
15.083J Integer Programming and Combinatorial Optimization	 Fall 2009

Approximation Algorithms II

The traveling salesman problem

Theorem 1. For any polynomial time computable function α(n), TSP cannot be approximated
within a factor of α(n), unless P = NP.

Proof:

•	 Suppose there is an approximation algorithm A such that

A(I) ≤ α(n) OPT(I) for all instances I of TSP.
·

•	 We will show that A can be used to decide whether a graph contains a Hamiltonian cycle
(which is NP-hard), implying P = NP.

•	 Let G be an undirected graph. We define a complete graph G� on the same vertices as follows:

•	 Edges that appear in G are assigned a weight of 1.

•	 Edges that do not exist in G get a weight of α(n) · n.

•	 If G has a Hamiltonian cycle, the corresponding tour in G� has a cost of n.

•	 If G has no Hamiltonian cycle, any tour in G has cost at least α(n) · n + 1.

•	 Hence, if we run A on G� it has to return a solution of cost ≤ α(n) · n in the first case, and a
solution of cost > α(n) n in the second case. ·

•	 Thus, A can be used to decide whether G contains a Hamiltonian cycle.

The metric traveling salesman problem
A 2-approximation algorithm for ΔTSP:

1. Find a minimum spanning tree T of G.

2. Double every edge of T to obtain a Eulerian graph.

3. Find a Eulerian tour T on this graph.

4. Output the tour that visits the vertices of G in the order of their first appearance in T . Let
C be this tour.

Proof:

1

•	 Note that cost(T) ≤ OPT because deleting an edge from an optimal tour yields a spanning
tree.

•	 Moreover, cost(T) = 2 · cost(T).

•	 Because of the triangle inequality, cost(C) ≤ cost(T).

•	 Hence,

cost(C) ≤ 2 OPT.
·

A 3/2-approximation algorithm for ΔTSP:

1. Find a minimum spanning tree T of G.

2. Compute a min-cost perfect matching M on the set of odd-degree vertices of T .

3. Add M to T to obtain a Eulerian graph.

4. Find a Eulerian tour T on this graph.

5. Output the tour that visits the vertices of G in the order of their first appearance in T . Let
C be this tour.

Proof:

•	 Let τ be an optimal tour, i.e., cost(τ) = OPT.

•	 Let τ � be the tour on the odd-degree nodes of T , obtained by short-cutting τ .

•	 By triangle inequality, cost(τ �) ≤ cost(τ).

•	 Note that τ � is the union of two perfect matchings.

•	 The cheaper of these two matchings has cost at most cost(τ �)/2.

•	 Hence,
1

cost(C) ≤ cost(T) ≤ cost(T) + cost(M) ≤ OPT +
2
OPT.

The set cover problem

Input: U = {1, . . . , n}, S = {S1, . . . , Sk} ⊆ 2U , c : S → Z+. �	 �
Output: J ⊆ {1, . . . , k} such that i∈J Si = U and i∈J c(Si) is minimal.

2

� � �

 �

• Special case: vertex cover problem.

A greedy algorithm:

1.	 C := ∅.

2. WHILE C = U DO

3. Let S := arg min |S
c(
\
S
C
)
| : S ∈ S .

4. Let α := c(S) . |S\C|

5. Pick S, and for each e ∈ S \ C, set price(e) = α.

6. C := C ∪ S.

7. Output the picked sets.

•	 Let e1, . . . , en be the order in which the elements of U are covered by the greedy algorithm.

Lemma 2. For each k ∈ {1, . . . , n}, price(ek) ≤ OPT/(n − k + 1).

Proof:

•	 Let i(k) be the iteration in which ek is covered.

•	 Let O ⊆ S be the sets chosen by an optimal solution.

•	 Let Oi(k) ⊆ O be the sets in O not (yet) chosen by the greedy algorithm in iterations
1, . . . , i(k).

•	 Note that {ek, . . . , en} ⊆ S and c(S) ≤ OPT.
S∈Oi(k) S∈Oi(k)

c(S) OPT •	 Hence, there exists a set S ∈ Ok of average cost at most
n − k + 1

.
|S \ C|

•	 Since ek is covered by the set with the smallest average cost,

OPT

price(ek) ≤

n − k + 1
.

Theorem 3. The greedy algorithm is an (ln n + 1)-approximation algorithm.

Proof:

3

�

�

�

�

�

• Since the cost of each set picked is distributed among the new elements covered, the total

n

cost of the set cover returned by the greedy algorithm is equal to price(ek).

k=1

•	 By the previous lemma,

n �	 ��	 1 1
price(ek) ≤ 1 +

2
+ · · · +

n
· OPT = Hn · OPT.

k=1

An integer programming formulation:

min c(S)xS

S∈S �
s.t. xS ≥ 1	 e ∈ U

S�e

xS ∈ {0, 1}	 S ∈ S

And its linear programming relaxation:

min c(S)xS

S∈S �
s.t. xS ≥ 1	 e ∈ U

S�e

xS ≥ 0	 S ∈ S

And its dual:

max ye

e∈U

s.t. ye ≤ c(S)	 S ∈ S
e∈S

ye ≥ 0	 e ∈ U

“Dual Fitting:”

price(e)
Lemma 4. The vector y defined by ye := is a feasible solution to the dual linear program.

Hn

Proof:

•	 Consider a set S ∈ S consisting of k elements.

•	 Number the elements in the order in which they are covered by the greedy algorithm, say
e1, . . . , ek.

4

•	 Consider the iteration in which the algorithm covers ei.

•	 At this point, S contains at least k − i + 1 uncovered elements.

c(S)
•	 S itself can cover ei at an average cost of at most
k − i + 1

.

c(S) 1 c(S) •	 Hence, price(ei) ≤
k − i + 1

and yei ≤
Hn

·
k − i + 1

.

k �	 �� c(S) 1 1 1 Hk •	 Overall, yei ≤
Hn

·
k

+
k − 1

+ · · · +
1

=
Hn

· c(S).
i=1

Theorem 5. The greedy algorithm is an Hn-approximation algorithm.

Proof: � �

price(e) = Hn · ye ≤ Hn · LP ≤ Hn · OPT.

e∈U	 e∈U

“LP rounding:”

1. Find an optimal solution to the LP relaxation.

2. Pick all sets S for which xS ≥ 1/f in this solution.

Here, f is the frequency of the most frequent element.

Theorem 6. The LP rounding algorithm achieves an approximation factor of f .

Proof:

•	 Let C be the collection of picked sets.

•	 Consider an arbitrary element e ∈ U .

•	 Since e is in at most f sets, one of them must be picked to the extent of at least 1/f in the
fractional cover.

•	 So C is a feasible set cover.

•	 The rounding process increases xS , for each S ∈ C, by a factor of at most f .

A tight example:

•	 Consider a hypergraph: vertices correspond to sets, and hyperedges correspond to elements.

5

�

�

Let V = V1∪̇ . . . ∪̇Vk, where each Vi has cardinality k.•

•	 There are nk hyperedges: each picks one element from each Vi.

•	 Each set (i.e., vertex) has cost 1.

•	 Picking each set to the extent of 1/k gives an optimal fractional cover of cost n.

•	 Given this fractional solution, the rounding algorithm will pick all nk sets.

• On the other hand, picking all sets (vertices) in V1 gives a set cover of cost n.

“The primal-dual method:”

•	 Start with a primal infeasible and a dual feasible solution (usually x = 0 and y = 0).

•	 Iteratively improve the feasibility of the primal solution and the optimality of the dual solu­
tion.

•	 The primal solution is always extended integrally.

•	 The current primal solution is used to determine the improvement to the dual, and vice versa.

The cost of the dual solution is used as a lower bound. •

(Relaxed) complementary slackness:

Primal condition: •

–	 xS = 0 =� ⇒ ye = c(S).
e∈S

Dual condition: •

–	 ye = 0 =� ⇒ xS ≤ f.
S�e

– Trivially satisfied!

A factor f approximation algorithm:

1.	 x := 0, y := 0.

2. REPEAT

3. Pick an uncovered element e and raise ye until some set becomes tight.

4. Include all tight sets in the cover and update x.

5. UNTIL all elements are covered

6

6. RETURN x.

Proof:	 � � � � � � � �
c(S)xS = ye xS ≤ ye xS ≤ f ye ≤ f OPT· ·

S∈C S∈C e∈S e∈U S�e e∈U

7

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

