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Approximation Algorithms III 

Maximum Satisfiability 

Input: Set C of clauses over n Boolean variables, nonnegative weights wc for each clause c ∈ C. 

Output: A truth assignment to the Boolean variables that maximizes the weight of satisfied clauses. 

• Special case: MAX-kSAT (each clause is of size at most k). 

• Even MAX-2SAT is NP-hard.
 

A first algorithm:
 

1. Set each Boolean variable to be True independently with probability 1/2. 

2. Output the resulting truth assignment. 

Lemma 1. Let Wc be a random variable that denotes the weight contributed by clause c. If c 
contains k literals, then E[Wc] = (1 − 2−k)wc. 

Proof: 

• Clause c is not satisfied iff all literals are set to False. 

• The probability of this event is 2−k . 

• E[Wc] = wc · Pr[c is satisfied]. 

Theorem 2. The first algorithm has an expected performance guarantee of 1/2. 

Proof: 

• By linearity of expectation, 

1 1
E[W ] = E[Wc] ≥ wc ≥ OPT.

2 2
c∈C c∈C 

Derandomizing via the method of conditional expectations: 

• Note that E[W ] = 1 · E[W |x1 = T] + 1 · E[W |x1 = F]. 2 2 

• Also, we can compute E[W |x1 = {T, F}] in polynomial time. 
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•	 We choose the truth assignment with the larger conditional expectation, and continue in this 
fashion: 

+1•	 E[W |x1 = a1, . . . , xi = ai] = 1 · E[W |x1 = a1, . . . , xi = ai, xi+1 = T] · E[W |x1 = 2	 2 
a1, . . . , xi = ai, xi+1 = F]. 

•	 After n steps, we get a deterministic truth assignment of weight at least 1 · OPT.2 

An integer programming formulation: � 
max wcyc � 

c∈C � 
s.t. xi + (1 − xi) ≥ yc c ∈ C 

i∈c+ i∈c− 

yc ∈ {0, 1} 

xi ∈ {0, 1} 

c ∈ C 

i = 1, . . . , n 

And its linear programming relaxation: 

max wcyc 

c∈C 

s.t. xi + (1 − xi) ≥ yc	 c ∈ C 
−i∈c+ i∈c

0 ≤ yc ≤ 1 c ∈ C 

0 ≤ xi ≤ 1 i = 1, . . . , n 

Randomized rounding: 

∗1. Solve the LP relaxation. Let (x , y ∗) denote the optimal solution. 

2. FOR i = 1 TO n 

∗3. Independently set variable i to True with probability xi . 

4. Output the resulting truth assignment. 

Lemma 3. If c contains k literals, then � �k1 ∗E[Wc] ≥ 1 − 1 − wcy .ck 

Proof: 

•	 We may assume that c = (x1 ∨ . . . ∨ xk). 
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• The probability that not all x1, . . . xk are set to False is 

1 − 
k� 

(1 − x ∗ 
i ) ≥ 1 − 

��k 
i=1(1 − x ∗ 

i ) 
k 

�k 

(1) 
i=1 � �k ∗ 

�k 

= 1 − 1 − i=1 xi (2)
k � ∗ �k 

≥ 1 − 1 − 
yc (3)
k 

where (1) follows from the arithmetic-geometric mean inequality and (3) follows from the LP 
constraint. 

Proof: � �k• The function g(y) := 1 − 1 − k
y is concave. 

� �k• In addition, g(0) = 0 and g(1) = 1 − 1 − k 
1 . 

� �k• Therefore, for y ∈ [0, 1], g(y) ≥ 1 − 1 − 1 y.k 

� �k ∗• Hence, Pr[c is satisfied ] ≥ 1 − 1 − 1 y .k c 

Thus, � �k• Randomized rounding is a 1 − 1 − 1 -approximation algorithm for MAX-kSAT. k 

• Randomized rounding is a 1 − 1 -approximation algorithm for MAX-SAT. e 

k Simple algorithm Randomized rounding 
1 
2 
3 
4 
5 

0.5 
0.75 
0.875 
0.938 
0.969 

1.0 
0.75 
0.704 
0.684 
0.672 

Theorem 4. Given any instance of MAX-SAT, we run both algorithms and choose the better 
solution. The (expected) performance guarantee of the solution returned is 3/4. 

Proof: 

≥ 3 ∗• It suffices to show that 1 E[W 1] + E[W 2] wcy .2 c c 4 c 

• Assume that c has k clauses. 

∗• By the first lemma, E[Wc 
1] ≥ 1 − 2−k wcyc . 
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� �k ∗•	 By the second lemma, E[W 2] ≥ 1 − 1 − 1 wcy .c k c 

≥ 3 ∗•	 Hence, 1 E[W 1] + E[W 2] wcy .2 c c 4 c 

•	 Note that this argument also shows that the integrality gap is not worse than 3/4. 

•	 The following example shows that this is tight: 

•	 Consider (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2). 

•	 xi = 1/2 and yc = 1 for all i and c is an optimal LP solution. 

•	 On the other hand, OPT = 3. 

Bin Packing 

Input: n items of size a1, . . . , an ∈ (0, 1]. 

Output: A packing of items into unit-sized bins that minimizes the number of bins used. 

Theorem 5. The Bin-Packing Problem is NP-complete. 

Proof: 

• Reduction from Partition:
 

Input: n numbers b1, . . . , bn ≥ 0.
 

?: Does there exist S ⊆ {1, . . . , n} such that bi = i�∈S bi?i∈S 

•	 Define ai := P n 
2bi , for i = 1, . . . , n. 
j=1 bj 

•	 Obviously, there exists a partition iff one can pack all items into two bins. 

Corollary 6. There is no α-approximation algorithm for Bin Packing with α < 3/2, unless 
P = NP. 

First Fit: 

•	 “Put the next item into the first bin where it fits. If it does not fit in any bin, open a new 
bin.” 

•	 This is an obvious 2-approximation algorithm: 

4
 



� 

� 

� 

� 

� 

• If m bins are used, then at least m − 1 bins are more than half full. Therefore,
 

n
m − 1 

ai > .
2 

i=1 

nSince i=1 ai is a lower bound, m − 1 < 2 · OPT. The result follows. 

Theorem 7. For any 0 < � < 1/2, there is an algorithm that runs in time polynomial in n and 
finds a packing using at most (1 + 2�)OPT + 1 bins. 

Step 1: 

Lemma 8. Let � > 0 and K ∈ Z+ be fixed. The bin-packing problem with items of size at least � 
and with at most K different item sizes can be solved in polynomial time. 

Proof: 

•	 Let the different item sizes be s1, . . . , sl, for some l ≤ K. 

•	 Let bi be the number of items of size si. 

•	 Let T1, . . . , TN be all ways in which a single bin can be packed: � � � m � 
T1, . . . , TN = (k1, . . . , km) ∈ Zm : kisi ≤ 1 .+ 

i=1 

•	 We write Tj = (tj1, . . . , tjm). 

•	 Then bin packing is equivalent to the following IP: 

N

min xj
 

j=1
 

N


s.t.	 tjixj ≥ bi i = 1, . . . ,m 
j=1 

xj ∈ Z+	 j = 1, . . . , n 

•	 Since N is constant (each bin fits at most 1/� many items, and there are only K different 
item sizes), this is an IP in fixed dimension, which can be solved in polynomial time. 

Step 2: 

Lemma 9. Let � > 0 be fixed. The bin-packing problem with items of size at least � has a (1 + �)­
approximation algorithm 

Proof: 

•	 Let I be the given instance. Sort the n items by nondecreasing size. 
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• Partition them into K := �1/�2� groups each having at most Q := �n�2� items. 

•	 Construct a new instance, J , by rounding up the size of each item to the size of the largest 
item in its group. 

•	 Note that J has at most K different item sizes. 

•	 By the previous lemma, we can find an optimal packing for J in polynomial time. 

•	 Clearly, this packing is also feasible for the original item sizes. 

•	 We construct another instance, J �, by rounding down the size of each item to the size of the 
smallest item in its group. 

•	 Clearly, OPT(J �) ≤ OPT(I). 

•	 Observe that a feasible packing for J � yields a feasible packing for all but the largest Q items 
of J . 

•	 Therefore, OPT(J) ≤ OPT(J �) + Q ≤ OPT(I) + Q. 

•	 Since each item has size at least �, OPT(I) ≥ n�. 

•	 Thus, Q = �n�2� ≤ �OPT(I). 

Step 3: Proof of the Theorem 

•	 Let I � be the instance obtained by ignoring items of size < �. 

•	 By the previous lemma, we can find a packing for I � using at most (1 + �)OPT bins. 

•	 We then pack the items of size ≤ � in a First-Fit manner into the bins opened for I � . 

•	 If no additional bins are need, we are done. 

•	 Otherwise, let M be the total number of bins used. 

•	 Note that all but the last bin must be full to the extent of at least 1 − �. 

•	 Therefore, the sum of item sizes in I is at least (M − 1)(1 − �). 

•	 Since this is a lower bound on OPT(I), we get 

OPT(I)
M ≤ + 1 ≤ (1 + 2�)OPT(I) + 1.

1 − � 
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Performance Guarantees 

•	 The absolute performance ratio for an approximation algorithm A for a minimization problem 
Π is given by 

RA := inf{r ≥ 1 : 
A(I) ≤ r for all instances I ∈ Π}.

OPT(I) 

•	 The asymptotic performance ratio for an approximation algorithm A for a minimization prob­
lem Π is given by 

R∞ := inf{r ≥ 1 : for some N ∈ Z+,
A(I) ≤ rA OPT(I) 

for all I ∈ Π with OPT(I) ≥ N}. 

•	 The last theorem gives an APTAS (i.e., an asymptotic polynomial-time approximation scheme) 
for Bin Packing. 
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