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15.083J Integer Programming and Combinatorial Optimization	 Fall 2009


Mixed-Integer Programming II 

Mixed Integer Inequalities 

n p

•	 Consider S = (x, y) ∈ Zn 
+ : gj yj = b .+ × Rp aj xj + 

j=1 j=1 

•	 Let b = �b� + f0 where 0 < f0 < 1. 

•	 Let aj = �aj � + fj where 0 ≤ fj < 1. 

p

•	 Then fj xj + (fj − 1)xj + gj yj = k + f0, where k is some integer. 
fj ≤f0 fj >f0 j=1 

•	 Since k ≤ −1 or k ≥ 0, any x ∈ S satisfies 

p� fj 
xj − 

� 1 − fj 
xj + 

� gj 
yj ≥ 1 (1)

f0 f0 f0
fj ≤f0 fj >f0 j=1 

OR 
fj 

xj +
1 − fj

p
gj	 (2)− 

1 − f0 1 − f0 
xj − 

1 − f0 
yj ≥ 1. 

fj ≤f0 fj >f0 j=1 

•	 This is of the form j aj 
1xj ≥ 1 or j aj 

2xj ≥ 1, which implies j max{aj 
1, aj 

2}xj ≥ 1 for any 
x ≥ 0. 

•	 For each variable, what is the max coefficient in (1) and (2)? 

•	 We get � fj 
� 1 − fj 

� gj 
� gj 

f0 
xj + 1 − f0 

xj + 
f0 

yj − 
1 − f0 

yj ≥ 1. 
fj ≤f0 fj >f0 gj >0 gj <0 

•	 This is the Gomory mixed integer (GMI) inequality. 

•	 In the pure integer programming case, the GMI inequality reduces to � fj 
xj + 

� 1 − fj 

f0 1 − f0 
xj ≥ 1. 

fj ≤f0 fj >f0 

Since 1−fj < fj when fj > f0, the GMI inequality dominates • 1−f0 f0 

n

fj xj ≥ f0, 
j=1 

which is known as the fractional cut. 
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•
 Consider now S = (x, y) ∈ Z+ × Rn p 
+ : Ax + Gy ≤ b .


• Let P = (x, y) ∈ R+ × Rn : Ax + Gy ≤ bp 
+ be the underlying polyhedron.


•	 Let αx + γy ≤ β be any valid for P . 

•	 Add a nonnegative slack variable s, use αx + γy + s = β to derive a GMI inequality, and 
eliminate s = β − αx − γy from it. 

•	 The result is a valid inequality for S. 

•	 These inequalities are called the GMI inequalities for S. 

•	 We illustrate this on a small example: 

max x +2y 
s.t. −x +y ≤ 2 

x +y ≤ 5 
2x 4−y ≤ 

x ∈ Z+ y ∈ R+ 

•	 Adding slack variables s1, s2, s3 ≥ 0 leads to the system 

z −x −2y = 0 
−x +y +s1 = 2 

x +y +s2 = 5 
2x −y +s3 = 4 

•	 The optimal tableau is 

z +0.5s1 +1.5s2 = 8.5 
y +0.5s1 +0.5s2 = 3.5 

x −0.5s1 +0.5s2 = 1.5 
0.5s1 −0.5s2 +s3 = 4.5 

and the corresponding solutions is x̄ = 1.5 and ȳ = 3.5. 

•	 Since x̄ is not integer, we generate a cut from that row: 

x − 0.5s1 + 0.5s2 = 1.5 

•	 Here f0 = 0.5 and we get s1 + s2 ≥ 1. 

•	 Since s1 + s2 = 7 − 2y, this corresponds to y ≤ 3 in the (x, y)-space. 

•	 In contrast to lift-and-project cuts, it is in general NP-hard to find a GMI inequality that 
cuts off a point (x̄, ȳ) ∈ P \ S, or show that none exists. 

•	 However, one can easily find a GMI inequality that cuts off a basic feasible solution. 
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•	 On 41 MIPLIB instances, adding the GMI cuts generated from the optimal simplex tableau 
reduces the integrality gap by 24% on average [Bonami et al. 2008] 

•	 GMI cuts are widely used in commercial codes today. 

•	 Numerical issues need to be addressed, however. 

Split cuts 

•	 Let P = (x, y) ∈ Rn × Rp : Ax + Gy ≤ b , and let S = P ∩ (Zn × Rp). 

•	 For π ∈ Zn and π0 ∈ Z, define 

Π1 = P ∩ �(x, y) : πx ≤ π0 � 
Π2 = P ∩ (x, y) : πx ≥ π0 + 1 

•	 Clearly, S ⊆ Π1 ∪ Π2. 

•	 Therefore, conv(S) ⊆ conv(Π1 ∪ Π2). 

•	 We call the latter set P (π,π0). It is a polyhedron. 

•	 An inequality cx + hy ≤ c0 is a split inequality if it is valid for some P (π,π0). 

•	 A split is a disjunction πx ≤ π0 or πx ≥ π0 + 1 where π ∈ Zn and π0 ∈ Z. 

•	 A split defined by (π, π0) is a one-side split for P if 

π0 ≤ z < π0 + 1, (3) 

where z = max{πx : (x, y) ∈ P }. 

•	 This is equivalent to Π1 ⊆ P and Π2 = ∅. 

•	 The inequality πx ≤ π0 is valid for S; in fact, it is a Gomory-Chvátal inequality. 

•	 In particular, πx ≤ π0 satisfies (4) iff π0 = �z�. 

Split cuts and Gomory-Chvátal cuts 

•	 Let P 1 be the split closure of P , and, for k ≥ 2, let P k denote the split closure relative to 
P k−1 . 

•	 P 1 is a polyhedron (and so is P k). 

•	 In contrast to the pure integer case and to the mixed 0/1 case, there is in general no finite r 
such that P r = conv(S). 
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Split cuts and other cuts 

•	 Lift-and-project inequalities are split inequalities (where the disjunction is xj ≤ 0 or xj ≥ 1). 

•	 Gomory’s mixed-integer inequalities are split inequalities (where the disjunction is (1) or (2)). 

–	 We argued that k = �b� − fj ≤f0 
�aj �xj − fj >f0 

�aj �xj is an integer, and either k ≤ −1 or 
k ≥ 0. 

Split cuts and GMI cuts 

Lemma 1. Let P = {x : Ax ≤ b} and let Π = P ∩{x : πx ≤ π0}. If Π =� ∅ and αx ≤ β is valid for 
Π, then there exists λ ≥ 0 such that 

αx − λ(πx − π0) ≤ β 

is valid for P . 

Proof: 

•	 By LP duality, there exist u ≥ 0 and λ ≥ 0 such that


α = uA + λπ and β ≥ ub + λπ0.


•	 Since uAx ≤ ub is valid for P , so is uAx ≤ β − λπ0. 

•	 As uAx = αx − λπx, the claim follows. 

Theorem 2. Let P = (x, y) ∈	 Rn : Ax + Gy ≤ b be a rational polyhedron and let + × Rp 
+ 

S = P ∩ (Zn ). The split closure of P is identical to the Gomory mixed integer closure of P .+ × Rp 
+

Proof: 

•	 Let cx + hy ≤ c0 be a split inequality. Let (π, π0) be the corresponding split. 

We may assume that Π1 = ∅ and Π2 = ∅. 

•	 By the previous lemma, there exist α, β ≥ 0 such that 

cx + hy − α(πx − π0) ≤ c0 and (4) 
cx + hy + β(πx − (π0 + 1)) ≤ c0 (5) 

are both valid for P . 

•	 We can assume that α > 0 and β > 0; otherwise cx + hy ≤ c0 is already valid for P . 

•	 We now apply the Gomory procedure to (4) and (5). 

•	 Introduce slack variables s1 and s2 and subtract (4) from (5):


(α + β)πx + s2 − s1 = (α + β)π0 + β
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•	 Dividing by α + β yields


s2 s1 β

πx +	 = π0 + . 

α + β 
− 

α + β α + β 

Note that f0 = β and s2 has a positive coefficient, while s1 has a negative coefficient. We •	 α+β 
get 

1 1 
α+β α+β 

β β 
α+β 

s2 +
1 − α+β 

s1 ≥ 1. 

•	 This simplifies to

1 1


s1 + s2 ≥ 1. 
α β 

•	 Now replace s1 and s2 as defined in (4) and (5) to get the GMI inequality in the (x, y)-space. 
The resulting inequality is


cx + hy ≤ c0.


Additional Literature 

•	 W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver: Combinatorial Optimization 

•	 M. Grötschel, L. Lovász, A. Schrijver: Geometric Algorithms and Combinatorial Optimization 

•	 B. Korte, J. Vygen: Combinatorial Optimization – Theory and Algorithms 

•	 E. Lawler: Combinatorial Optimization: Networks and Matroids 

•	 E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys: The Traveling Salesman Problem: A 
Guided Tour of Combinatorial Optimization 

•	 J. Lee: A First Course in Combinatorial Optimization 

•	 G. Nemhauser, L.A. Wolsey: Integer and Combinatorial Optimization 

•	 C.H. Papadimitriou, K. Steiglitz: Combinatorial Optimization – Algorithms and Complexity 

•	 A. Schrijver: Combinatorial Optimization – Polyhedra and Efficiency 

•	 A. Schrijver: Theory of Linear and Integer Programming


. . .
• 

Final Exam 

•	 Tuesday, December 15, 1:30-4:30PM, E51-376 

•	 You can bring/use the textbook, the lecture notes, the homeworks, and homework solutions. 
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