15.083J Integer Programming and Combinatorial Optimization Fall 2009

Approximation Algorithms II

The traveling salesman problem

Theorem 1. For any polynomial time computable function a(n), TSP cannot be approximated
within a factor of a(n), unless P = NP.

Proof:

e Suppose there is an approximation algorithm A such that

A(I) < a(n) - OPT(I) for all instances I of TSP.

e We will show that A can be used to decide whether a graph contains a Hamiltonian cycle
(which is NP-hard), implying P = NP.

e Let G be an undirected graph. We define a complete graph G’ on the same vertices as follows:
e Edges that appear in G are assigned a weight of 1.

e Edges that do not exist in G get a weight of a(n) - n.

e If G has a Hamiltonian cycle, the corresponding tour in G’ has a cost of n.
e If G has no Hamiltonian cycle, any tour in G has cost at least a(n) - n + 1.

e Hence, if we run A on G’ it has to return a solution of cost < a(n) - n in the first case, and a
solution of cost > «(n) - n in the second case.

e Thus, A can be used to decide whether G contains a Hamiltonian cycle.

The metric traveling salesman problem
A 2-approximation algorithm for ATSP:

1. Find a minimum spanning tree T of G.
2. Double every edge of T to obtain a Eulerian graph.
3. Find a Eulerian tour 7 on this graph.

4. Output the tour that visits the vertices of G in the order of their first appearance in 7. Let
C be this tour.

Proof:



Note that cost(T') < OPT because deleting an edge from an optimal tour yields a spanning
tree.

e Moreover, cost(7) = 2 - cost(T).

Because of the triangle inequality, cost(C) < cost(7).

e Hence,
cost(C) <2-OPT.

A 3/2-approximation algorithm for ATSP:

1. Find a minimum spanning tree T of G.

2. Compute a min-cost perfect matching M on the set of odd-degree vertices of T'.
3. Add M to T to obtain a Eulerian graph.

4. Find a Eulerian tour 7 on this graph.

5. Output the tour that visits the vertices of G in the order of their first appearance in 7. Let
C be this tour.

Proof:

e Let 7 be an optimal tour, i.e., cost(7) = OPT.

Let 7/ be the tour on the odd-degree nodes of T', obtained by short-cutting .

By triangle inequality, cost(7") < cost(7).

Note that 7/ is the union of two perfect matchings.

The cheaper of these two matchings has cost at most cost(7')/2.

e Hence,
1
cost(C) < cost(7) < cost(T') + cost(M) < OPT + §OPT.

The set cover problem
Input: U ={1,...,n},S={S1,...,S} C2Y, ¢c:S - Z,.

Output: J C {1,...,k} such that (J,c;S; = U and >, ; ¢(S;) is minimal.



e Special case: vertex cover problem.

A greedy algorithm:

1. C:=0.
2. WHILE C # U DO
3. Let S := arg min { ‘g(\s(j)wl VNS 8}.
— <9
4. Let a := S\
5. Pick S, and for each e € S'\ C, set price(e) = .

6. C:=CUS.

7. Output the picked sets.

e Let ey,...,e, be the order in which the elements of U are covered by the greedy algorithm.

Lemma 2. For each k € {1,...,n}, price(ey) < OPT/(n —k +1).
Proof:

e Let i(k) be the iteration in which ey is covered.
e Let O C S be the sets chosen by an optimal solution.

e Let O;) € O be the sets in O not (yet) chosen by the greedy algorithm in iterations
L,...,i(k).

e Note that {eg,...,e,} C U S and Z c(S) < OPT.
SEOi(k) SGOi(k)

C(S) at most £
1S\ C] n—k+1

e Hence, there exists a set S € Oy, of average cost

e Since ey is covered by the set with the smallest average cost,

OoPT

i <
price(eg) < R

Theorem 3. The greedy algorithm is an (Inn + 1)-approzimation algorithm.

Proof:



e Since the cost of each set picked is distributed among the new elements covered, the total

n
cost of the set cover returned by the greedy algorithm is equal to Z price(eg).
k=1

e By the previous lemma,

n
1 1
> price(ey) < (1 ot ) -OPT = H,, - OPT.
k=1 n
O
An integer programming formulation:
min Z c(S)zs
Ses
s.t. Z xg > 1 ecU
Sse
TS € {0, 1} Ses
And its linear programming relaxation:
min Z c(S)zs
Ses
s.t. Zws >1 ecU
Soe
zg >0 Ses
And its dual:
max Z Ye
ecU
st ye < c(S) Ses
ecS
Ye > 0 ecU
“Dual Fitting:”
price(e) . ) )
Lemma 4. The vector y defined by ye := g isa feasible solution to the dual linear program.
n

Proof:

e Consider a set S € S consisting of k elements.

e Number the elements in the order in which they are covered by the greedy algorithm, say
€l1y...,€L.



Consider the iteration in which the algorithm covers e;.

At this point, S contains at least k — ¢ + 1 uncovered elements.

S
e S itself can cover e; at an average cost of at most L
k—i14+1
: c(S 1 c(S
e Hence, price(e;) < k—(z—)l—l and ye, < T k:—(zj)tl

k
1 1 1 H
Overall, 3"y, < 42). <++---+) _ e g

* £ H, & k-1 1)~ H,
O
Theorem 5. The greedy algorithm is an H,-approximation algorithm.
Proof:
> price(e) = Hy- Y _ye < Hy,-LP < H,, - OPT.
ecU ecU
O

“LP rounding:”

1. Find an optimal solution to the LP relaxation.

2. Pick all sets S for which zg > 1/f in this solution.

Here, f is the frequency of the most frequent element.
Theorem 6. The LP rounding algorithm achieves an approximation factor of f.
Proof:

e Let C be the collection of picked sets.

Consider an arbitrary element e € U.

Since e is in at most f sets, one of them must be picked to the extent of at least 1/f in the
fractional cover.

So C is a feasible set cover.

The rounding process increases zg, for each S € C, by a factor of at most f.

O
A tight example:

e Consider a hypergraph: vertices correspond to sets, and hyperedges correspond to elements.



Let V = ViU. ..UV}, where each V; has cardinality k.

There are n* hyperedges: each picks one element from each V;.

Each set (i.e., vertex) has cost 1.

Picking each set to the extent of 1/k gives an optimal fractional cover of cost n.

Given this fractional solution, the rounding algorithm will pick all nk sets.

e On the other hand, picking all sets (vertices) in V; gives a set cover of cost n.

“The primal-dual method:”

e Start with a primal infeasible and a dual feasible solution (usually z = 0 and y = 0).

e Iteratively improve the feasibility of the primal solution and the optimality of the dual solu-
tion.

e The primal solution is always extended integrally.
e The current primal solution is used to determine the improvement to the dual, and vice versa.

e The cost of the dual solution is used as a lower bound.

(Relaxed) complementary slackness:

e Primal condition:

— x5 # 0= g =c(S).

eeS

e Dual condition:

—yeA0=) as<f

Soe
— Trivially satisfied!

A factor f approximation algorithm:

1. 2:=0,y:=0.

2. REPEAT
3. Pick an uncovered element e and raise y. until some set becomes tight.
4. Include all tight sets in the cover and update x.

5. UNTIL all elements are covered



6. RETURN =z.

Proof:

SelS)as =3 (Due)es <D ued ws <[> ye < f-OPT

SeC SeC eeS ecU  S>e ecU



MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

