Approximation Algorithms I

The knapsack problem

• Input: nonnegative numbers $p_1, \ldots, p_n, a_1, \ldots, a_n, b$.

$$\max \sum_{j=1}^{n} p_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_j x_j \le b$$

$$x \in \mathbb{Z}_+^n$$

Additive performance guarantees

Theorem 1. There is a polynomial-time algorithm A for the knapsack problem such that

$$A(I) \ge OPT(I) - K$$
 for all instances I (1)

for some constant K if and only if P = NP.

Proof:

- Let A be a polynomial-time algorithm satisfying (1).
- Let $I = (p_1, \ldots, p_n, a_1, \ldots, a_n, b)$ be an instance of the knapsack problem.
- Let $I' = (p'_1 := (K+1)p_1, \dots, p'_n := (K+1)p_n, a_1, \dots, a_n, b)$ be a new instance.
- Clearly, x^* is optimal for I iff it is optimal for I'.
- If we apply A to I' we obtain a solution x' such that

$$p'x^* - p'x' < K.$$

• Hence,

$$px^* - px' = \frac{1}{K+1}(p'x^* - p'x') \le \frac{K}{K+1} < 1.$$

- Since px' and px^* are integer, it follows that $px' = px^*$, that is x' is optimal for I.
- The other direction is trivial.
- Note that this technique applies to *any* combinatorial optimization problem with linear objective function.

Approximation algorithms

- There are few (known) NP-hard problems for which we can find in polynomial time solutions whose value is close to that of an optimal solution in an absolute sense. (Example: edge coloring.)
- In general, an approximation algorithm for an optimization Π produces, in polynomial time, a feasible solution whose objective function value is within a guaranteed factor of that of an optimal solution.

A first greedy algorithm for the knapsack problem

- 1. Rearrange indices so that $p_1 \geq p_2 \geq \cdots \geq p_n$.
- 2. FOR j = 1 TO n DO
- 3. set $x_j := \left\lfloor \frac{b}{a_j} \right\rfloor$ and $b := b \left\lfloor \frac{b}{a_j} \right\rfloor$.
- 4. Return x.
- This greedy algorithm can produce solutions that are arbitrarily bad.
- Consider the following example, with $\alpha \geq 2$:

max
$$\alpha x_1 + (\alpha - 1)x_2$$

s.t. $\alpha x_1 + x_2 \leq \alpha$
 $x_1, x_2 \in \mathbb{Z}_+$

- Obviously, OPT = $\alpha(\alpha 1)$ and GREEDY₁ = α .
- Hence,

$$\frac{\text{GREEDY}_1}{\text{OPT}} = \frac{1}{\alpha - 1} \to 0.$$

A second greedy algorithm for the knapsack problem

- 1. Rearrange indices so that $p_1/a_1 \ge p_2/a_2 \ge \cdots \ge p_n/a_n$.
- 2. FOR j = 1 TO n DO
- 3. set $x_j := \left\lfloor \frac{b}{a_j} \right\rfloor$ and $b := b \left\lfloor \frac{b}{a_j} \right\rfloor$.
- 4. Return x.

Theorem 2. For all instances I of the knapsack problem,

$$GREEDY_2(I) \ge \frac{1}{2} OPT(I).$$

2

Proof:

• We may assume that $a_1 \leq b$.

• Let x be the greedy solution, and let x^* be an optimal solution.

• Obviously,

$$px \ge p_1 x_1 = p_1 \left\lfloor \frac{b}{a_1} \right\rfloor.$$

• Also,

$$px^* \le p_1 \frac{b}{a_1} \le p_1 \left(\left\lfloor \frac{b}{a_1} \right\rfloor + 1 \right) \le 2p_1 \left\lfloor \frac{b}{a_1} \right\rfloor \le 2px.$$

• This analysis is tight.

• Consider the following example:

max
$$2\alpha x_1 + 2(\alpha - 1)x_2$$
s.t.
$$\alpha x_1 + (\alpha - 1)x_2 \leq 2(\alpha - 1)$$

$$x_1, x_2 \in \mathbb{Z}_+$$

• Obviously, $p_1/a_1 \ge p_2/a_2$, and GREEDY₂ = 2α whereas OPT = $4(\alpha - 1)$. Hence,

$$\frac{\mathrm{GREEDY}_2}{\mathrm{OPT}} = \frac{2\alpha}{4(\alpha-1)} \to \frac{1}{2}.$$

The 0/1-knapsack problem

• Input: nonnegative numbers $p_1, \ldots, p_n, a_1, \ldots, a_n, b$.

$$\max \sum_{j=1}^{n} p_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_j x_j \le b$$

$$x \in \{0, 1\}^n$$

A greedy algorithm for the 0/1-knapsack problem

1. Rearrange indices so that $p_1/a_1 \ge p_2/a_2 \ge \cdots \ge p_n/a_n$.

2. FOR
$$j = 1$$
 TO n DO

3. IF $a_j > b$, THEN $x_j := 0$

4. ELSE $x_j := 1$ and $b := b - a_j$.

- 5. Return x.
- The greedy algorithm can be arbitrarily bad for the 0/1-knapsack problem.
- Consider the following example:

max
$$x_1 + \alpha x_2$$
 s.t. $x_1 + \alpha x_2 \leq \alpha$ $x_1, x_2 \in \{0, 1\}$

- Note that $OPT = \alpha$, whereas $GREEDY_2 = 1$.
- Hence,

$$\frac{\text{GREEDY}_2}{\text{OPT}} = \frac{1}{\alpha} \to 0.$$

Theorem 3. Given an instance I of the 0/1 knapsack problem, let

$$A(I) := \max \{GREEDY_2(I), p_{\max}\},\$$

where $p_{\rm max}$ is the maximum profit of an item. Then

$$A(I) \geq \frac{1}{2}\operatorname{OPT}(I).$$

Proof:

- \bullet Let j be the first item not included by the greedy algorithm.
- The profit at that point is

$$\bar{p}_j := \sum_{i=1}^{j-1} p_i \le \text{GREEDY}_2.$$

• The overall occupancy at this point is

$$\bar{a}_j := \sum_{i=1}^{j-1} \le b.$$

• We will show that

$$OPT \leq \bar{p}_i + p_i$$
.

(If this is true, we are done.)

• Let x^* be an optimal solution. Then:

$$\sum_{i=1}^{n} p_{i} x_{i}^{*} \leq \sum_{i=1}^{j-1} p_{i} x_{i}^{*} + \sum_{i=j}^{n} \frac{p_{j} a_{i}}{a_{j}} x_{i}^{*}$$

$$= \frac{p_{j}}{a_{j}} \sum_{i=1}^{n} a_{i} x_{i}^{*} + \sum_{i=1}^{j-1} \left(p_{i} - \frac{p_{j}}{a_{j}} a_{i} \right) x_{i}^{*}$$

$$\leq \frac{p_{j}}{a_{j}} b + \sum_{i=1}^{j-1} \left(p_{i} - \frac{p_{j}}{a_{j}} a_{i} \right)$$

$$= \sum_{i=1}^{j-1} p_{i} + \frac{p_{j}}{a_{j}} \left(b - \sum_{i=1}^{j-1} a_{i} \right)$$

$$= \bar{p}_{j} + \frac{p_{j}}{a_{j}} \left(b - \bar{a}_{j} \right)$$

• Since $\bar{a}_j + a_j > b$, we obtain

OPT =
$$\sum_{i=1}^{n} p_i x_i^* \le \bar{p}_j + \frac{p_j}{a_j} (b - \bar{a}_j) < \bar{p}_j + p_j$$
.

• Recall that there is an algorithm that solves the 0/1-knapsack problem in $O(n^2p_{\text{max}})$ time:

• Let f(i,q) be the size of the subset of $\{1,\ldots,i\}$ whose total profit is q and whose total size is minimal.

• Then

$$f(i+1,q) = \min \{f(i,q), a_{i+1} + f(i,q-p_{i+1})\}.$$

- We need to compute $\max\{q: f(n,q) \leq b\}$.
- In particular, if the profits of items were small numbers (i.e., bounded by a polynomial in n), then this would be a regular polynomial-time algorithm.

An FPTAS for the 0/1-knapsack problem

- 1. Given $\epsilon > 0$, let $K := \frac{\epsilon p_{\text{max}}}{n}$.
- 2. FOR j = 1 TO n DO $p'_j := \left\lfloor \frac{p_j}{K} \right\rfloor$.
- 3. Solve the instance $(p'_1, \ldots, p'_n, a_1, \ldots, a_n, b)$ using the dynamic program.
- 4. Return this solution.

Theorem 4. This algorithm is a Fully Polynomial-Time Approximation Scheme for the 0/1-knapsack problem.

That is, given an instance I and an $\epsilon > 0$, it finds in time polynomial in the input size of I and $1/\epsilon$ a solution x' such that

$$px' \ge (1 - \epsilon)px^*$$
.

Proof:

- Note that $p_j K \leq Kp'_j \leq p_j$.
- Hence, $px^* Kp'x^* \le nK$.
- Moreover,

$$px' \ge Kp'x' \ge Kp'x^* \ge px^* - nK = px^* - \epsilon p_{\max} \ge (1 - \epsilon)px^*.$$

Fully Polynomial Time Approximation Schemes

- Let Π be an optimization problem. Algorithm A is an approximation scheme for Π if on input (I, ϵ) , where I is an instance of Π and $\epsilon > 0$ is an error parameter, it outputs a solution of objective function value A(I) such that
 - $-A(I) \leq (1+\epsilon)\mathrm{OPT}(I)$ if Π is a minimization problem.
 - $-A(I) \ge (1-\epsilon)\mathrm{OPT}(I)$ if Π is a maximization problem.
- A is a polynomial-time approximation scheme (PTAS), if for each fixed $\epsilon > 0$, its running time is bounded by a polynomial in the size of I.
- A is a fully polynomial-time approximation scheme (FPTAS), if its running time is bounded by a polynomial in the size of I and $1/\epsilon$.

Theorem 5. Let p be a polynomial and let Π be an NP-hard minimization problem with integer-valued objective function such that on any instance $I \in \Pi$, $OPT(I) < p(|I|_u)$. If Π admits an FPTAS, then it also admits a pseudopolynomial-time algorithm.

Proof:

- Suppose there is an FPTAS with running time $q(|I|, 1/\epsilon)$, for some polynomial q.
- Choose $\epsilon := 1/p(|I|_u)$ and run the FPTAS.
- The solution has objective function value at most

$$(1 + \epsilon)\text{OPT}(I) < \text{OPT}(I) + \epsilon p(|I|_u) = \text{OPT}(I) + 1.$$

- Hence, the solution is optimal.
- The running time is $q(|I|, p(|I|_u))$, i.e., polynomial in $|I|_u$.

Corollary 6. Let Π be an NP-hard optimization problem satisfying the assumptions of the previous theorem. If Π is strongly NP-hard, then Π does not admit an FPTAS, assuming $P \neq NP$.

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.