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Mixed-Integer Programming I 

Mixed-Integer Linear Programming 

max	 cx + hy 

s.t.	 Ax + Gy ≤ b 

x integral 

where c, h, A, G, and b are rational vectors and matrices, respectively. 

Projections 

•	 Let P ⊆ Rn+p, where (x, y) ∈ P is interpreted as x ∈ Rn and y ∈ Rp. 

•	 The projection of P onto the x-space Rn is


proj (P ) = {x ∈ Rn : ∃ y ∈ Rp with (x, y) ∈ P }.
x

Theorem 1. Let P = (x, y) : Ax + Gy ≤ b . Then 

proj (P ) = {x : v t(b − Ax) ≥ 0 for all t ∈ T },x

where {vt}t∈T is the set of extreme rays of {v : vG = 0, v ≥ 0}. 

The Fundamental Theorem of MILP


Theorem 2 (Meyer 1974). Given rational matrices A and G and a rational vector b, let P =

(x, y) : Ax + Gy ≤ b and S = (x, y) ∈ P : x integral . There exist rational matrices A�, G�, 

and a rational vector b� such that 

conv(S) = (x, y) : A�x + G�y ≤ b� .


Proof:


We may assume that S = ∅.


•	 By the Minkowski-Weyl Theorem, P = conv(V ) + cone(R), where V = (v1, . . . , vp) and 
R = (r1, . . . , rq). 

•	 We may assume that V is a rational matrix and R is an integral matrix. 
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•	 Consider the following truncation of P : 

p q p

T = (x, y) : (x, y) = λiv i + µj r
j , λi = 1, 

i=1 j=1 i=1 

.λ ≥ 0, 0 ≤ µ ≤ 1 

•	 T is bounded and is the projection of a rational polyhedron. It therefore is a rational polytope. 

•	 Let TI = (x, y) ∈ T : x integral . Claim: conv(TI ) is a rational polytope. 

•	 Since T is a polytope, X = x : ∃ y s.th. (x, y) ∈ TI is finite. 

•	 For fixed x̄ ∈ X, Tx̄ = (x̄, y) : (x̄, y) ∈ TI is a rational polytope. Hence, Tx̄ = conv(Vx̄) for 
some rational matrix Vx̄. 

•	 Since X is finite, there is a rational matrix VTI which contains all the columns of all matrices 
Vx̄, for x̄ ∈ X. 

•	 Therefore, conv(TI ) = conv(VTI ), which proves the claim. 

•	 (x̄, ȳ) ∈ S iff x̄ is integral and there exist λ ≥ 0, p λi = 1, and µ ≥ 0 such that i=1 

p q q

(x̄, ȳ) = λiv i + (µj − �µj �)rj + �µj �rj . 
i=1 j=1 j=1 

•	 The point i
p 
=1 λiv

i + j
q 
=1(µj − �µj �)rj belongs to T . 

•	 Since x̄ and �µj �rj are integral it also belongs to TI . 

Thus • 
S = TI + RI , (1) 

where RI is the set of integral conic combinations of r1, . . . , rq. 

•	 (1) implies that 
conv(S) = conv(TI ) + cone(R). 

•	 By the above claim conv(TI ) is a rational polytope. 

•	 Thus conv(S) is a rational polyhedron (having the same recession cone as P ). 

Union of Polyhedra 

•	 Consider k polyhedra Pi = {x ∈ Rn : Aix ≤ bi}, i = 1, . . . , k. 

One can show that conv(∪i
k 
=1Pi) is a polyhedron. • 
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•	 Furthermore, we will show that this polyhedron can be obtained as the projection onto Rn 

of a polyhedron with polynomially many variables and constraints in a higher-dimensional 
space. 

• (The closure is needed: let P1 be a single point and let P2 be a line that does not contain P2.) 

Theorem 3. For i = 1, . . . , k, let Pi = Qi + Ci be nonempty polyhedra. Then Q = conv(∪k Qi)i=1

is a polytope, C = conv(∪i
k 
=1Ci) is a finitely generated cone, and conv(∪i

k 
=1Pi) = Q + C. 

•	 No proof here, but note that the claims on Q and C are straightforward to check. 

•	 One consequence of the proof is that if P1, . . . , Pk have identical recession cones, then conv(∪k
i=1Pi) 

is a polyhedron. 

Theorem 4 (Balas 1974). Consider k polyhedra Pi = Qi + Ci = {x ∈ Rn : Aix ≤ bi} and let 
Y ⊆ Rn+kn+k be the polyhedron defined by 

k k

Aix i ≤ bi yi, x i = x, yi = 1, yi ≥ 0 for i = 1, . . . , k. 
i=1 i=1 

Then 
projx(Y ) = Q + C, 

where Q = conv(∪i
k 
=1Qi) and C = conv(∪k

i=1Ci). 

Proof: 

•	 First, let x ∈ Q + C. 

• There exist wi ∈ Qi and zi ∈ Ci such that x = i yiw
i + i z

i, where yi ≥ 0 and i yi = 1. 

•	 Let xi = yiw
i + zi . Then Aix

i ≤ biyi and x = i x
i . 

•	 This shows x ∈ proj (Y ).x

•	 Now, let x ∈ proj (Y ).x

•	 There exist x1, . . . , xk, y such that x = i x
i where Aix

i ≤ biyi, i yi = 1, y ≥ 0. 

•	 Let I = {i : yi > 0}. 

•	 For i ∈ I, let zi = xi 
. Then zi ∈ Pi. yi 

•	 Since Pi = Qi + Ci, we can write zi = wi + r
i 

where wi ∈ Qi and ri ∈ Ci. yi 

•	 For i �∈ I, we have Aix
i ≤ 0, that is xi ∈ Ci. Let ri = xi for i �∈ I. 

Then, 
x = yiz i + x i = yiw i + r i ∈ Q + C. 

i∈I i �∈I i∈I i 
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Lift-and-Project Revisited 
We consider mixed-0/1 linear programs: 

min	 cx 

s.t.	 Ax ≥ b 

xj ∈ {0, 1} for j = 1, . . . , n 

xj ≥ 0 for j = n + 1, . . . , n + p 

We let P = {x ∈ Rn+p : Ax ≥ b} and S = {x ∈ {0, 1}n × Rp : Ax ≥ b}.+	 + 

We assume that Ax ≥ b includes −xj ≥ −1 for j = 1, . . . , n, but not x ≥ 0. 

Given an index j ∈ {1, . . . , n}, let


Pj = conv (Ax ≥ b, x ≥ 0, xj = 0) ∪ (Ax ≥ b, x ≥ 0, xj = 1) .


•	 By definition, this is the tightest possible relaxation among all relaxations that ignore the 
integrality of all variables xi, i =� j. 

•


n Pj is called the lift-and-project closure:• j=1 

n

conv(S) ⊆ Pj ⊆ P. 
j=1 

•	 On 35 mixed-0/1 linear programs from MIPLIB, the lift-and-project closure reduces the 
integrality gap by 37% on average [Bonami & Minoux 2005]. 

Lift-and-Project Cuts 
Pj is the convex hull of the union of two polyhedra: 

Ax ≥ b 

x ≥ 0 

−xj ≥ 0 

and 

Ax ≥ b 

x ≥ 0 

xj ≥ 1 

By the above theorem: ⎛
 ⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠


Ax0

0 
≥ by

0 
0 

−xj ≥ 
Ax1 ≥ by1 

1 

⎜⎜⎜⎜⎜⎜⎜⎜⎝


Pj = projx ≥
x
 y1j 
0 + x1 =
x
 x 

1y0 + y1 = 
0 1 ≥ 0
x
 , x
 , y0, y1 
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•	 Using the projection theorem, we get that Pj is defined by the inequalities αx ≥ β such that 

α −uA +u0ej	 ≥ 0 
α −vA −v0ej ≥ 0 

β −ub ≤ 0 (2) 
β −vb −v0 ≤ 0 

u, u0, v, v0 0≥ 

•	 Such an inequality αx ≥ β is called a lift-and-project inequality. 

•	 Given a fractional point x̄, we can determine if there exists a lift-and-project inequality αx ≥ β 
valid for Pj that cuts off x̄. 

•	 This problem amounts to finding (α, β, u, u0, v, vo) satisfying (2) such that αx̄− β < 0. 

•	 In order to find a “best” cut in cone (2), we solve the cut-generating LP: 

min αx̄ −β 
α −uA +u0ej ≥ 0 
α −vA −v0ej ≥ 0 

β −ub ≤ 0 
β � �−vb −v0 ≤ 0 

i ui +u0 + i vi +v0 = 1 
u, u0, v, v0 0≥ 

Mixed Integer Inequalities 

n p

•	 Consider S = (x, y) ∈ Zn 
+ : aj xj + gj yj = b .+ × Rp 

j=1 j=1 

•	 Let b = �b� + f0 where 0 < f0 < 1. 

•	 Let aj = �aj � + fj where 0 ≤ fj < 1. 

p

•	 Then fj xj + (fj − 1)xj + gj yj = k + f0, where k is some integer. 
fj ≤f0 fj >f0 j=1 

•	 Since k ≤ −1 or k ≥ 0, any x ∈ S satisfies 

fj 
xj − 

1 − fj 
xj + 

p
gj 

yj ≥ 1 (3)
f0 f0 f0

fj ≤f0 fj >f0 j=1 

OR 
p

− 
� fj 

xj + 
� 1 − fj 

xj − 
� gj 

yj ≥ 1. (4) 
fj ≤f0 

1 − f0 
fj >f0 

1 − f0 j=1 
1 − f0 

•	 This is of the form j aj 
1xj ≥ 1 or j aj 

2xj ≥ 1, which implies j max{aj 
1, aj 

2}xj ≥ 1 for any 
x ≥ 0. 
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•	 For each variable, what is the max coefficient in (3) and (4)? 

We get •	 � fj 
xj + 

� 1 − fj 
xj + 

� gj 
yj − 

� gj 
yj ≥ 1. 

f0 1 − f0 f0 1 − f0
fj ≤f0 fj >f0 gj >0 gj <0 

•	 This is the Gomory mixed integer (GMI) inequality. 

•	 In the pure integer programming case, the GMI inequality reduces to �	 fj 
� 1 − fj 

f0 
xj + 1 − f0 

xj ≥ 1. 
fj ≤f0 fj >f0 

Since 1−fj < fj when fj > f0, the GMI inequality dominates •	 1−f0 f0 

n

fj xj ≥ f0, 
j=1 

which is known as the fractional cut. 

•	 Consider now S = (x, y) ∈ Zn : Ax + Gy ≤ b .+ × Rp 
+ 

•	 Let P = (x, y) ∈ Rn 
+ : Ax + Gy ≤ b be the underlying polyhedron. + × Rp 

•	 Let αx + γy ≤ β be any valid for P . 

•	 Add a nonnegative slack variable s, use αx + γy + s = β to derive a GMI inequality, and 
eliminate s = β − αx − γy from it. 

•	 The result is a valid inequality for S. 

•	 These inequalities are called the GMI inequalities for S. 

•	 In contrast to lift-and-project cuts, it is in general NP-hard to find a GMI inequality that 
cuts off a point (x̄, ȳ) ∈ P \ S, or show that none exists. 

•	 However, one can easily find a GMI inequality that cuts off a basic feasible solution. 

•	 On 41 MIPLIB instances, adding the GMI cuts generated from the optimal simplex tableaux 
reduces the integrality gap by 24% on average [Bonami et al. 2008] 

•	 GMI cuts are widely used in commercial codes today. 

•	 Numerical issues need to be addressed, however. 
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