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Cutting Plane Methods II

Gomory-Chvatal cuts

Reminder
e P={zxeR": Az < b} with A € Z™*" be Z™.
e For A € [0,1)™ such that ATA € Z",
(ATA)z < |ATh]

is valid for all integral points in P.

Stable Sets
Definitions
e Let G = (V, E) be an undirected graph.
e S CV is stable if {{u,v} € E:u,ve S} =0.

e Stable sets are the integer solutions to:
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Ty + 2y <1 for all {u,v} € F
Ty >0 foralveV

e The stable set polytope is

Piap(G) = conv{x ce{0,1}V iz, 4z, <1foraluwe E}

0Odd Cycle Inequalities

e An odd cycle C in G consists of an odd number of vertices 0,1, ..

e The odd cycle inequality

S < c|2— 1

vel
is valid for Py (G).

e [t has a cutting-plane proof that only needs one step of rounding.

., 2k and edges {i,7 + 1}.

e The separation problem for the class of odd cycle inequalities can be solved in polynomial

time:

o Let y c QY.



e We may assume that y > 0 and y,, + y, < 1 for all {u,v} € E.

Define, for each edge e = {u,v} € E, 2z := 1 — yy — yy.

So ze > 0forallec k.

y satisfies all odd cycle constraints iff z satisfies

Z ze > 1 for all odd cycles C.
ecC

If we view z. as the “length” of edge e, then y satisfies all odd cycle inequalities iff the length
of a shortest odd cycle is at least 1.

Shortest Odd Cycles

e A shortest odd cycle can be found in polynomial time:

Split each node v € V' into two nodes v and ws.

For each arc (u,v) create new arcs (u1,v2) and (ug,v1), both of the same length as (u,v).

Let D’ be the digraph constructed this way.

For each v € V find the shortest (v, vs)-path in D’.

The shortest among these paths gives us the shortest odd cycle.

Perfect Matchings

Definitions
e Let G = (V, F) be an undirected graph.
e A matching M C E is perfect if |M| = |V]/2.
e Perfect matchings are the integer solutions to:

erzl forallveV
e€d(v)
Te >0 forallee E

e The perfect matching polytope is

Ppmi(G) = conv{z € {0, 117 Z z.=1forallveV}
e€d(v)



Odd Cut Inequalities
e The following inequalities are valid for Ppy(G):

Y we>1forallUCV,|U|odd
ecé(U)

e Each has a cutting-plane proof that requires rounding only once.

e The separation problem for this class of inequalities can be solved in polynomial time.

{0,1/2}-cuts
Definition

o Let
Fipa(A,b) := {(ATA)z < [ATh] : X € {0,1/2}", A\TA € Z"}

be the family of all {0,1/2}-cuts.

Question: Can one separate efficiently over Fy5(A,b)?

NP-Hardness

Theorem 1. Let A € Z™*", b€ Z™, and y € Q™ with Ay < b. Checking whether y violates some
inequality in F5(A,b) is NP-complete.

Preliminaries

o Let P={z:Ax <b}andy € P.

y violates a {0,1/2}-cut iff there exists p € {0,1}™ such that
— uTA =0 (mod 2),
— puTh =1 (mod 2), and

— uT(b— Az) < 1.
(Because uTb = 2k + 1 for some k € Z, and uT Az < 2k can be written as p7(b — Az) > 1.)

An NP-complete Problem

e Given Q € {0,1}"** d € {0,1}", and a positive integer K, decide whether there exists
z € {0,1} with at most K 1’s such that Qz = d (mod 2).



Reduction

e Let w:= »2+1 and consider P = {x € R" : Ax < b} with:

K+1
T 21!
A:z(cj.r 2It+1>,b::< 1 ),y:: lt—%wT

Proof Sketch
Step 1: Show (A, b, y) is a valid instance.

e y € P: Observe that b— Ay = (wi,...,w,0)T > 0.

Proof sketch
Step 2: Equivalence of “Yes”-instances.

e 3 € {0,1}™ with uTA =0 (mod 2), uTb = 1 (mod 2) iff 3z € {0,1}! such that Qz = d (mod

2):
A:(fl?: 21t+1),b32<2~11 )

Proof sketch
Step 2: Equivalence of “Yes”-instances.

o Jus.th uT(b—Ay) <1iff Iz s.th. wTz2 <1 (& 172 < K):

pT(b— Ay) = pT (w1, ..., w,0)7

Primal Separation
The Primal Separation Problem

e Let P be a 0/1-polytope.

e Given a point y € Q™ and a vertex & € P, find ¢ € Z" and d € Z such that cx < d for all
x € P, ct =d, and cy > d, if they exist.

Theorem 2. For 0/1-polytopes, optimization and primal separation are polynomial-time equivalent.



Perfect Matchings
e Let 2 be the incidence vector of a perfect matching M.
o Let ye Q_IE be a point satisfying the node-degree equations.

e We have to find a min-weight odd cut (w.r.t. the edge weights given by y) among those that
intersect M in exactly one edge.

e Let {s,t} € M be an arbitrary edge of M.

o Let Gy, be the graph obtained from G by contracting the end nodes of all edges e €

M {{s,t}}.

e The minimum weight odd cut among those that contain exactly the edge {s,t} of M can be
computed by finding a min-weight {s,t}-cut in G .

Theorem 3. The primal separation problem for the perfect matching polytope of a graph G = (V, E)
can be solved with |V'|/2 maz-flow computations.

Corollary 4. A minimum weight perfect matching can be computed in polynomial time.

Proof Sketch

Primal Separation

4

Verification

4

Augmentation

3
Optimization
The Verification Problem
e Let P C R" be a 0/1-polytope.

e Given an objective function ¢ € Z™ and a vertex & € P, decide whether £ minimizes cx over

P.



Primal Separation = Verification

e Let C be the cone defined by the linear inequalities of P that are tight at Z.
e By LP duality, £ minimizes cz over P iff £ minimizes cz over C.

e By the equivalence of optimization and separation, minimizing cx over C' is equivalent to
solving the separation problem for C.

e One can solve the separation problem for C' by solving the primal separation problem for P
and z. O
The Augmentation Problem
e Let P C R" be a 0/1-polytope.
e Given an objective function ¢ € Z™ and a vertex z € P, find a vertex ' € P such that
cx’ < cx, if one exists.
Verification = Augmentation

e We may assume that z = 1.
e Use “Verification” to check whether z is optimal. If not:

M =30 lal+1;

for i =1ton do
C;, 1= C; — M )
call the verification oracle with input = and c;
if x is optimal then

yi = 0;
G =c+M
else
Y; ‘= 1
return y.

Augmentation = Optimization

e We may assume that ¢ > 0.
o Let C:=max{¢;:i=1,...,n}, and K := [logC|.
e For k=0,...,K, define c¥ by ¢F := [¢;/28F],i=1,...,n.

for k=0,1,..., K do
while z* is not optimal for ¢* do
ok .= ava(zF, ¥)
phtl .= gk

return %t



Running Time
e O(log C) many phases.
e At the end of phase k — 1, " is optimal with respect to ¢*~!, and hence for 2¢#~1.
e Moreover, c& = 2¢8~1 + ¢(k), for some 0/1-vector c(k).

If 2**! denotes the optimal solution for ¢* at the end of phase k, we obtain

Fak — 2FH) = 21 (P — ML) (k) (2F — 2MTY) <.

Thus, the algorithm determines an optimal solution by solving at most O(nlogC) augmen-
tation problems. O
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