Mixed-Integer Programming II

Mixed Integer Inequalities

- Consider $S = \{(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : \sum_{j=1}^n a_j x_j + \sum_{j=1}^p g_j y_j = b\}.$
- Let $b = |b| + f_0$ where $0 < f_0 < 1$.
- Let $a_j = \lfloor a_j \rfloor + f_j$ where $0 \le f_j < 1$.
- Then $\sum_{f_j \le f_0} f_j x_j + \sum_{f_j > f_0} (f_j 1) x_j + \sum_{j=1}^p g_j y_j = k + f_0$, where k is some integer.
- Since $k \le -1$ or $k \ge 0$, any $x \in S$ satisfies

$$\sum_{f_j \le f_0} \frac{f_j}{f_0} x_j - \sum_{f_j > f_0} \frac{1 - f_j}{f_0} x_j + \sum_{j=1}^p \frac{g_j}{f_0} y_j \ge 1 \tag{1}$$

OR

$$-\sum_{f_j \le f_0} \frac{f_j}{1 - f_0} x_j + \sum_{f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j - \sum_{j=1}^p \frac{g_j}{1 - f_0} y_j \ge 1.$$
 (2)

- This is of the form $\sum_j a_j^1 x_j \ge 1$ or $\sum_j a_j^2 x_j \ge 1$, which implies $\sum_j \max\{a_j^1, a_j^2\} x_j \ge 1$ for any $x \ge 0$.
- For each variable, what is the max coefficient in (1) and (2)?
- We get

$$\sum_{f_j \le f_0} \frac{f_j}{f_0} x_j + \sum_{f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j + \sum_{g_j > 0} \frac{g_j}{f_0} y_j - \sum_{g_j < 0} \frac{g_j}{1 - f_0} y_j \ge 1.$$

- This is the Gomory mixed integer (GMI) inequality.
- In the pure integer programming case, the GMI inequality reduces to

$$\sum_{f_j \le f_0} \frac{f_j}{f_0} x_j + \sum_{f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j \ge 1.$$

• Since $\frac{1-f_j}{1-f_0} < \frac{f_j}{f_0}$ when $f_j > f_0$, the GMI inequality dominates

$$\sum_{j=1}^{n} f_j x_j \ge f_0,$$

which is known as the fractional cut.

- Consider now $S = \{(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : Ax + Gy \le b\}.$
- Let $P = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^p_+ : Ax + Gy \leq b\}$ be the underlying polyhedron.
- Let $\alpha x + \gamma y \leq \beta$ be any valid for P.
- Add a nonnegative slack variable s, use $\alpha x + \gamma y + s = \beta$ to derive a GMI inequality, and eliminate $s = \beta \alpha x \gamma y$ from it.
- The result is a valid inequality for S.
- These inequalities are called the GMI inequalities for S.
- We illustrate this on a small example:

$$\begin{array}{ccccc} \max & x & +2y \\ \text{s.t.} & -x & +y & \leq & 2 \\ & x & +y & \leq & 5 \\ & 2x & -y & \leq & 4 \\ & x \in \mathbb{Z}_+ & y \in \mathbb{R}_+ \end{array}$$

• Adding slack variables $s_1, s_2, s_3 \ge 0$ leads to the system

• The optimal tableau is

and the corresponding solutions is $\bar{x} = 1.5$ and $\bar{y} = 3.5$.

• Since \bar{x} is not integer, we generate a cut from that row:

$$x - 0.5s_1 + 0.5s_2 = 1.5$$

- Here $f_0 = 0.5$ and we get $s_1 + s_2 \ge 1$.
- Since $s_1 + s_2 = 7 2y$, this corresponds to $y \leq 3$ in the (x, y)-space.
- In contrast to lift-and-project cuts, it is in general NP-hard to find a GMI inequality that cuts off a point $(\bar{x}, \bar{y}) \in P \setminus S$, or show that none exists.
- However, one can easily find a GMI inequality that cuts off a basic feasible solution.

- On 41 MIPLIB instances, adding the GMI cuts generated from the optimal simplex tableau reduces the integrality gap by 24% on average [Bonami et al. 2008]
- GMI cuts are widely used in commercial codes today.
- Numerical issues need to be addressed, however.

Split cuts

- Let $P = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^p : Ax + Gy \leq b\}$, and let $S = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$.
- For $\pi \in \mathbb{Z}^n$ and $\pi_0 \in \mathbb{Z}$, define

$$\Pi_1 = P \cap \{(x, y) : \pi x \le \pi_0\}$$

 $\Pi_2 = P \cap \{(x, y) : \pi x \ge \pi_0 + 1\}$

- Clearly, $S \subseteq \Pi_1 \cup \Pi_2$.
- Therefore, $\operatorname{conv}(S) \subseteq \operatorname{conv}(\Pi_1 \cup \Pi_2)$.
- We call the latter set $P^{(\pi,\pi_0)}$. It is a polyhedron.
- An inequality $cx + hy \le c_0$ is a split inequality if it is valid for some $P^{(\pi,\pi_0)}$.
- A split is a disjunction $\pi x \leq \pi_0$ or $\pi x \geq \pi_0 + 1$ where $\pi \in \mathbb{Z}^n$ and $\pi_0 \in \mathbb{Z}$.
- A split defined by (π, π_0) is a one-side split for P if

$$\pi_0 \le z < \pi_0 + 1,$$
 (3)

where $z = \max\{\pi x : (x, y) \in P\}$.

- This is equivalent to $\Pi_1 \subseteq P$ and $\Pi_2 = \emptyset$.
- The inequality $\pi x \leq \pi_0$ is valid for S; in fact, it is a Gomory-Chvátal inequality.
- In particular, $\pi x \leq \pi_0$ satisfies (4) iff $\pi_0 = |z|$.

Split cuts and Gomory-Chvátal cuts

- Let P^1 be the split closure of P, and, for $k \geq 2$, let P^k denote the split closure relative to P^{k-1} .
- P^1 is a polyhedron (and so is P^k).
- In contrast to the pure integer case and to the mixed 0/1 case, there is in general no finite r such that $P^r = \text{conv}(S)$.

Split cuts and other cuts

- Lift-and-project inequalities are split inequalities (where the disjunction is $x_j \leq 0$ or $x_j \geq 1$).
- Gomory's mixed-integer inequalities are split inequalities (where the disjunction is (1) or (2)).
 - We argued that $k = \lfloor b \rfloor \sum_{f_j \leq f_0} \lfloor a_j \rfloor x_j \sum_{f_j > f_0} \lceil a_j \rceil x_j$ is an integer, and either $k \leq -1$ or $k \geq 0$.

Split cuts and GMI cuts

Lemma 1. Let $P = \{x : Ax \leq b\}$ and let $\Pi = P \cap \{x : \pi x \leq \pi_0\}$. If $\Pi \neq \emptyset$ and $\alpha x \leq \beta$ is valid for Π , then there exists $\lambda \geq 0$ such that

$$\alpha x - \lambda (\pi x - \pi_0) < \beta$$

is valid for P.

Proof:

• By LP duality, there exist $u \geq 0$ and $\lambda \geq 0$ such that

$$\alpha = uA + \lambda \pi$$
 and $\beta \ge ub + \lambda \pi_0$.

- Since $uAx \leq ub$ is valid for P, so is $uAx \leq \beta \lambda \pi_0$.
- As $uAx = \alpha x \lambda \pi x$, the claim follows.

Theorem 2. Let $P = \{(x,y) \in \mathbb{R}^n_+ \times \mathbb{R}^p_+ : Ax + Gy \leq b\}$ be a rational polyhedron and let $S = P \cap (\mathbb{Z}^n_+ \times \mathbb{R}^p_+)$. The split closure of P is identical to the Gomory mixed integer closure of P.

Proof:

- Let $cx + hy \le c_0$ be a split inequality. Let (π, π_0) be the corresponding split.
- We may assume that $\Pi_1 \neq \emptyset$ and $\Pi_2 \neq \emptyset$.
- By the previous lemma, there exist $\alpha, \beta \geq 0$ such that

$$cx + hy - \alpha(\pi x - \pi_0) \le c_0 \text{ and} \tag{4}$$

$$cx + hy + \beta(\pi x - (\pi_0 + 1)) \le c_0$$
 (5)

are both valid for P.

- We can assume that $\alpha > 0$ and $\beta > 0$; otherwise $cx + hy \le c_0$ is already valid for P.
- We now apply the Gomory procedure to (4) and (5).
- Introduce slack variables s_1 and s_2 and subtract (4) from (5):

$$(\alpha + \beta)\pi x + s_2 - s_1 = (\alpha + \beta)\pi_0 + \beta$$

• Dividing by $\alpha + \beta$ yields

$$\pi x + \frac{s_2}{\alpha + \beta} - \frac{s_1}{\alpha + \beta} = \pi_0 + \frac{\beta}{\alpha + \beta}.$$

• Note that $f_0 = \frac{\beta}{\alpha + \beta}$ and s_2 has a positive coefficient, while s_1 has a negative coefficient. We get

$$\frac{\frac{1}{\alpha+\beta}}{\frac{\beta}{\alpha+\beta}}s_2 + \frac{\frac{1}{\alpha+\beta}}{1 - \frac{\beta}{\alpha+\beta}}s_1 \ge 1.$$

• This simplifies to

$$\frac{1}{\alpha}s_1 + \frac{1}{\beta}s_2 \ge 1.$$

• Now replace s_1 and s_2 as defined in (4) and (5) to get the GMI inequality in the (x, y)-space. The resulting inequality is

$$cx + hy \le c_0$$
.

Additional Literature

- W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver: Combinatorial Optimization
- M. Grötschel, L. Lovász, A. Schrijver: Geometric Algorithms and Combinatorial Optimization
- B. Korte, J. Vygen: Combinatorial Optimization Theory and Algorithms
- E. Lawler: Combinatorial Optimization: Networks and Matroids
- E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization
- J. Lee: A First Course in Combinatorial Optimization
- G. Nemhauser, L.A. Wolsey: Integer and Combinatorial Optimization
- C.H. Papadimitriou, K. Steiglitz: Combinatorial Optimization Algorithms and Complexity
- A. Schrijver: Combinatorial Optimization Polyhedra and Efficiency
- A. Schrijver: Theory of Linear and Integer Programming
- . . .

Final Exam

- Tuesday, December 15, 1:30-4:30PM, E51-376
- You can bring/use the textbook, the lecture notes, the homeworks, and homework solutions.

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.