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Cutting Plane Methods I 

Cutting Planes 

•	 Consider max{wx : Ax ≤ b, x integer}. 

•	 Establishing the optimality of a solution is equivalent to proving wx ≤ t is valid for all integral 
solutions of Ax ≤ b, where t is the maximum value. 

•	 Without the integrality restriction, we could prove the validity of wx ≤ t with the help of LP 
duality. 

•	 Our goal is to establish a similar method for integral solutions. 

• Consider the linear system 

2x1 + 3x2 ≤ 27 

2x1 − 2x2 ≤ 7 

−6x1 − 2x2 ≤ −9 

−2x1 − 6x2 ≤ −11 

−6x1 + 8x2 ≤ 21 

•	 As can easily be seen, every integral solution satisfies x2 ≤ 5. 

•	 However, we cannot derive this directly with LP duality because there is a fractional vector, 
(9/2, 6), with x2 = 6. 

•	 Instead, let us multiply the last inequality by 1/2: 

−3x1 + 4x2 ≤ 21/2. 

•	 Every integral solution satisfies the stronger inequality 

−3x1 + 4x2 ≤ 10,


obtained by rounding 21/2 down to the nearest integer.


•	 Multiplying this inequality by 2 and the first inequality by 3, and adding the resulting in­
equalities, gives:


17x2 ≤ 101.


•	 Multiplying by 1/17 and rounding down the right-hand side, we can conclude: 

x2 ≤ 5. 
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•	 In general, suppose our system consists of


aix ≤ bi i = 1, . . . ,m.


•	 Let y1, . . . , ym ≥ 0 and set 
m

c = yiai 

i=1 

and 
m

d = yibi. 
i=1 

•	 Trivially, every solution to Ax ≤ b satisfies cx ≤ d. 

•	 If c is integral, all integral solutions to Ax ≤ b also satisfy 

cx ≤ �d�. 

•	 cx ≤ �d� is called a Gomory-Chvátal cut (GC cut). 

•	 “Cut” because the rounding operation cuts off part of the original polyhedron. 

•	 GC cuts can also be defined directly in terms of the polyhedron P defined by Ax ≤ b: just 
take a valid inequality cx ≤ d for P with c integral and round down to cx ≤ �d�. 

•	 The use of the nonnegative numbers yi is to provide a derivation of cx ≤ �d�. With the yi’s 
in hand, we are easily convinced that cx ≤ d and cx ≤ �d� are indeed valid. 

Cutting-Plane Proofs 

•	 A cutting-plane proof of an inequality wx ≤ t from Ax ≤ b is a sequence of inequalities 

am+kx ≤ bm+k k = 1, . . . ,M 

together with nonnegative numbers 

yki k = 1, . . . ,M, i = 1, . . . ,m + k − 1 

such that for each k = 1, . . . ,M , the inequality am+kx ≤ bm+k is derived from 

aix ≤ bi i = 1, . . . ,m + k − 1 

using the numbers yki, i = 1, . . . ,m + k − 1, and such that the last inequality in the sequence 
is wx ≤ t. 

Theorem 1 (Chvátal 1973, Gomory 1960). Let P = {x : Ax ≤ b} be a rational polytope and let 
wx ≤ t be an inequality, with w integral, satisfied by all integral vectors in P . Then there exists a 
cutting-plane proof of wx ≤ t� from Ax ≤ b, for some t� ≤ t. 

Proof idea: • 
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– Push wx ≤ l into the polytope as far as possible. 

– Use induction to show that the face F induced by wx ≤ l contains no integral points. 

– Push the inequality to wx ≤ l − 1. 

– Continuing this, we eventually reach wx ≤ t. 

• Need technique to translate the cutting-plane proof on F to a proof on the entire polytope: 

Lemma 2. Let F be a face of a rational polytope P . If cx ≤ �d� is a GC cut for F , then there 
exists a GC cut c�x ≤ �d�� for P such that 

F ∩ {x : c�x ≤ �d��} = F ∩ {x : cx ≤ �d�}. 

Proof: 

• Let P = {x : A�x ≤ b�, A��x ≤ b��}, where A�� and b�� are integral. 

• Let F = {x : A�x ≤ b�, A��x = b��}. 

• We may assume that d = max{cx : x ∈ F }. 

• By LP duality, there exist vectors y� ≥ 0 and y�� such that 

y�A� + y��A�� = c 

y�b� + y��b�� = d. 

• To obtain a GC cut for P we must replace y�� by a vector that is nonnegative. 

• To this end, define 

c� = c − �y���A�� = y�A� + (y�� − �y���)A�� 

d� = d − �y���b�� = y�b� + (y�� − �y���)b�� 

• Then c� is integral, and c�x ≤ d� is a valid inequality for P . 

•	 Moreover, since �d� = �d�� + �y���b��, 

=F ∩ {x : c�x ≤ �d��} 

=F ∩ {x : c�x ≤ �d��, �y���A��x = �y���b��}
F ∩ {x : cx ≤ �d�}. 
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Theorem 3. Let P = {x : Ax ≤ b} be a rational polytope that contains no integral vectors. Then 
there exists a cutting-plane proof of 0x ≤ −1 from Ax ≤ b. 

Proof: 

Induction on the dimension of P .• 

•	 Theorem trivial if dim(P ) = 0. So assume dim(P ) ≥ 1. 

•	 Let wx ≤ l be an inequality, with w integral, that induces a proper face of P . 

•	 Let P ̄ = {x ∈ P : wx ≤ �l�}.


If P ̄ = ∅, then we can use Farkas’ Lemma to deduce 0x ≤ −1 from Ax ≤ b, wx ≤ �l�.
•


Suppose P ̄ = ∅, and let F = {x ∈ P ̄ : wx = �l�}.


•	 Note that dim(F ) < dim(P ). 

•	 By the induction hypothesis, there exists a cutting-plane proof of 0x ≤ −1 from Ax ≤ b, 
wx = �l�. 

•	 Using the lemma, we get a cutting-plane proof, from Ax ≤ b, wx ≤ �l� of an inequality 
cx ≤ �d� such that 

¯ P ∩ {x : cx ≤ �d�, wx = �l�} = ∅. 

Thus, after applying this sequence of cuts to P ̄, we have wx ≤ �l� − 1 as a GC cut. • 

•	 As P is bounded, min{wx : x ∈ P } is finite. 

•	 Continuing in the above manner, letting P ̄ = {x ∈ P : wx ≤ �l�−1}, and so on, we eventually 
obtain a cutting-plane proof of some wx ≤ t such that P ∩ {x : wx ≤ t} = ∅. 

•	 With Farkas’ Lemma we then derive 0x ≤ −1 from Ax ≤ b, wx ≤ t. 

Theorem 4 (Chvátal 1973, Gomory 1960). Let P = {x : Ax ≤ b} be a rational polytope and let 
wx ≤ t be an inequality, with w integral, satisfied by all integral vectors in P . Then there exists a 
cutting-plane proof of wx ≤ t� from Ax ≤ b, for some t� ≤ t. 

Proof: 

•	 Let l = max{wx : x ∈ P }, and let P ̄ = {x ∈ P : wx ≤ �l�}. 

•	 If �l� ≤ t, we are done, so suppose not.


Consider the face F = {x ∈ P ̄ : wx = �l�}.
• 

•	 Since t < �l�, F contains no integral points. 

•	 By the previous theorem, there exists a cuting-plane proof of 0x ≤ −1 from Ax ≤ b, wx = �l�. 
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•	 Using the lemma, we get a cutting-plane proof, from Ax ≤ b, wx ≤ �l� of an inequality 
cx ≤ �d� such that 

¯ P ∩ {x : cx ≤ �d�, wx = �l�} = ∅. 

Thus, after applying this sequence of cuts to P ̄, we have wx ≤ �l� − 1 as a GC cut. • 

•	 Continuing in this fashion, we finally derive an inequality wx ≤ t� with t� ≤ t. 

Chvátal Rank 

•	 GC cuts have an interesting connection with the problem of finding linear descriptions of 
combinatorial convex hulls. 

•	 In this context, we do not think of cuts coming sequentially, as in cutting-plane proofs, but 
rather in waves that provide successively tighter approximations to PI , the convex hull of 
integral points in P . 

•	 Let P � be the set of all points in P that satisfy every GC cut for P . 

Theorem 5 (Schrijver 1980). If P is a rational polyhedron, then P � is also a rational polyhedron. 

Proof: 

•	 Let P = {x : Ax ≤ b} with A and b integral. 

•	 Claim: P � is defined by Ax ≤ b and all inequalities that can be written as 

(yA)x ≤ �yb�


for some vector y such that 0 ≤ y < 1 and yA is integral.


•	 Note that this would give the result. 

•	 So let wx ≤ �t� be a GC cut, derived from Ax ≤ b with the nonnegative vector y. 

•	 Let y� = y − �y�. 

•	 Then w� = y�A = w − �y�A is integral. 

•	 Moreover, t� = y�b = t − �y�b differs from t by an integral amount. 

•	 So the cut w�x ≤ �t�� derived with y�, together with the valid inequality (�y�A)x ≤ �y�b sum 
to wx ≤ t. 

Letting P (0) = P and P (i) = (P (i−1))�, we have


P = P (0) ⊇ P (1) ⊇ P (2)
⊇ · · · ⊇ PI . 

Theorem 6. If P is a rational polyhedron, then P (k) = PI for some integer k. 
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The least k for which P (k) = PI is called the Chvátal rank of P . 

•	 In general, there is no upper bound on the Chvátal rank in terms of the dimension of the 
polyhedron. 

•	 For polytopes P ⊆ [0, 1]n, the Chvátal rank is O(n2 log n). 

•	 If for a family of polyhedra P the problem max{wx : x ∈ PI } is NP-complete, then, assuming 
NP = co-NP, there is no fixed � k such that P (k) = PI for all P . 

Gomory’s Cutting-Plane Procedure 

•	 Consider max{cx : Ax = b, x ∈ Zn 
+}. 

•	 Given an (optimal) LP basis B, write the IP as 

max cBB−1b + c̄j xj


j∈N


s.t.	 xBi + āij xj = ¯ bi i = 1, . . . ,m 
j∈N 

xj ∈ Z j = 1, . . . , n


c̄j ≤ 0 for all j ∈ N ; ¯ bi ≥ 0 for all i = 1, . . . ,m.
• 

•	 If the LP solution is not integral, then there exists row i with ¯ bi �∈ Z. 

•	 The GC cut for row i is xBi + �āij �xj ≤ � ̄  bi�. 
j∈N 

• Substitute for xBi to get (āij − �āij�)xj ≥ ¯ bi − � ̄  bi�.

j∈N


•	 Or if fij = āij − �āij �, fi = ¯ bi − � ̄  bi�, then 

fij xij ≥ fi. 
j∈N 
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