
�

�

15.083J Integer Programming and Combinatorial Optimization	 Fall 2009

Approximation Algorithms I

The knapsack problem

•	 Input: nonnegative numbers p1, . . . , pn, a1, . . . , an, b.

n

max pj xj

j=1

n

s.t. aj xj ≤ b
j=1

x ∈ Zn
+

Additive performance guarantees

Theorem 1. There is a polynomial-time algorithm A for the knapsack problem such that

A(I) ≥ OPT (I) − K for all instances I (1)

for some constant K if and only if P = NP.

Proof:

•	 Let A be a polynomial-time algorithm satisfying (1).

•	 Let I = (p1, . . . , pn, a1, . . . , an, b) be an instance of the knapsack problem.

Let I � = (p�1 := (K + 1)p1, . . . , p
� := (K + 1)pn, a1, . . . , an, b) be a new instance.
•	 n

•	 Clearly, x∗ is optimal for I iff it is optimal for I �.

•	 If we apply A to I � we obtain a solution x� such that

p�x∗ − p�x� ≤ K.

•	 Hence,

1 K

px∗ − px� =
K + 1

(p�x∗ − p�x�) ≤
K + 1

< 1.

•	 Since px� and px∗ are integer, it follows that px� = px∗, that is x� is optimal for I.

The other direction is trivial.
•

•	 Note that this technique applies to any combinatorial optimization problem with linear ob­
jective function.

1

� � � �

Approximation algorithms

•	 There are few (known) NP-hard problems for which we can find in polynomial time solutions
whose value is close to that of an optimal solution in an absolute sense. (Example: edge
coloring.)

•	 In general, an approximation algorithm for an optimization Π produces, in polynomial time,
a feasible solution whose objective function value is within a guaranteed factor of that of an
optimal solution.

A first greedy algorithm for the knapsack problem

1. Rearrange indices so that p1 ≥ p2 ≥ · · · ≥ pn.

2. FOR j = 1 TO n DO

b	 b
3.	 set xj := and b := b − .

aj aj

4. Return x.

•	 This greedy algorithm can produce solutions that are arbitrarily bad.

•	 Consider the following example, with α ≥ 2:

max αx1 + (α − 1)x2

s.t.	 αx1 + x2 ≤ α

x1, x2 ∈ Z+

•	 Obviously, OPT = α(α − 1) and GREEDY1 = α.

•	 Hence,
GREEDY1 1

= 0.
OPT α − 1

→

A second greedy algorithm for the knapsack problem

1. Rearrange indices so that p1/a1 ≥ p2/a2 ≥ · · · ≥ pn/an.

2. FOR j = 1 TO n DO � b �	 � b �
3.	 set xj := and b := b − .

aj aj

4. Return x.

Theorem 2. For all instances I of the knapsack problem,

1
GREEDY2(I) ≥

2
OPT(I).

2

�

�

�

Proof:

• We may assume that a1 ≤ b.

• Let x be the greedy solution, and let x∗ be an optimal solution.

• Obviously,	 � b
px ≥ p1x1 = p1 .

a1

• Also,	
b

�� b � � � b �
px∗ ≤ p1 ≤ p1 + 1 ≤ 2p1 ≤ 2px.

a1 a1 a1

• This analysis is tight.

•	 Consider the following example:

max 2αx1 + 2(α − 1)x2

s.t.	 αx1 + (α − 1)x2 ≤ 2(α − 1)
x1, x2 ∈ Z+

•	 Obviously, p1/a1 ≥ p2/a2, and GREEDY2 = 2α whereas OPT = 4(α − 1). Hence,

GREEDY2 2α 1
=	 .

OPT 4(α − 1)
→

2

The 0/1-knapsack problem

• Input: nonnegative numbers p1, . . . , pn, a1, . . . , an, b.

n

max pj xj

j=1

n

s.t.	 aj xj ≤ b
j=1

x ∈ {0, 1}n

A greedy algorithm for the 0/1-knapsack problem

1. Rearrange indices so that p1/a1 ≥ p2/a2 ≥ · · · ≥ pn/an.

2. FOR j = 1 TO n DO

3. IF aj > b, THEN xj := 0

4.	 ELSE xj := 1 and b := b − aj .

3

�	 �

�

�

5. Return x.

• The greedy algorithm can be arbitrarily bad for the 0/1-knapsack problem.

•	 Consider the following example:

max x1 + αx2

s.t.	 x1 + αx2 ≤ α

x1, x2 ∈ {0, 1}

• Note that OPT = α, whereas GREEDY2 = 1.

•	 Hence,

GREEDY2 1

= 0.
OPT α

→

Theorem 3. Given an instance I of the 0/1 knapsack problem, let

A(I) := max GREEDY2(I), pmax ,

where pmax is the maximum profit of an item. Then

1
A(I) ≥

2
OPT(I).

Proof:

• Let j be the first item not included by the greedy algorithm.

• The profit at that point is
j−1

p̄j := pi ≤ GREEDY2.
i=1

• The overall occupancy at this point is

j−1

āj := ≤ b.
i=1

We will show that •
OPT ≤ p̄j + pj .

(If this is true, we are done.)

4

� � �

� �

�

•	 � �

� �

•	 Let x∗ be an optimal solution. Then:

n j−1 n

pix
∗
i ≤ pix

∗
i +

p

a
j a

j

i
x∗

i
i=1 i=1 i=j

pj
n j−1 � pj �

= aix
∗
i + pi − ai x∗

i aj aji=1 i=1

j−1
pj

� � pj �
≤

aj
b + pi −

aj
ai

i=1 �j−1
pj � j−1 �

= pi + b − ai
aji=1 i=1

= p̄j +
pj �

b − āj
�

aj

•	 Since āj + aj > b, we obtain

n

OPT =
�

pixi
∗ ≤ p̄j +

pj �
b − āj

�
< p̄j + pj .

aji=1

•	 Recall that there is an algorithm that solves the 0/1-knapsack problem in O(n2pmax) time:

•	 Let f(i, q) be the size of the subset of {1, . . . , i} whose total profit is q and whose total size
is minimal.

Then
f(i + 1, q) = min f(i, q), ai+1 + f(i, q − pi+1) .

•	 We need to compute max{q : f(n, q) ≤ b}.

•	 In particular, if the profits of items were small numbers (i.e., bounded by a polynomial in n),
then this would be a regular polynomial-time algorithm.

An FPTAS for the 0/1-knapsack problem

1. Given � > 0, let K :=
�pmax .

n

2. FOR j = 1 TO n DO p�j :=
pj .
K

3. Solve the instance (p�1, . . . , p
�
n, a1, . . . , an, b) using the dynamic program.

4. Return this solution.

5

Theorem 4. This algorithm is a Fully Polynomial-Time Approximation Scheme for the 0/1­
knapsack problem.

That is, given an instance I and an � > 0, it finds in time polynomial in the input size of I and
1/� a solution x� such that

px� ≥ (1 − �)px∗.

Proof:

•	 Note that pj − K ≤ Kp�j ≤ pj .

•	 Hence, px∗ − Kp�x∗ ≤ nK.

•	 Moreover,

px� ≥ Kp�x� ≥ Kp�x∗ ≥ px∗ − nK = px∗ − �pmax ≥ (1 − �)px∗.

Fully Polynomial Time Approximation Schemes

•	 Let Π be an optimization problem. Algorithm A is an approximation scheme for Π if on input
(I, �), where I is an instance of Π and � > 0 is an error parameter, it outputs a solution of
objective function value A(I) such that

–	 A(I) ≤ (1 + �)OPT(I) if Π is a minimization problem.

–	 A(I) ≥ (1 − �)OPT(I) if Π is a maximization problem.

•	 A is a polynomial-time approximation scheme (PTAS), if for each fixed � > 0, its running
time is bounded by a polynomial in the size of I.

•	 A is a fully polynomial-time approximation scheme (FPTAS), if its running time is bounded
by a polynomial in the size of I and 1/�.

Theorem 5. Let p be a polynomial and let Π be an NP-hard minimization problem with integer-
valued objective function such that on any instance I ∈ Π, OPT(I) < p(|I|u). If Π admits an
FPTAS, then it also admits a pseudopolynomial-time algorithm.

Proof:

•	 Suppose there is an FPTAS with running time q(|I|, 1/�), for some polynomial q.

•	 Choose � := 1/p(|I|u) and run the FPTAS.

•	 The solution has objective function value at most

(1 + �)OPT(I) < OPT(I) + �p(|I|u) = OPT(I) + 1.

•	 Hence, the solution is optimal.

•	 The running time is q(|I|, p(|I|u)), i.e., polynomial in |I|u.

Corollary 6. Let Π be an NP-hard optimization problem satisfying the assumptions of the previous
theorem. If Π is strongly NP-hard, then Π does not admit an FPTAS, assuming P = NP� .

6

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

