
� �

15.083J Integer Programming and Combinatorial Optimization Fall 2009

Approximation Algorithms III

Maximum Satisfiability

Input: Set C of clauses over n Boolean variables, nonnegative weights wc for each clause c ∈ C.

Output: A truth assignment to the Boolean variables that maximizes the weight of satisfied clauses.

• Special case: MAX-kSAT (each clause is of size at most k).

• Even MAX-2SAT is NP-hard.

A first algorithm:

1. Set each Boolean variable to be True independently with probability 1/2.

2. Output the resulting truth assignment.

Lemma 1. Let Wc be a random variable that denotes the weight contributed by clause c. If c
contains k literals, then E[Wc] = (1 − 2−k)wc.

Proof:

• Clause c is not satisfied iff all literals are set to False.

• The probability of this event is 2−k .

• E[Wc] = wc · Pr[c is satisfied].

Theorem 2. The first algorithm has an expected performance guarantee of 1/2.

Proof:

• By linearity of expectation,

1 1
E[W] = E[Wc] ≥ wc ≥ OPT.

2 2
c∈C c∈C

Derandomizing via the method of conditional expectations:

• Note that E[W] = 1 · E[W |x1 = T] + 1 · E[W |x1 = F]. 2 2

• Also, we can compute E[W |x1 = {T, F}] in polynomial time.

1

�

� �

� �

•	 We choose the truth assignment with the larger conditional expectation, and continue in this
fashion:

+1•	 E[W |x1 = a1, . . . , xi = ai] = 1 · E[W |x1 = a1, . . . , xi = ai, xi+1 = T] · E[W |x1 = 2	 2
a1, . . . , xi = ai, xi+1 = F].

•	 After n steps, we get a deterministic truth assignment of weight at least 1 · OPT.2

An integer programming formulation: �
max wcyc �

c∈C �
s.t. xi + (1 − xi) ≥ yc c ∈ C

i∈c+ i∈c−

yc ∈ {0, 1}

xi ∈ {0, 1}

c ∈ C

i = 1, . . . , n

And its linear programming relaxation:

max wcyc

c∈C

s.t. xi + (1 − xi) ≥ yc	 c ∈ C
−i∈c+ i∈c

0 ≤ yc ≤ 1 c ∈ C

0 ≤ xi ≤ 1 i = 1, . . . , n

Randomized rounding:

∗1. Solve the LP relaxation. Let (x , y ∗) denote the optimal solution.

2. FOR i = 1 TO n

∗3. Independently set variable i to True with probability xi .

4. Output the resulting truth assignment.

Lemma 3. If c contains k literals, then � �k1 ∗E[Wc] ≥ 1 − 1 − wcy .ck

Proof:

•	 We may assume that c = (x1 ∨ . . . ∨ xk).

2

� �

� �

� �

� �

� �

� �

• The probability that not all x1, . . . xk are set to False is

1 −
k�

(1 − x ∗
i) ≥ 1 −

��k
i=1(1 − x ∗

i)
k

�k

(1)
i=1 � �k ∗

�k

= 1 − 1 − i=1 xi (2)
k � ∗ �k

≥ 1 − 1 −
yc (3)
k

where (1) follows from the arithmetic-geometric mean inequality and (3) follows from the LP
constraint.

Proof: � �k• The function g(y) := 1 − 1 − k
y is concave.

� �k• In addition, g(0) = 0 and g(1) = 1 − 1 − k
1 .

� �k• Therefore, for y ∈ [0, 1], g(y) ≥ 1 − 1 − 1 y.k

� �k ∗• Hence, Pr[c is satisfied] ≥ 1 − 1 − 1 y .k c

Thus, � �k• Randomized rounding is a 1 − 1 − 1 -approximation algorithm for MAX-kSAT. k

• Randomized rounding is a 1 − 1 -approximation algorithm for MAX-SAT. e

k Simple algorithm Randomized rounding
1
2
3
4
5

0.5
0.75
0.875
0.938
0.969

1.0
0.75
0.704
0.684
0.672

Theorem 4. Given any instance of MAX-SAT, we run both algorithms and choose the better
solution. The (expected) performance guarantee of the solution returned is 3/4.

Proof:

≥ 3 ∗• It suffices to show that 1 E[W 1] + E[W 2] wcy .2 c c 4 c

• Assume that c has k clauses.

∗• By the first lemma, E[Wc
1] ≥ 1 − 2−k wcyc .

3

� �

�	 �

� �

� �k ∗•	 By the second lemma, E[W 2] ≥ 1 − 1 − 1 wcy .c k c

≥ 3 ∗•	 Hence, 1 E[W 1] + E[W 2] wcy .2 c c 4 c

•	 Note that this argument also shows that the integrality gap is not worse than 3/4.

•	 The following example shows that this is tight:

•	 Consider (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2).

•	 xi = 1/2 and yc = 1 for all i and c is an optimal LP solution.

•	 On the other hand, OPT = 3.

Bin Packing

Input: n items of size a1, . . . , an ∈ (0, 1].

Output: A packing of items into unit-sized bins that minimizes the number of bins used.

Theorem 5. The Bin-Packing Problem is NP-complete.

Proof:

• Reduction from Partition:

Input: n numbers b1, . . . , bn ≥ 0.

?: Does there exist S ⊆ {1, . . . , n} such that bi = i�∈S bi?i∈S

•	 Define ai := P n
2bi , for i = 1, . . . , n.
j=1 bj

•	 Obviously, there exists a partition iff one can pack all items into two bins.

Corollary 6. There is no α-approximation algorithm for Bin Packing with α < 3/2, unless
P = NP.

First Fit:

•	 “Put the next item into the first bin where it fits. If it does not fit in any bin, open a new
bin.”

•	 This is an obvious 2-approximation algorithm:

4

�

�

�

�

�

• If m bins are used, then at least m − 1 bins are more than half full. Therefore,

n
m − 1

ai > .
2

i=1

nSince i=1 ai is a lower bound, m − 1 < 2 · OPT. The result follows.

Theorem 7. For any 0 < � < 1/2, there is an algorithm that runs in time polynomial in n and
finds a packing using at most (1 + 2�)OPT + 1 bins.

Step 1:

Lemma 8. Let � > 0 and K ∈ Z+ be fixed. The bin-packing problem with items of size at least �
and with at most K different item sizes can be solved in polynomial time.

Proof:

•	 Let the different item sizes be s1, . . . , sl, for some l ≤ K.

•	 Let bi be the number of items of size si.

•	 Let T1, . . . , TN be all ways in which a single bin can be packed: � � � m �
T1, . . . , TN = (k1, . . . , km) ∈ Zm : kisi ≤ 1 .+

i=1

•	 We write Tj = (tj1, . . . , tjm).

•	 Then bin packing is equivalent to the following IP:

N

min xj

j=1

N

s.t.	 tjixj ≥ bi i = 1, . . . ,m
j=1

xj ∈ Z+	 j = 1, . . . , n

•	 Since N is constant (each bin fits at most 1/� many items, and there are only K different
item sizes), this is an IP in fixed dimension, which can be solved in polynomial time.

Step 2:

Lemma 9. Let � > 0 be fixed. The bin-packing problem with items of size at least � has a (1 + �)­
approximation algorithm

Proof:

•	 Let I be the given instance. Sort the n items by nondecreasing size.

5

• Partition them into K := �1/�2� groups each having at most Q := �n�2� items.

•	 Construct a new instance, J , by rounding up the size of each item to the size of the largest
item in its group.

•	 Note that J has at most K different item sizes.

•	 By the previous lemma, we can find an optimal packing for J in polynomial time.

•	 Clearly, this packing is also feasible for the original item sizes.

•	 We construct another instance, J �, by rounding down the size of each item to the size of the
smallest item in its group.

•	 Clearly, OPT(J �) ≤ OPT(I).

•	 Observe that a feasible packing for J � yields a feasible packing for all but the largest Q items
of J .

•	 Therefore, OPT(J) ≤ OPT(J �) + Q ≤ OPT(I) + Q.

•	 Since each item has size at least �, OPT(I) ≥ n�.

•	 Thus, Q = �n�2� ≤ �OPT(I).

Step 3: Proof of the Theorem

•	 Let I � be the instance obtained by ignoring items of size < �.

•	 By the previous lemma, we can find a packing for I � using at most (1 + �)OPT bins.

•	 We then pack the items of size ≤ � in a First-Fit manner into the bins opened for I � .

•	 If no additional bins are need, we are done.

•	 Otherwise, let M be the total number of bins used.

•	 Note that all but the last bin must be full to the extent of at least 1 − �.

•	 Therefore, the sum of item sizes in I is at least (M − 1)(1 − �).

•	 Since this is a lower bound on OPT(I), we get

OPT(I)
M ≤ + 1 ≤ (1 + 2�)OPT(I) + 1.

1 − �

6

Performance Guarantees

•	 The absolute performance ratio for an approximation algorithm A for a minimization problem
Π is given by

RA := inf{r ≥ 1 :
A(I) ≤ r for all instances I ∈ Π}.

OPT(I)

•	 The asymptotic performance ratio for an approximation algorithm A for a minimization prob­
lem Π is given by

R∞ := inf{r ≥ 1 : for some N ∈ Z+,
A(I) ≤ rA OPT(I)

for all I ∈ Π with OPT(I) ≥ N}.

•	 The last theorem gives an APTAS (i.e., an asymptotic polynomial-time approximation scheme)
for Bin Packing.

7

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

