15.083J Integer Programming and Combinatorial Optimization Fall 2009

Approximation Algorithms I

The knapsack problem

e Input: nonnegative numbers p1,...,pn,a01,...,an,b.

n
max E DTy
j=1

n
s.t. Zajxj <b
j=1
x €Ll
Additive performance guarantees
Theorem 1. There is a polynomial-time algorithm A for the knapsack problem such that
A(I)> OPT(I)— K for all instances I (1)

for some constant K if and only if P = NP.

Proof:

e Let A be a polynomial-time algorithm satisfying (1).

Let I = (p1,...,Pn,a1,...,an,b) be an instance of the knapsack problem.

o Let I' = (p} = (K +1)p1,...,p), := (K + 1)pn,ai1,...,a,,b) be a new instance.

*

e Clearly, z* is optimal for I iff it is optimal for I’.

e If we apply A to I’ we obtain a solution 2’ such that
'zt —pr < K.

e Hence,
1

K+1

(p':v*—p’x') < <1

* o
pr b= - K+1

e Since px’ and px* are integer, it follows that px’ = px*, that is z’ is optimal for I.

e The other direction is trivial. O

e Note that this technique applies to any combinatorial optimization problem with linear ob-
jective function.

Approximation algorithms

e There are few (known) NP-hard problems for which we can find in polynomial time solutions
whose value is close to that of an optimal solution in an absolute sense. (Example: edge
coloring.)

e In general, an approximation algorithm for an optimization II produces, in polynomial time,
a feasible solution whose objective function value is within a guaranteed factor of that of an
optimal solution.

A first greedy algorithm for the knapsack problem

1. Rearrange indices so that p;1 > ps > --- > p,.

2. FOR j =1 TO n DO

3. set xj := L%J and b:=b— LLEJ
J J

4. Return x.

e This greedy algorithm can produce solutions that are arbitrarily bad.

e Consider the following example, with o > 2:

max ar1 + (a—1)z
s.t. ary + T <«
x1,T2 S ZJr

e Obviously, OPT = a(a — 1) and GREEDY; = a.

e Hence,

GREEDY; 1
= — 0.

OPT a—1

A second greedy algorithm for the knapsack problem

1. Rearrange indices so that p;/a; > pa/as > -+ > pp/an.

2. FOR j = 1 TO n DO

3. set x; 1= LEJ and b:=0b— LEJ

a; a;
4. Return x.

Theorem 2. For all instances I of the knapsack problem,

GREEDY,(I) > % OPT(I).

Proof:

e We may assume that a; <b.

Let x be the greedy solution, and let * be an optimal solution.

Obviously,

b
pPT > p1r1 = P1 [*J .
al

e Also,

This analysis is tight.

Consider the following example:

max 21 4+ 2(a—1)x9
s.t. ar; + (a—1)x <2(a—1)
Z1, T2 S Z+

Obviously, p1/a1 > p2/az, and GREEDY9 = 2a whereas OPT = 4(« — 1). Hence,

GREEDY, 2a 1
= _— —.
oPT 4(a—1) 2
The 0/1-knapsack problem
e Input: nonnegative numbers p1,...,0n,a1,--.,0n,b.

n
max E DTy
J=1

n
s.t. Zajxj <b
j=1
x € {0,1}"
A greedy algorithm for the 0/1-knapsack problem

1. Rearrange indices so that p1/a; > pa/ag > -+ > pn/ay.
2. FOR j=1TO n DO
3. IF a; > b, THEN z; := 0

4. ELSE z; :=1 and b := b — a;.

5. Return =x.

e The greedy algorithm can be arbitrarily bad for the 0/1-knapsack problem.

e Consider the following example:

max r1 + ox
s.t. r1 + oax <«
x1,T2 S {O, 1}

e Note that OPT = «, whereas GREEDY, = 1.

e Hence,
GREEDY, 1

orT o
Theorem 3. Given an instance I of the 0/1 knapsack problem, let
A(I) := max {GREEDY (1), pmax } ,

where pmax 18 the mazimum profit of an item. Then
1
A(I) > EOPT(I).

Proof:

e Let j be the first item not included by the greedy algorithm.

e The profit at that point is
j—1

pj ==Y _pi < GREEDY,.
=1

e The overall occupancy at this point is
j—1
a; = Z <b.
i=1
e We will show that

OPT < pj + p;.

(If this is true, we are done.)

e Let x* be an optimal solution. Then:
n i1 " s
Zpifff < szl‘f + Z %!E;k
i—1 i—1 i—j 9
— b Zazm +Z - faz
J =1
Py Z (pi
4 =
j—1 i j—1
=1 =1

=5+ 2 (b—a)
aj

IN

e Since a; + a; > b, we obtain

n
K o = pj _ _
OPT:Zpixi <pj+ i(b—aj) < Dpj +pj.
i=1 J

O

e Recall that there is an algorithm that solves the 0/1-knapsack problem in O(n?ppay) time:

e Let f(i,q) be the size of the subset of {1,...,i} whose total profit is ¢ and whose total size
is minimal.

e Then
f(z + 1,Q) = min {f(iaq)7ai+1 + f(ivq _pi+1)}'

e We need to compute max{q : f(n,q) < b}.

e In particular, if the profits of items were small numbers (i.e., bounded by a polynomial in n),
then this would be a regular polynomial-time algorithm.

An FPTAS for the 0/1-knapsack problem

epmax

n

1. Given € > 0, let K :=

2. FOR j =1 TO n DO p} := V;;J

3. Solve the instance (p),...,p),a1,...,an,b) using the dynamic program.

4. Return this solution.

Theorem 4. This algorithm is a Fully Polynomial-Time Approzimation Scheme for the 0/1-
knapsack problem.

That is, given an instance I and an € > 0, it finds in time polynomial in the input size of I and
1/€e a solution x’ such that
pr’ > (1 — e)pz™.

Proof:
e Note that p; — K < Kpj < p;.

e Hence, pz* — Kp'z* < nK.

e Moreover,

pr’ > Kp'a' > Kp'a* > pr* — nK = pz* — epmax > (1 — €)px™.

Fully Polynomial Time Approximation Schemes

e Let II be an optimization problem. Algorithm A is an approximation scheme for II if on input
(I,€), where I is an instance of II and € > 0 is an error parameter, it outputs a solution of
objective function value A(I) such that

— A(I) < (14 ¢)OPT([) if IT is a minimization problem.
— A(I) > (1 —€)OPT(J) if IT is a maximization problem.

e A is a polynomial-time approzimation scheme (PTAS), if for each fixed € > 0, its running
time is bounded by a polynomial in the size of I.

e Ais a fully polynomial-time approximation scheme (FPTAS), if its running time is bounded
by a polynomial in the size of I and 1/e.

Theorem 5. Let p be a polynomial and let 11 be an NP-hard minimization problem with integer-
valued objective function such that on any instance I € II, OPT(I) < p(|I|.). If II admits an
FPTAS, then it also admits a pseudopolynomial-time algorithm.

Proof:
e Suppose there is an FPTAS with running time ¢(|I|,1/¢), for some polynomial g.

e Choose € := 1/p(|I|,) and run the FPTAS.

e The solution has objective function value at most

(1+ €)OPT(I) < OPT(I) + ep(|I],) = OPT(I) + 1.

e Hence, the solution is optimal.

e The running time is ¢(|I|, p(|1].)), i.e., polynomial in |I|,. O

Corollary 6. Let II be an NP-hard optimization problem satisfying the assumptions of the previous
theorem. If 11 is strongly NP-hard, then I1 does not admit an FPTAS, assuming P # NP.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

