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Mixed-Integer Programming II

Mixed Integer Inequalities

n p
o Consider S = {(z,y) € Z} x R} : Zajxj —|—Zgjyj = b}.
Jj=1 j=1

o Let b= |b] + fo where 0 < fp < 1.

o Let aj = |a;| + fj where 0 < f; < 1.

e Then Z fix; + Z —Daj; + Zgjy] =k + fo, where k is some integer.
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e Since k< —1 or k > 0, any x € S satisfies
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e This is of the form }, a;xj >lor)., a?xj > 1, which implies ), max{ajl,a?}xj > 1 for any
x> 0.

e For each variable, what is the max coefficient in (1) and (2)?

o We get
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e This is the Gomory mized integer (GMI) inequality.

e In the pure integer programming case, the GMI inequality reduces to
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e Since 7? < When fj > fo, the GMI inequality dominates
n
Z fizj > fo,
j=1

which is known as the fractional cut.



Consider now S = {(z,y) € Z7 x R : Az + Gy < b}.
Let P = {(x, y) € R} x Rﬁ cAr 4+ Gy < b} be the underlying polyhedron.
Let ax + vy < § be any valid for P.

Add a nonnegative slack variable s, use ax + vy + s =  to derive a GMI inequality, and
eliminate s = f — ax — vy from it.

The result is a valid inequality for S.

These inequalities are called the GMI inequalities for S.

We illustrate this on a small example:

max T +2y
s.t. 1 +y < 2
T +y < 5
2x -y < 4
T € Z+ Yy S R+
Adding slack variables si, s2, 83 > 0 leads to the system
z —r =2y = 0
—x +y +81 = 2
r 4y +592 =5
20—y +s3 = 4
The optimal tableau is
z +0.581 +1.5s9 = 8.5
y +0.551 +40.5s2 = 3.5
T —0.551 +40.5s9 = 1.5

0.5s7 —0.5s9 +s3 = 4.5

and the corresponding solutions is £ = 1.5 and y = 3.5.
Since T is not integer, we generate a cut from that row:

x —0.551 +0.5s9 = 1.5
Here fo = 0.5 and we get s; 4+ s9 > 1.

Since s1 + s = 7 — 2y, this corresponds to y < 3 in the (z, y)-space.

In contrast to lift-and-project cuts, it is in general NP-hard to find a GMI inequality that
cuts off a point (z,y) € P\ S, or show that none exists.

However, one can easily find a GMI inequality that cuts off a basic feasible solution.



e On 41 MIPLIB instances, adding the GMI cuts generated from the optimal simplex tableau
reduces the integrality gap by 24% on average [Bonami et al. 2008]

e GMI cuts are widely used in commercial codes today.
e Numerical issues need to be addressed, however.
Split cuts
o Let P={(z,y) €ER" xR : Az + Gy < b}, and let S = PN (Z" x RP).
e For 7w € Z™ and my € Z, define

I, = Pn{(z,y):mz<m}
I, = Pﬁ{(m,y):ﬂxzﬂo—i-l}

e Clearly, S C II; UIls.

e Therefore, conv(S) C conv(Il; UIly).

e We call the latter set P{™7) It is a polyhedron.

e An inequality cx + hy < cg is a split inequality if it is valid for some P(™70).
o A split is a disjunction wx < mg or mx > w9 + 1 where w € Z™ and my € Z.

e A split defined by (, ) is a one-side split for P if
mo <z <m+1, (3)

where z = max{nx : (z,y) € P}.
e This is equivalent to II; C P and Il = (.
e The inequality 7z < 7 is valid for .S; in fact, it is a Gomory-Chvatal inequality.
e In particular, 7z < m satisfies (4) iff mg = | z].
Split cuts and Gomory-Chvatal cuts

e Let P! be the split closure of P, and, for k > 2, let P* denote the split closure relative to
Pk

e P!l is a polyhedron (and so is P¥).

e In contrast to the pure integer case and to the mixed 0/1 case, there is in general no finite r
such that P" = conv(S5).



Split cuts and other cuts
e Lift-and-project inequalities are split inequalities (where the disjunction is z; < 0 or z; > 1).

e Gomory’s mixed-integer inequalities are split inequalities (where the disjunction is (1) or (2)).

— We argued that k£ = [b] — ij<f0 laj|z; — ij>f0 [a;]z; is an integer, and either k¥ < —1 or
k> 0. -

Split cuts and GMI cuts

Lemma 1. Let P ={x: Az <b} and let 1 = PN{z: mx < mo}. If 11 # () and ax < [ is valid for
II, then there exists X\ > 0 such that

ar — ANrx —mp) <
1s wvalid for P.
Proof:

e By LP duality, there exist u > 0 and A > 0 such that

a=uA+ At and (> ub-+ Im.

e Since uAxz < ub is valid for P, so is uAx < B — Amyp.

e As uAx = ax — Awx, the claim follows. O

Theorem 2. Let P = {(x,y) € R xRE : Az + Gy < b} be a rational polyhedron and let
S =PnN(Z% xRY). The split closure of P is identical to the Gomory mized integer closure of P.

Proof:

Let cx 4+ hy < ¢g be a split inequality. Let (m,mp) be the corresponding split.

e We may assume that IT; # () and Iy # ().

By the previous lemma, there exist «, 8 > 0 such that

cx 4+ hy —a(rr —m) < ¢ and (4)
cx+hy+ PBrx—(mo+1)) < ¢ (5)

are both valid for P.
e We can assume that o > 0 and § > 0; otherwise cz + hy < ¢y is already valid for P.

e We now apply the Gomory procedure to (4) and (5).

Introduce slack variables s; and sy and subtract (4) from (5):

(a+B)rx+sy—s1=(a+B)mo+



e Dividing by « + 3 yields
+ 2 i +
T — =m+ ——.

a+f a+p 0T ¥ B

e Note that fy = %iﬁ and s9 has a positive coefficient, while s; has a negative coefficient. We
get
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a;ﬁ S9 + o+p s1 > 1.
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e This simplifies to
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Now replace s1 and sg as defined in (4) and (5) to get the GMI inequality in the (z, y)-space.
The resulting inequality is
cx + hy < cp.

Additional Literature

e W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver: Combinatorial Optimization

M. Grétschel, L. Lovész, A. Schrijver: Geometric Algorithms and Combinatorial Optimization

B. Korte, J. Vygen: Combinatorial Optimization — Theory and Algorithms

E. Lawler: Combinatorial Optimization: Networks and Matroids

e F.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys: The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization

J. Lee: A First Course in Combinatorial Optimization

e G. Nemhauser, L.A. Wolsey: Integer and Combinatorial Optimization

C.H. Papadimitriou, K. Steiglitz: Combinatorial Optimization — Algorithms and Complexity

A. Schrijver: Combinatorial Optimization — Polyhedra and Efficiency

A. Schrijver: Theory of Linear and Integer Programming

Final Exam

e Tuesday, December 15, 1:30-4:30PM, E51-376

e You can bring/use the textbook, the lecture notes, the homeworks, and homework solutions.
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