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Mixed-Integer Programming I

Mixed-Integer Linear Programming

max cx + hy
s.t. Ax+Gy <b
x integral

where ¢, h, A, G, and b are rational vectors and matrices, respectively.

Projections
e Let P C R"P where (x,y) € P is interpreted as z € R" and y € RP.
e The projection of P onto the x-space R™ is
proj,(P) ={z € R" : 3y € R? with (z,y) € P}.
Theorem 1. Let P = {(z,y) : Az + Gy < b}. Then
proj, (P) = {z : v'(b— Az) >0 for allt € T},
where {v'}ier is the set of extreme rays of {v: vG = 0,v > 0}.

The Fundamental Theorem of MILP

Theorem 2 (Meyer 1974). Given rational matrices A and G and a rational vector b, let P =

{(x,y) Ar + Gy < b} and S = {(a:,y) eP:x mtegml}. There exist rational matrices A', G',
and a rational vector b’ such that

conv(S) = {(z,y) : Ale + G'y < V'}.
Proof:

e We may assume that S # ().

e By the Minkowski-Weyl Theorem, P = conv(V) + cone(R), where V = (v!,...,vP) and
R=(rl, ... r9).

e We may assume that V is a rational matrix and R is an integral matrix.



e Consider the following truncation of P:

P
T ={(z,y): Z)\v —|—Z,uj Z)\izl,
i=1
Az@0§u§1}
e T is bounded and is the projection of a rational polyhedron. It therefore is a rational polytope.
e Let T7 = {(z,y) € T : z integral}. Claim: conv(7}) is a rational polytope.
e Since T is a polytope, X = {x : Jy s.th. (z,y) € T[} is finite.

e For fixed z € X, Ty = {(Z,y) : (Z,y) € Tr} is a rational polytope. Hence, T; = conv(Vz) for
some rational matrix Vz.

e Since X is finite, there is a rational matrix V7, which contains all the columns of all matrices
Vz, for z € X.

e Therefore, conv(T7) = conv(Vr, ), which proves the claim.

e (z,7) € S iff T is integral and there exist A >0, ¥ | X\; = 1, and p > 0 such that
P q
OEDIRY Z WN+E%
i=1 j=1

e The point >.7_, Ao’ + P (e |1;])r7 belongs to T
e Since 7 and |u;]|r’ are integral it also belongs to 7.

e Thus
S =Ty + Ry, (1)

where Ry is the set of integral conic combinations of !, ..., rq.

e (1) implies that
conv(S) = conv(77r) + cone(R).

e By the above claim conv(77) is a rational polytope.

e Thus conv(S) is a rational polyhedron (having the same recession cone as P). O

Union of Polyhedra
e Consider k polyhedra P; = {z € R" : A,z <b'},i=1,...,k.

e One can show that conv(UF_, P;) is a polyhedron.



e Furthermore, we will show that this polyhedron can be obtained as the projection onto R"™
of a polyhedron with polynomially many variables and constraints in a higher-dimensional
space.

e (The closure is needed: let P; be a single point and let P, be a line that does not contain P.)

Theorem 3. Fori=1,...,k, let P, = Q; + C; be nonempty polyhedra. Then Q = conv(UF_,Q;)
is a polytope, C = conv(UX_|C;) is a finitely generated cone, and conv(UE_ P;) = Q + C.

e No proof here, but note that the claims on @ and C are straightforward to check.
e One consequence of the proofis that if P, ..., P, have identical recession cones, then Conv(UlePi)
is a polyhedron.

Theorem 4 (Balas 1974). Consider k polyhedra P; = Q; + C; = {x € R" : Ajx < b} and let
Y C Rtk be the polyhedron defined by

k k
Ai:):iSbiyi,inzm,Zyizl,yiZOforizl,...,k.

i=1 i=1
Then
proj,(Y) = Q + C,
where Q = conv(UE_,Q;) and C = conv(UF_,C;).
Proof:
e First, let z € Q + C.

e There exist w’ € Q; and 2% € C; such that z = >, y;w’ + Y, 2%, where y; > 0 and Y, y; = 1.
o Let ' = y;w’ + 2. Then A;z' < b'y; and x = Y, 2.

e This shows = € proj,(Y).

e Now, let x € proj,(Y).

e There exist z',..., 2", y such that z = > 2' where A;2° < bly;, Yuyi=19y>0.

o Let I ={i:y; >0}

e Foriecl, letzizg. Then 2* € P;.

e Since P; = Q; + C;, we can write 2’ = w’ + ;—1 where w' € Q; and ! € C;.

e Fori & I, we have A;2° <0, that is 2 € C;. Let ' = 2* for i & I.

e Then,

:U:Zyizi%—Z:Ei:Zyiwi%—Zri e+ C.

icl il iel i



Lift-and-Project Revisited
We consider mixed-0/1 linear programs:

min cT

s.t. Ax > b
xzj € {0,1} forj=1,...,n
z; >0 forj=n+1,....,n+p

We let P = {z € R} : Az > b} and S = {z € {0,1}" x R} : Az > b}.

We assume that Az > b includes —z; > —1 for j = 1,...,n, but not = > 0.
e Given an index j € {1,...,n}, let

Pj =conv{(Az > b,z > 0,2; =0) U (Az > b,z > 0,2, = 1)}.

e By definition, this is the tightest possible relaxation among all relaxations that ignore the
integrality of all variables z;, i # 7.

° ﬂ;.lzl P; is called the lift-and-project closure:

e On 35 mixed-0/1 linear programs from MIPLIB, the lift-and-project closure reduces the
integrality gap by 37% on average [Bonami & Minoux 2005].

Lift-and-Project Cuts
P;j is the convex hull of the union of two polyhedra:

Ax > b Ax > b
x>0 and x>0
—:IZjZO JZjZl

By the above theorem:

Az > by
—x[} > 0
Azt > by
P;j = proj, o> n
24+t = 2
yo+y1 = 1
%2t yo, ;1 > 0



Using the projection theorem, we get that P; is defined by the inequalities ax > 3 such that

o —uA  +upe; > 0

o —vA —voe; > 0
B —ub < 0 (2)

I5] —vb -9 < 0

U, U, v, vg > 0

Such an inequality ax > 3 is called a lift-and-project inequality.

Given a fractional point Z, we can determine if there exists a lift-and-project inequality ax > G
valid for P; that cuts off Z.

This problem amounts to finding (v, 3, u, ug, v, v,) satisfying (2) such that az — 5 < 0.

In order to find a “best” cut in cone (2), we solve the cut-generating LP:

min oz —pf3

« —uA  +upe; > 0
« —vA —wvoe; > 0
6 —ub < 0

08 —vb —vy < 0
Yaui  Fug +Y ;v Hvg = 1

u, uQ, v, vg > 0

Mixed Integer Inequalities

n p
o Consider § = {(v,y) € Z} xRY : Y ajo;+ Y gy =b}.
Jj=1 Jj=1

Let b = |b] + fo where 0 < fp < 1.

Let aj = |aj] + f; where 0 < f; < 1.

P
Then Z fijr; + Z (fj — Dy + Zgjyj = k + fo, where k is some integer.
fi<fo fi>fo j=1

Since k < —1 or k > 0, any x € S satisfies

IEEDY

f]<f0 fj>f

L ]+Z““ Q

OR

v ﬁZl_f” e (@

fj<f0

e This is of the form ) a x] >lor) ;a :v] > 1, which implies ) rnax{aj,aj }a; > 1 for any
x> 0.



For each variable, what is the max coefficient in (3) and (4)?

We get

Z 1_ %yj—zlfjfoyjzl.

fJ<f0 fi>fo g->0 g;<0
This is the Gomory mized integer (GMI) inequality.
In the pure integer programming case, the GMI inequality reduces to

-
S Gt ¥ =gz

f]<f0 f]>f

Since ;J < When fj > fo, the GMI inequality dominates

n
Z fizi = fo,
j=1
which is known as the fractional cut.
Consider now S = {(z,y) € Z7 x RE : Az + Gy < b}.
Let P = {(x, y) € RY x Rﬂ Ar 4+ Gy < b} be the underlying polyhedron.
Let ax + vy < 3 be any valid for P.

Add a nonnegative slack variable s, use ax + vy + s = [ to derive a GMI inequality, and
eliminate s = f — ax — vy from it.

The result is a valid inequality for S.

These inequalities are called the GMI inequalities for S.

In contrast to lift-and-project cuts, it is in general NP-hard to find a GMI inequality that
cuts off a point (z,y) € P\ S, or show that none exists.

However, one can easily find a GMI inequality that cuts off a basic feasible solution.

On 41 MIPLIB instances, adding the GMI cuts generated from the optimal simplex tableaux
reduces the integrality gap by 24% on average [Bonami et al. 2008]

GMI cuts are widely used in commercial codes today.

Numerical issues need to be addressed, however.
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