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Approximation Algorithms II 

The traveling salesman problem 

Theorem 1. For any polynomial time computable function α(n), TSP cannot be approximated 
within a factor of α(n), unless P = NP. 

Proof: 

•	 Suppose there is an approximation algorithm A such that


A(I) ≤ α(n) OPT(I) for all instances I of TSP.
· 

•	 We will show that A can be used to decide whether a graph contains a Hamiltonian cycle 
(which is NP-hard), implying P = NP. 

•	 Let G be an undirected graph. We define a complete graph G� on the same vertices as follows: 

•	 Edges that appear in G are assigned a weight of 1. 

•	 Edges that do not exist in G get a weight of α(n) · n. 

•	 If G has a Hamiltonian cycle, the corresponding tour in G� has a cost of n. 

•	 If G has no Hamiltonian cycle, any tour in G has cost at least α(n) · n + 1. 

•	 Hence, if we run A on G� it has to return a solution of cost ≤ α(n) · n in the first case, and a 
solution of cost > α(n) n in the second case. · 

•	 Thus, A can be used to decide whether G contains a Hamiltonian cycle. 

The metric traveling salesman problem 
A 2-approximation algorithm for ΔTSP: 

1. Find a minimum spanning tree T of G. 

2. Double every edge of T to obtain a Eulerian graph. 

3. Find a Eulerian tour T on this graph. 

4. Output the tour that visits the vertices of G in the order of their first appearance in T . Let 
C be this tour. 

Proof: 
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•	 Note that cost(T ) ≤ OPT because deleting an edge from an optimal tour yields a spanning 
tree. 

•	 Moreover, cost(T ) = 2 · cost(T ). 

•	 Because of the triangle inequality, cost(C) ≤ cost(T ). 

•	 Hence,

cost(C) ≤ 2 OPT.
· 

A 3/2-approximation algorithm for ΔTSP: 

1. Find a minimum spanning tree T of G. 

2. Compute a min-cost perfect matching M on the set of odd-degree vertices of T . 

3. Add M to T to obtain a Eulerian graph. 

4. Find a Eulerian tour T on this graph. 

5. Output the tour that visits the vertices of G in the order of their first appearance in T . Let 
C be this tour. 

Proof: 

•	 Let τ be an optimal tour, i.e., cost(τ) = OPT. 

•	 Let τ � be the tour on the odd-degree nodes of T , obtained by short-cutting τ . 

•	 By triangle inequality, cost(τ �) ≤ cost(τ ). 

•	 Note that τ � is the union of two perfect matchings. 

•	 The cheaper of these two matchings has cost at most cost(τ �)/2. 

•	 Hence, 
1

cost(C) ≤ cost(T ) ≤ cost(T ) + cost(M) ≤ OPT + 
2
OPT. 

The set cover problem 

Input: U = {1, . . . , n}, S = {S1, . . . , Sk} ⊆ 2U , c : S → Z+. �	 � 
Output: J ⊆ {1, . . . , k} such that i∈J Si = U and i∈J c(Si) is minimal. 
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• Special case: vertex cover problem.


A greedy algorithm:


1.	 C := ∅. 

2. WHILE C = U DO 

3. Let S := arg min |S
c(
\
S
C
) 
| : S ∈ S . 

4. Let α := c(S) . |S\C| 

5. Pick S, and for each e ∈ S \ C, set price(e) = α. 

6. C := C ∪ S. 

7. Output the picked sets. 

•	 Let e1, . . . , en be the order in which the elements of U are covered by the greedy algorithm. 

Lemma 2. For each k ∈ {1, . . . , n}, price(ek) ≤ OPT/(n − k + 1). 

Proof: 

•	 Let i(k) be the iteration in which ek is covered. 

•	 Let O ⊆ S be the sets chosen by an optimal solution. 

•	 Let Oi(k) ⊆ O be the sets in O not (yet) chosen by the greedy algorithm in iterations 
1, . . . , i(k). 

•	 Note that {ek, . . . , en} ⊆ S and c(S) ≤ OPT. 
S∈Oi(k) S∈Oi(k) 

c(S) OPT •	 Hence, there exists a set S ∈ Ok of average cost at most 
n − k + 1

. 
|S \ C| 

•	 Since ek is covered by the set with the smallest average cost,


OPT

price(ek) ≤ 

n − k + 1
. 

Theorem 3. The greedy algorithm is an (ln n + 1)-approximation algorithm. 

Proof: 

3 



� 

� 

� 

� 

� 

• Since the cost of each set picked is distributed among the new elements covered, the total

n

cost of the set cover returned by the greedy algorithm is equal to price(ek).

k=1


•	 By the previous lemma, 

n �	 ��	 1 1
price(ek) ≤ 1 + 

2 
+ · · · + 

n 
· OPT = Hn · OPT. 

k=1 

An integer programming formulation: 

min c(S)xS 

S∈S � 
s.t. xS ≥ 1	 e ∈ U 

S�e 

xS ∈ {0, 1}	 S ∈ S 

And its linear programming relaxation: 

min c(S)xS 

S∈S � 
s.t. xS ≥ 1	 e ∈ U 

S�e 

xS ≥ 0	 S ∈ S 

And its dual: 

max ye 

e∈U 

s.t. ye ≤ c(S)	 S ∈ S 
e∈S 

ye ≥ 0	 e ∈ U 

“Dual Fitting:” 

price(e)
Lemma 4. The vector y defined by ye := is a feasible solution to the dual linear program. 

Hn 

Proof: 

•	 Consider a set S ∈ S consisting of k elements. 

•	 Number the elements in the order in which they are covered by the greedy algorithm, say 
e1, . . . , ek. 
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•	 Consider the iteration in which the algorithm covers ei. 

•	 At this point, S contains at least k − i + 1 uncovered elements.


c(S)
•	 S itself can cover ei at an average cost of at most 
k − i + 1

. 

c(S) 1 c(S) •	 Hence, price(ei) ≤ 
k − i + 1 

and yei ≤ 
Hn 

· 
k − i + 1

. 

k �	 �� c(S) 1 1 1 Hk •	 Overall, yei ≤ 
Hn 

· 
k 

+ 
k − 1

+ · · · +
1 

= 
Hn 

· c(S). 
i=1 

Theorem 5. The greedy algorithm is an Hn-approximation algorithm. 

Proof: � �

price(e) = Hn · ye ≤ Hn · LP ≤ Hn · OPT.


e∈U	 e∈U 

“LP rounding:” 

1. Find an optimal solution to the LP relaxation. 

2. Pick all sets S for which xS ≥ 1/f in this solution. 

Here, f is the frequency of the most frequent element. 

Theorem 6. The LP rounding algorithm achieves an approximation factor of f . 

Proof: 

•	 Let C be the collection of picked sets. 

•	 Consider an arbitrary element e ∈ U . 

•	 Since e is in at most f sets, one of them must be picked to the extent of at least 1/f in the 
fractional cover. 

•	 So C is a feasible set cover. 

•	 The rounding process increases xS , for each S ∈ C, by a factor of at most f . 

A tight example: 

•	 Consider a hypergraph: vertices correspond to sets, and hyperedges correspond to elements. 
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Let V = V1∪̇ . . . ∪̇Vk, where each Vi has cardinality k.• 

•	 There are nk hyperedges: each picks one element from each Vi. 

•	 Each set (i.e., vertex) has cost 1. 

•	 Picking each set to the extent of 1/k gives an optimal fractional cover of cost n. 

•	 Given this fractional solution, the rounding algorithm will pick all nk sets. 

• On the other hand, picking all sets (vertices) in V1 gives a set cover of cost n. 

“The primal-dual method:” 

•	 Start with a primal infeasible and a dual feasible solution (usually x = 0 and y = 0). 

•	 Iteratively improve the feasibility of the primal solution and the optimality of the dual solu­
tion. 

•	 The primal solution is always extended integrally. 

•	 The current primal solution is used to determine the improvement to the dual, and vice versa. 

The cost of the dual solution is used as a lower bound. • 

(Relaxed) complementary slackness: 

Primal condition: • 

–	 xS = 0 =� ⇒ ye = c(S). 
e∈S 

Dual condition: • 

–	 ye = 0 =� ⇒ xS ≤ f. 
S�e 

– Trivially satisfied! 

A factor f approximation algorithm: 

1.	 x := 0, y := 0. 

2. REPEAT 

3. Pick an uncovered element e and raise ye until some set becomes tight. 

4. Include all tight sets in the cover and update x. 

5. UNTIL all elements are covered 
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6. RETURN x. 

Proof:	 � � � � � � � � 
c(S)xS = ye xS ≤ ye xS ≤ f ye ≤ f OPT· · 

S∈C S∈C e∈S e∈U S�e e∈U 
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