extreme point, $x^* = \lambda y + (1 - \lambda)z$ for some $y = (y_1, \ldots, y_n), z = (z_1, \ldots, z_n) \in P$ and $\lambda \in [0, 1]$. Therefore,

$$\lambda \sum_{j=1}^{n} f(y_i) + (1 - \lambda) \sum_{j=1}^{n} f(z_i) < \sum_{j=1}^{n} f(x_i^*),$$

so either y or z must produce a lower value than x^* . This is a contradiction.

If f is not strictly convex, you can repeat the above argument in conjunction with an argument like in the proof of BT Theorem 2.6 ((b) \Rightarrow (a)) to show that $\sum_{k=1}^{p} \lambda_i \sum_{i=1}^{n} f(x_i^k) \leq \sum_{i=1}^{n} f(x_i^*)$ where x^k is an extreme point for some $k = 1, \ldots, p$.

(b) The problem we are concerned with is

minimize
$$\sum_{j=1}^{n} f(x_j)$$
subject to
$$Ax = b$$

$$x_j \in \{0, 1\}$$

Let c = f(1) and d = f(0). Since $x_j \in \{0, 1\}$, $f(x_j) = d + (c - d)x_j$. Therefore, the objective function can be written as

$$\sum_{j=1}^{n} f(x_j) = \sum_{j=1}^{n} (d + (c - d)x_j) = nd + (c - d)\sum_{j=1}^{n} x_j,$$

which is linear in x.

- **3.** Without loss of generality, assume Q and Σ are symmetric, since they only appear in quadratic forms.
- (a) KKT conditions: there exists a multiplier $u \ge 0$ such that $(c + Qx) + u(d + \Sigma x) = 0$, and $u(d'x + \frac{1}{2}x'\Sigma x a) = 0$.
- (b) Use Newton's method to solve the system of equations prescribed by the KKT conditions.
- (c) An equivalent optimization problem is

minimize
$$\theta$$

subject to $c'x + \frac{1}{2}x'Qx \le \theta$
 $d'x + \frac{1}{2}x'\Sigma x \le a$

Since Q is symmetric psd, we can write $Q=Q^{1/2}Q^{1/2}$ for some symmetric matrix $Q^{1/2}$. Similarly, $\Sigma=\Sigma^{1/2}\Sigma^{1/2}$ for some symmetric matrix $\Sigma^{1/2}$. Therefore, by the Schur complement lemma

$$(\theta - c'x) - \frac{1}{2}(Q^{1/2}x)'(Q^{1/2}x) \ge 0 \quad \Leftrightarrow \quad \begin{pmatrix} I & \frac{1}{\sqrt{2}}(Q^{1/2}x) \\ \frac{1}{\sqrt{2}}(Q^{1/2}x)' & \theta - c'x \end{pmatrix} \succcurlyeq 0.$$

Similarly,

$$(a - d'x) - \frac{1}{2}(\Sigma^{1/2}x)'(\Sigma^{1/2}x) \ge 0 \quad \Leftrightarrow \quad \begin{pmatrix} I & \frac{1}{\sqrt{2}}(\Sigma^{1/2}x) \\ \frac{1}{\sqrt{2}}(\Sigma^{1/2}x)' & a - d'x \end{pmatrix} \geqslant 0.$$

So we can recast the given optimization problem as the following semidefinite programming problem:

minimize
$$\theta$$
subject to
$$\begin{pmatrix} I & \frac{1}{\sqrt{2}}(Q^{1/2}x) \\ \frac{1}{\sqrt{2}}(Q^{1/2}x)' & \theta - c'x \end{pmatrix} \geq 0$$

$$\begin{pmatrix} I & \frac{1}{\sqrt{2}}(\Sigma^{1/2}x) \\ \frac{1}{\sqrt{2}}(\Sigma^{1/2}x)' & a - d'x \end{pmatrix} \geq 0$$

Note that in the above formulation that the decision variables are θ and x, and they appear linearly in the matrix constraints.

4.

(a) A possible LP formulation is:

$$z^* = \text{maximize} \quad \theta$$
 subject to
$$x_i' f \leq 1 \qquad \forall i: a_i = 0$$

$$x_i' f \geq 1 + \theta \quad \forall i: a_i = 1$$

where $f \in \mathbb{R}^n$ and θ are decision variables. If $z^* \leq 0$, then a separating hyperplane does not exist; if $z^* > 0$, then the optimal solution f^* defines a separating hyperplane.

(b) A possible integer linear programming formulation is:

nteger linear programming formulation is:

minimize
$$\sum_{i=1}^{m} w_i + \sum_{i=1}^{m} z_i$$

subject to $x_i'f \leq 1 + Mu_i$ $i = 1, \dots, m$
 $x_i'f \geq (1+\epsilon) - M(1-u_i)$ $i = 1, \dots, m$
 $w_i \geq (y_i - \beta_1'x_i) - Mu_i$ $i = 1, \dots, m$
 $w_i \geq -(y_i - \beta_1'x_i) - Mu_i$ $i = 1, \dots, m$
 $w_i \leq M(1-u_i)$ $i = 1, \dots, m$
 $z_i \geq (y_i - \beta_2'x_i) - M(1-u_i)$ $i = 1, \dots, m$
 $z_i \geq -(y_i - \beta_2'x_i) - M(1-u_i)$ $i = 1, \dots, m$
 $z_i \leq Mu_i$ $i = 1, \dots, m$

where $w, z \in \mathbb{R}$, $\beta_1, \beta_2, f \in \mathbb{R}^n$, $u \in \mathbb{Z}^n$ are decision variables, M is some "very large" constant, and ϵ is some "very small" constant. Note that $u_i = 0$ implies $x_i' f \leq 1$, $w_i \geq |y_i - \beta_1' x_i|$, and $z_i = 0$. Also note that $u_i = 1$ implies $x_i' f \ge (1 + \epsilon) > 1$, $w_i = 0$, and $z_i \ge |y_i - \beta_2' x_i|$.

5.

- (a) We can compute the value of Z_1 by subgradient methods, as indicated in BT pp. 502-507. Let $n=2, a'_1=(2,3), a'_2=(3,2), b_1=2, b_2=3.$ In this instance, neither of the equalities in BT Corollary 11.1 hold, so we can only say $Z_{LP} \leq Z_1 \leq Z_{IP}$.
- (b) We consider one variable at a time, in the order x_1, x_2, \ldots, x_n . Accordingly, we define our time periods to be k = 1, ..., n. Define the states to be the ordered pairs (d, f), where d represents the running total of the LHS of the first constraint, and f represents the running total of the LHS of the second constraint. The actions available at time period k correspond to setting the value of x_k to 0 or 1. The cost-to-go function is defined as follows:

$$J_k(d, f) = \underset{\text{subject to}}{\text{minimize}} \quad \sum_{i=k}^n c_i x_i$$

$$subject to \quad d + \sum_{i=k}^n a_{1i} x_i \ge b_1$$

$$f + \sum_{i=k}^n a_{2i} x_i \ge b_2$$

$$x_i \in \{0, 1\}, \ i = k, \dots, n$$

We can solve for the value we desire, $J_1(0,0)$, using the following recursion

$$J_k(d_k, f_k) = \min\{\underbrace{c_k + J_{k+1}(d_k + a_{1k}, f_k + a_{2k})}_{x_k = 1}, \underbrace{J_{k+1}(d_k, f_k)}_{x_k = 0}\}$$

with the following boundary conditions:

$$J_n(d, f) =$$
minimize $c_n x_n$
subject to $d + a_{1n} x_n \ge b_1$
 $f + a_{2n} x_n \ge b_2$
 $x_n \in \{0, 1\}$

$$\Rightarrow J_n(d, f) = \begin{cases} 0 & \text{if } d \ge b_1 \text{ and } f \ge b_2 \\ c_n & \text{if } d < b_1 \le d + a_{1n} \text{ or } f < b_2 \le f + a_{2n} \\ \infty & \text{otherwise.} \end{cases}$$

Note that $0 \le d \le \sum_{i=1}^n a_{1i}$ and $0 \le f \le \sum_{i=1}^n a_{2i}$. If a_1 and a_2 are integral, then the state space is finite, of cardinality $(\sum_{i=1}^n a_{1i} + 1)(\sum_{i=1}^n a_{2i} + 1)$. If a_1 and a_2 are not integral, then the state space becomes uncountable.

15.093J / 6.255J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.