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Cutting Plane Methods I

Cutting Planes

Consider max{wz : Az < b,z integer}.

Establishing the optimality of a solution is equivalent to proving wz < t is valid for all integral
solutions of Az < b, where ¢ is the maximum value.

Without the integrality restriction, we could prove the validity of wx < ¢ with the help of LP
duality.

Our goal is to establish a similar method for integral solutions.

Consider the linear system

2x1 + 3xo < 27
21’1 — 2:1,’2 S 7
—61’1 — 21‘2 S -9

—2x1 — 69 < —11
—6x1 + 8xg < 21

As can easily be seen, every integral solution satisfies xo < 5.

However, we cannot derive this directly with LP duality because there is a fractional vector,
(9/2,6), with xo = 6.

Instead, let us multiply the last inequality by 1/2:

—3x1 + 422 < 21/2.

Every integral solution satisfies the stronger inequality
—3x1 + 4x9 < 10,
obtained by rounding 21/2 down to the nearest integer.

Multiplying this inequality by 2 and the first inequality by 3, and adding the resulting in-
equalities, gives:
17z2 < 101.

Multiplying by 1/17 and rounding down the right-hand side, we can conclude:

$2§5.



e In general, suppose our system consists of

ax<b 1=1,...,m.

e Let y1,...,ym > 0 and set
m
c= Zyiai
i=1

and
m

i=1
e Trivially, every solution to Az < b satisfies cx < d.

e If ¢ is integral, all integral solutions to Az < b also satisfy

cx < |d].

e cx < |d] is called a Gomory-Chvdtal cut (GC cut).
e “Cut” because the rounding operation cuts off part of the original polyhedron.

e GC cuts can also be defined directly in terms of the polyhedron P defined by Ax < b: just
take a valid inequality cx < d for P with ¢ integral and round down to cx < |d].

e The use of the nonnegative numbers y; is to provide a derivation of cx < |d]. With the y;’s
in hand, we are easily convinced that cx < d and cx < |d| are indeed valid.

Cutting-Plane Proofs
e A cutting-plane proof of an inequality wz < t from Ax < b is a sequence of inequalities
Ok <bpyr k=1,...,. M
together with nonnegative numbers
i k=1,....Myi=1,....m+k—1
such that for each k = 1,..., M, the inequality a,+1t < b1k is derived from
ar<b i=1,...m+k—-1

using the numbers yi;, 2 = 1,...,m+ k — 1, and such that the last inequality in the sequence
is wx < t.

Theorem 1 (Chvatal 1973, Gomory 1960). Let P = {z : Az < b} be a rational polytope and let
wr < t be an inequality, with w integral, satisfied by all integral vectors in P. Then there exists a
cutting-plane proof of wx <t from Ax < b, for some t' <t.

e Proof idea:



Push wz <[ into the polytope as far as possible.

— Use induction to show that the face F' induced by wz <[ contains no integral points.

Push the inequality to wx <1 — 1.

— Continuing this, we eventually reach wx < t.

e Need technique to translate the cutting-plane proof on F to a proof on the entire polytope:

Lemma 2. Let F be a face of a rational polytope P. If cx < |d]| is a GC cut for F, then there
exists a GC cut 'z < |d'| for P such that

Fn{z:de<|d|}=Fn{z:cx <|d]}.

ex=d

Proof:
o Let P={x: Az <V, A"z <"}, where A” and V' are integral.
o Let F={x: Az <V A"z =0"}.
e We may assume that d = max{cx : x € F'}.
e By LP duality, there exist vectors 4’ > 0 and y” such that
yA +y"A" =c
YV + b = d.
e To obtain a GC cut for P we must replace y” by a vector that is nonnegative.
e To this end, define
d=c— YA =y’ A+ (" - [y A"
= W =y Y
e Then ¢ is integral, and ¢’z < d’ is a valid inequality for P.
e Moreover, since |d| = |d'| + [y"|V",

Fn{z:dz<|d|} =
Frie:do< |d, [y 4" = [4')5") -
Fn{z:cx <|d]}.



Theorem 3. Let P = {z : Ax < b} be a rational polytope that contains no integral vectors. Then
there exists a cutting-plane proof of 0x < —1 from Ax < b.

Proof:

Induction on the dimension of P.

Theorem trivial if dim(P) = 0. So assume dim(P) > 1.

Let wz <[ be an inequality, with w integral, that induces a proper face of P.

Let P={z € P:wz < |l]}.

If P = (), then we can use Farkas’ Lemma to deduce 0x < —1 from Az < b, wx < |I].
Suppose P # 0, and let F = {z € P : wz = [l]}.

Note that dim(F') < dim(P).

By the induction hypothesis, there exists a cutting-plane proof of Ox < —1 from Az < b,
wz = [1].

Using the lemma, we get a cutting-plane proof, from Az < b, wz < [l| of an inequality
cx < |d] such that
Pni{z:cx <|d],wz =1} =0.

Thus, after applying this sequence of cuts to P, we have wx < |I| — 1 as a GC cut.
As P is bounded, min{wz : x € P} is finite.

Continuing in the above manner, letting P = {x € P : wx < [I] —1}, and so on, we eventually
obtain a cutting-plane proof of some wz <t such that P N{z : wx <t} = 0.

With Farkas’ Lemma we then derive Oz < —1 from Az < b, wzr < t. O

Theorem 4 (Chvatal 1973, Gomory 1960). Let P = {z : Az < b} be a rational polytope and let
wzx < t be an inequality, with w integral, satisfied by all integral vectors in P. Then there exists a
cutting-plane proof of wx < t' from Az < b, for some t' < t.

Proof:

Let | = max{wz :x € P}, and let P = {z € P:wz < |I]}.
If |I| <t, we are done, so suppose not.

Consider the face F = {z € P: wz = [l]}.

Since t < ||, F' contains no integral points.

By the previous theorem, there exists a cuting-plane proof of 0z < —1 from Az < b, wx = |I].



e Using the lemma, we get a cutting-plane proof, from Az < b, wz < [l of an inequality
cx < |d] such that
Pni{z:cx <|d],wz =1} =0.

e Thus, after applying this sequence of cuts to P, we have wz < |I| — 1 as a GC cut.

e Continuing in this fashion, we finally derive an inequality wz < with ¢/ <. O

Chvatal Rank

e GC cuts have an interesting connection with the problem of finding linear descriptions of
combinatorial convex hulls.

e In this context, we do not think of cuts coming sequentially, as in cutting-plane proofs, but
rather in waves that provide successively tighter approximations to Pr, the convex hull of
integral points in P.

e Let P’ be the set of all points in P that satisfy every GC cut for P.
Theorem 5 (Schrijver 1980). If P is a rational polyhedron, then P’ is also a rational polyhedron.
Proof:
o Let P={x: Az < b} with A and b integral.
e Claim: P’ is defined by Az < b and all inequalities that can be written as
(yA)z < [yb)
for some vector y such that 0 <y < 1 and yA is integral.
e Note that this would give the result.
e So let wz < [t| be a GC cut, derived from Az < b with the nonnegative vector y.
o Lety =y — [y].
e Then w' =y'A=w— |y|A is integral.
e Moreover, t' = y'b =t — |y|b differs from ¢ by an integral amount.

e So the cut w'z < [t'] derived with v/, together with the valid inequality (|y|A)z < [y]b sum
to wx < t. OJ

Letting P(Y) = P and P® = (PU=D)’ we have

p=pPO>pl5pd5...5p

Theorem 6. If P is a rational polyhedron, then P*¥) = Py for some integer k.



The least k for which P*) = P; is called the Chvétal rank of P.

e In general, there is no upper bound on the Chvatal rank in terms of the dimension of the
polyhedron.

e For polytopes P C [0,1]?, the Chvatal rank is O(n?logn).

e If for a family of polyhedra P the problem max{wz : x € P} is NP-complete, then, assuming
NP # co-NP, there is no fixed k such that P*¥) = P; for all P.

Gomory’s Cutting-Plane Procedure
e Consider max{cx : Ax = b,x € Z} }.

e Given an (optimal) LP basis B, write the IP as

max cgB~ b+ g CjTj
jEN
s.t. rp, + E aijl'j:[;i 1=1,....,m
JEN

x; € L j=1....n

¢j <O0forall je N, b >0foralli=1,...,m.

If the LP solution is not integral, then there exists row i with b; ¢ Z.

The GC cut for row i is zp, + Z \@ij|zj < |bi].
JEN

Substitute for xp, to get Z(aij — |@ij|)z; > bi — |bi].
JEN

Or if fij = a;j — |ai;]), fi = b; — |bi], then

> fijaig > fi

JEN
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