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(Brief) Solutions to Final Exam, Fall 2003

. False. The problem of minimizing a convex, piecewise linear function over a polyhedron can

be formulated as a LP.

. True. The dual of the problem is max{0: p < 1}. p =1 is nondegenerate, for example.
. False. Consider min{—xz1 — z9 : 1 + 2 = 1,21 > 0,292 > 0}.

. False. Take the primal-dual pair in part 2 of this question, for example.

5. False. Barrier interior-point methods are unaffected by degeneracy; see BT p. 439.

. True. KKT conditions hold for a local minimum under the linearly independent constraint

qualification condition (LICQ).

. False. Barrier interior-point methods find an interior point of the face of optimal solutions.

See BT p. 537 and p. 544 for a discussion on the numerical behavior of the simplex and
interior point methods.

. True. BT Theorem 7.5.
. True. Lecture 18, Slides 40-50.

. True. Recall the zig-zag phenomenon shown in lecture.

Proof by contradiction. Assume that f is strictly convex. Suppose all optimal solutions are
not extreme points of P. Consider an arbitrary optimal solution, z* = (zF,...,z} ). Since z*
is not an extreme point, z* = Ay + (1 — \)z for some y = (y1,...,Yn),2 = (21,...,2n) € P
and A € [0, 1]. Therefore,

MY F)+ (=N fz) <Y f(a),
= i=1 i=1

so either y or z must produce a lower value than x*. This is a contradiction.

If f is not strictly convex, you can repeat the above argument in conjunction with an argu-
ment like in the proof of BT Theorem 2.6 ((b) = (a)) to show that >_7_, A Y, f(2F) <
S0, f(z}) where ¥ is an extreme point for some k= 1,...,p.

The problem we are concerned with is
minimize >, f(z;)
subject to Ax =b
zj € {0, 1}
Let ¢ = f(1) and d = f(0). Since x; € {0,1}, f(x;) = d+ (c — d)xj. Therefore, the objective

function can be written as

n

S F@) =D (d+(c—dz;) =nd+ (c—d))_xj,
j=1 J=1

j=1



which is linear in x.

3. Without loss of generality, assume Q and X are symmetric, since they only appear in quadratic
forms.

(a) KKT conditions: there exists a multiplier u > 0 such that (¢ + Q) + u(d + Xz) = 0, and
u(d'z + 2'Sx — a) = 0.

(b) Use Newton’s method to solve the system of equations prescribed by the KKT conditions.
(¢c) An equivalent optimization problem is
minimize 0
subject to z + $2/Qx < 0
dx+ %x’ Yr<a

Since Q is symmetric psd, we can write Q@ = QY/2Q'? for some symmetric matrix Q'/2.
Similarly, ¥ = %1/2%1/2 for some symmetric matrix /2. Therefore, by the Schur complement

lemma
L (01/2
/ L 172, v A1/2 1 \/5(@ z)
_ B > .
(‘9 CCC) 2(@ x) (Q x) >0 <« %(Qlﬂx), 0 —cx =0
Similarly,
A (n1/2
/ Liq1/2 viesa1/2 I \/5(2 x)
(a —dz)— 5(2 ) (3Vr) >0 < %(El/%)’ o de |7 0.

So we can recast the given optimization problem as the following semidefinite programming

problem:
minimize 6
I 55 (Q'2x)
subject to 112 V2 , =0
@ b
1 Il/2 ’ E(E /x) =0
W(Z x) a—dx

Note that in the above formulation that the decision variables are 6 and x, and they appear
linearly in the matrix constraints.

(a) A possible LP formulation is:

z* = maximize 60
subject to zff <1 Vi:a; =0
rif>140 Viia; =1

where f € R™ and 6 are decision variables. If z* < 0, then a separating hyperplane does not
exist; if z* > 0, then the optimal solution f* defines a separating hyperplane.



(b) A possible integer linear programming formulation is:

minimize > ;" w; + >tz

subject to zf < 1+ Muy 1=1,...,m
aif > (14e) — M1 —u) i=1,....,m
w; > (yi — i) — Mu; i=1,...,m
w; > —(yi — Bi;) — Mu; t=1,....m
w; < M(1—w) i=1,...,m
zi > (yi—Phay)— M1 —wu;) i=1,...,m
zi > —(yi—Phzi)— M1 —w) i=1,...,m
zi < Muy, i=1,...,m
w e {01} i=1,...,m

where w, z € R, 31, 8o, f € R™, u € Z™ are decision variables, M is some “very large” constant,
and € is some “very small” constant. Note that u; = 0 implies «f <1, w; > |y; — x|, and
z; = 0. Also note that u; = 1 implies z}f > (14+¢€) > 1, w; =0, and z; > |y; — Bha|.

5.

(a) We can compute the value of Z; by subgradient methods, as indicated in BT pp. 502-507. Let
n=2ay =(2,3), a, = (3,2), by = 2, by = 3. In this instance, neither of the equalities in BT
Corollary 11.1 hold, so we can only say Zrp < Z1 < Zp.

(b) We consider one variable at a time, in the order z1,xs,...,x,. Accordingly, we define our
time periods to be k = 1,...,n. Define the states to be the ordered pairs (d, f), where d
represents the running total of the LHS of the first constraint, and f represents the running
total of the LHS of the second constraint. The actions available at time period & correspond
to setting the value of x; to 0 or 1. The cost-to-go function is defined as follows:

Ji(d, f) = minimize >, ¢;x;
subject to  d+ >, aix; > by
[4+ >0 azix; > by
2 €{0,1}, i=k,...,n
We can solve for the value we desire, J(0,0), using the following recursion

Ji(dr, f) = min{cy + Jp1(di + arg, fr + aox), Je+1(di, f)}

=1 =0

with the following boundary conditions:

Jn(d, f) = minimize ¢,z
subject to d+ aipz, > b1
f+ax, > bo
xn €{0,1}

0 ifd>b;and f > by
:>Jn(d’f): Cn ifd<b1§d+a1norf<b2§f+a2n
oo otherwise.

Note that 0 < d < > ;ay; and 0 < f < 3" | ag. If a1 and as are integral, then the state
space is finite, of cardinality (3_;"; a1; +1)(>_;, a2 +1). If a; and ag are not integral, then
the state space becomes uncountable.
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