15.083J Integer Programming and Combinatorial Optimization Fall 2009
Approximation Algorithms III
Maximum Satisfiability
Input: Set C of clauses over n Boolean variables, nonnegative weights w,. for each clause ¢ € C.

Output: A truth assignment to the Boolean variables that maximizes the weight of satisfied clauses.

e Special case: MAX-ESAT (each clause is of size at most k).

e Even MAX-2SAT is NP-hard.

A first algorithm:

1. Set each Boolean variable to be TRUE independently with probability 1/2.

2. Output the resulting truth assignment.

Lemma 1. Let W, be a random wvariable that denotes the weight contributed by clause c. If ¢
contains k literals, then E[W,.] = (1 — 27F)w,..

Proof:
e Clause c is not satisfied iff all literals are set to FALSE.
e The probability of this event is 27*.

e E[W,.] = w, - Prc is satisfied].

O
Theorem 2. The first algorithm has an expected performance guarantee of 1/2.
Proof:
e By linearity of expectation,
EW] =Y E[W.] > lzwc > Lopr.
-2 -2
ceC ceC

O

Derandomizing via the method of conditional expectations:

e Note that E[W] = 3 - E[W|a1 = T] + 3 - E[W|ay = F].

e Also, we can compute E[WW|z; = {T, F}] in polynomial time.

e We choose the truth assignment with the larger conditional expectation, and continue in this

fashion:
o EWlzi =a1,...,zi=a)] = 5 - BWla1 = a1,..., 2 = a5, 211 = T] +3 - EWla1 =
Aly. .oy Tj = Qgy Ti41 = F]

o After n steps, we get a deterministic truth assignment of weight at least % - OPT.

An integer programming formulation:

max E WelYe

ceC
s.t. Zmi—i-Z(l—a:i)Zyc ceC
i€ct i€c™
ye € {0,1} ceC
z; € {0,1} i=1,...,n

And its linear programming relaxation:

max g WeYe

ceC
s.t. in—i—Z(l—mi)Zyc ceC
icct i€c™
0<y.<1 ceC
0<mz <1 i=1,...,n

Randomized rounding;:

—

. Solve the LP relaxation. Let (z*,y*) denote the optimal solution.
2. FORt=1TO0n
3. Independently set variable ¢ to TRUE with probability z;.

4. Output the resulting truth assignment.

Lemma 3. If ¢ contains k literals, then

E[W,] > <1 - (1 - i)k>wy

Proof:

e We may assume that ¢ = (x1 V...V xg).

e The probability that not all x1,...x; are set to FALSE is

k N k
1-JJa-=) > 1—(221(11_:1:)) (1)
=1
_ SFTAN
= 1- (1 - kl> (2)

>1—Q—fy (3)

where (1) follows from the arithmetic-geometric mean inequality and (3) follows from the LP
constraint.

Proof:

e The function g(y) :=1— (1 — %)k is concave.

e In addition, g(0) =0 and g(1) =1 — (1 — %)k

e Therefore, for y € [0,1], g(y) > (1 —(1- %)k> Y.

e Hence, Pr|c is satisfied | > (1 - (1- %)k) yr.

Thus,

e Randomized rounding is a (1 — (1 — %)k>—approximation algorithm for MAX-ESAT.

e Randomized rounding is a (1 — %)—approximation algorithm for MAX-SAT.

k | Simple algorithm | Randomized rounding
1 0.5 1.0

2 0.75 0.75

3 0.875 0.704

4 0.938 0.684

5 0.969 0.672

Theorem 4. Given any instance of MAX-SAT, we run both algorithms and choose the better
solution. The (expected) performance guarantee of the solution returned is 3/4.

Proof:
o It suffices to show that 3 (E[W2] + E[W?2]) > 3w.y?.
e Assume that ¢ has k clauses.

e By the first lemma, E[W}] > (1 —27%) wey}.

e By the second lemma, E[W?2] > <1 - (1- %)k> Weys.

e Hence, 1 (E[W}]+E[W2]) > 2w.y;.

e Note that this argument also shows that the integrality gap is not worse than 3/4.
e The following example shows that this is tight:

e Consider (x1 V x2) A (Z1V x2) A (21 V T2) A (Z1 V T2).

e x; =1/2 and y. =1 for all i and ¢ is an optimal LP solution.

e On the other hand, OPT = 3.

Bin Packing
Input: n items of size ay,...,a, € (0,1].
Output: A packing of items into unit-sized bins that minimizes the number of bins used.

Theorem 5. The BIN-PACKING PROBLEM s NP-complete.

Proof:
e Reduction from PARTITION:
Input: n numbers by,...,b, > 0.
7. Does there exist S C {1,...,n} such that 3, gb; =356 bi?

e Define q; := %, fori=1,...,n.
=

e Obviously, there exists a partition iff one can pack all items into two bins.

O

Corollary 6. There is no a-approximation algorithm for BIN PACKING with a < 3/2, unless
P = NP.

First Fit:

e “Put the next item into the first bin where it fits. If it does not fit in any bin, open a new
bin.”

e This is an obvious 2-approximation algorithm:

e If m bins are used, then at least m — 1 bins are more than half full. Therefore,
Zn . m—1
, ’ 2
=1

Since)", a; is a lower bound, m —1 < 2- OPT. The result follows.

Theorem 7. For any 0 < € < 1/2, there is an algorithm that runs in time polynomial in n and
finds a packing using at most (1 + 2¢)OPT + 1 bins.

Step 1:

Lemma 8. Let € > 0 and K € Z4 be fixed. The bin-packing problem with items of size at least €
and with at most K different item sizes can be solved in polynomial time.

Proof:
e Let the different item sizes be s1,...,s;, for some [< K.
e Let b; be the number of items of size s;.

Let T1,...,Tx be all ways in which a single bin can be packed:

{Tl,...,TN} - {(kl,...,km) ezm: Zm:ks < 1}.
=1

We write Tj = (tj1,...,tm)-

Then bin packing is equivalent to the following IP:

N
min Zatj
j=1
N
S.t. thiszbi izl,...,m
7=1
.I'jEZ+ i=1....n

e Since N is constant (each bin fits at most 1/e many items, and there are only K different
item sizes), this is an IP in fixed dimension, which can be solved in polynomial time.

O
Step 2:

Lemma 9. Let € > 0 be fized. The bin-packing problem with items of size at least € has a (1 + €)-
approrimation algorithm

Proof:

e Let I be the given instance. Sort the n items by nondecreasing size.

Partition them into K := [1/€?] groups each having at most Q := |ne?| items.

Construct a new instance, J, by rounding up the size of each item to the size of the largest
item in its group.

Note that J has at most K different item sizes.
By the previous lemma, we can find an optimal packing for J in polynomial time.

Clearly, this packing is also feasible for the original item sizes.

We construct another instance, J’, by rounding down the size of each item to the size of the
smallest item in its group.

Clearly, OPT(J") < OPT(I).

Observe that a feasible packing for J’ yields a feasible packing for all but the largest @Q items
of J.

Therefore, OPT(J) < OPT(J') + Q@ < OPT(I) + Q.
Since each item has size at least ¢, OPT(I) > ne.

Thus, Q = |ne?] < eOPT(I).

Step 3: Proof of the Theorem

Let I’ be the instance obtained by ignoring items of size < e.

By the previous lemma, we can find a packing for I’ using at most (1 4+ ¢)OPT bins.
We then pack the items of size < € in a First-Fit manner into the bins opened for I’.
If no additional bins are need, we are done.

Otherwise, let M be the total number of bins used.

Note that all but the last bin must be full to the extent of at least 1 — e.

Therefore, the sum of item sizes in I is at least (M — 1)(1 —¢).

Since this is a lower bound on OPT(I), we get

Mgolimﬂg(u%)om(f)ﬂ.
— €

Performance Guarantees

e The absolute performance ratio for an approximation algorithm A for a minimization problem
IT is given by
A(I)
Rp:=inf{r>1: —+—
a=inbr=1: G500

e The asymptotic performance ratio for an approximation algorithm A for a minimization prob-
lem II is given by

< r for all instances I € II}.

RY :=inf{r > 1: for some N € ZJ”O?’EE()I) <r

for all I € II with OPT(I) > N}.

e The last theorem gives an APTAS (i.e., an asymptotic polynomial-time approximation scheme)
for BIN PACKING.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

