Lecture 15: Algebraic Geometry II

Today...

- Ideals in k[x]
- Properties of Gröbner bases
- Buchberger's algorithm
- Elimination theory
- The Weak Nullstellensatz
- 0/1-Integer Programming

The Structure of Ideals in k[x]

Theorem 1. If k is a field, then every ideal of k[x] is of the form $\langle f \rangle$ for some $f \in k[x]$. Moreover, f is unique up to multiplication by a nonzero constant in k.

Proof:

- If $I = \{0\}$, then $I = \langle 0 \rangle$. So assume $I \neq \{0\}$.
- Let f be a nonzero polynomial of minimum degree in I. Claim: $\langle f \rangle = I$.
- Clearly, $\langle f \rangle \subseteq I$. Let $g \in I$ be arbitrary.
- The division algorithm yields g = q f + r, where either r = 0 or $\deg(r) < \deg(f)$.
- I is an ideal, so $q f \in I$, and, thus, $r = g q f \in I$.
- By the choice of f, r = 0.
- But then $g = q f \in \langle f \rangle$.

Reminder: Gröbner Bases

• Fix a monomial order. A subset $\{g_1, \ldots, g_s\}$ of an ideal I is a *Gröbner basis* of I if

$$\langle LT(g_1), \ldots, LT(g_s) \rangle = \langle LT(I) \rangle.$$

• Equivalently, $\{g_1, \ldots, g_s\} \subseteq I$ is a Gröbner basis of I iff the leading term of any element in I is divisible by one of the $LT(g_i)$.

Properties of Gröbner Bases I

Theorem 2. Let $G = \{g_1, \ldots, g_s\}$ be a Gröbner basis for an ideal I, and let $f \in k[x_1, \ldots, x_n]$. Then the remainder r on division of f by G is unique, no matter how the elements of G are listed when using the division algorithm.

Proof:

- First, recall the following result: Let $I = \langle x^{\alpha} : \alpha \in A \rangle$ be a monomial ideal. Then a monomial x^{β} lies in I iff x^{β} is divisible by x^{α} for some $\alpha \in A$.
- Suppose $f = a_1g_1 + \dots + a_sg_s + r = a'_1g_1 + \dots + a'_sg_s + r'$ with $r \neq r'$.
- Then $r r' \in I$ and, thus, $LT(r r') \in \langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_s) \rangle$.
- The lemma implies that LT(r-r') is divisible by one of $LT(g_1), \ldots, LT(g_s)$.
- This is impossible since no term of r, r' is divisible by one of $LT(g_1), \ldots, LT(g_s)$.

S-Polynomials

- Let $I = \langle f_1, \ldots, f_t \rangle$.
- We show that, in general, $\langle LT(I) \rangle$ can be strictly larger than $\langle LT(f_1), \ldots, LT(f_t) \rangle$.
- Consider $I = \langle f_1, f_2 \rangle$, where $f_1 = x^3 2xy$ and $f_2 = x^2y 2y^2 + x$ with greex order.
- Note that

$$x\cdot(x^2y-2y^2+x)-y\cdot(x^3-2xy)=x^2,$$
 so $x^2\in I$. Thus $x^2=\mathrm{LT}(x^2)\in\langle\mathrm{LT}(I)\rangle.$

- However, x^2 is not divisible by $LT(f_1) = x^3$ or $LT(f_2) = x^2y$, so that $x^2 \notin \langle LT(f_1), LT(f_2) \rangle$.
- What happened?
- The leading terms in a suitable combination

$$ax^{\alpha}f_i - bx^{\beta}f_i$$

may cancel, leaving only smaller terms.

- On the other hand, $ax^{\alpha}f_i bx^{\beta}f_j \in I$, so its leading term is in $\langle LT(I) \rangle$.
- This is an "obstruction" to $\{f_1, \ldots, f_t\}$ being a Gröbner basis.
- Let $f, g \in k[x_1, \ldots, x_n]$ be nonzero polynomials with multideg $(f) = \alpha$ and multideg $(g) = \beta$.
- Let $\gamma_i = \max(\alpha_i, \beta_i)$. We call x^{γ} the least common multiple of LM(f) and LM(g).
- The S-polynomial of f and g is defined as

$$S(f,g) = \frac{x^{\gamma}}{\mathrm{LT}(f)} \cdot f - \frac{x^{\gamma}}{\mathrm{LT}(g)} \cdot g.$$

• An S-polynomial is designed to produce cancellation of leading terms.

Example:

- Let $f = x^3y^2 x^2y^3 + x$ and $g = 3x^4y + y^2$ with the grlex order.
- Then $\gamma = (4, 2)$.
- Moreover,

$$S(f,g) = \frac{x^4 y^2}{x^3 y^2} \cdot f - \frac{x^4 y^2}{3x^4 y} \cdot g$$
$$= x \cdot f - \frac{1}{3} y \cdot g$$
$$= -x^3 y^3 + x^2 - \frac{1}{3} y^3$$

- Consider $\sum_{i=1}^{t} c_i f_i$, where $c_i \in k$ and multideg $(f_i) = \delta \in \mathbb{Z}_+^n$ for all i.
- If multideg($\sum_{i=1}^{t} c_i f_i$) $< \delta$, then $\sum_{i=1}^{t} c_i f_i$ is a linear combination, with coefficients in k, of the S-polynomials $S(f_j, f_k)$ for $1 \le j, k \le t$.
- Moreover, each $S(f_j, f_k)$ has multidegree $< \delta$.

$$\sum_{i=1}^{t} c_i f_i = \sum_{j,k} c_{jk} S(f_j, f_k)$$

Properties of Gröbner Bases II

Theorem 3. A basis $G = \{g_1, \ldots, g_s\}$ for an ideal I is a Gröbner basis iff for all pairs $i \neq j$, the remainder on division of $S(g_i, g_j)$ by G is zero.

Sketch of proof:

- Let $f \in I$ be a nonzero polynomial. There are polynomials h_i such that $f = \sum_{i=1}^s h_i g_i$.
- It follows that $\operatorname{multideg}(f) \leq \max(\operatorname{multideg}(h_i g_i))$.
- If "<", then some cancellation of leading terms must occur.
- These can be rewritten as S-polynomials.
- The assumption allows us to replace S-polynomials by expressions that involve less cancellation.
- We eventually find an expression for f such that $\operatorname{multideg}(f) = \operatorname{multideg}(h_i g_i)$ for some i.
- It follows that LT(f) is divisible by $LT(g_i)$.
- This shows that $LT(f) \in \langle LT(g_1), \dots, LT(g_s) \rangle$.

Buchberger's Algorithm

- Consider $I = \langle f_1, f_2 \rangle$, where $f_1 = x^3 2xy$ and $f_2 = x^2y 2y^2 + x$ with griex order. Let $F = (f_1, f_2)$.
- $S(f_1, f_2) = -x^2$; its remainder on division by F is $-x^2$.
- Add $f_3 = -x^2$ to the generating set F.
- $S(f_1, f_3) = -2xy$; its remainder on division by F is -2xy.
- Add $f_4 = -2xy$ to the generating set F.
- $S(f_1, f_4) = -2xy^2$; its remainder on division by F is 0.
- $S(f_2, f_3) = -2y^2 + x$; its remainder is $-2y^2 + x$.
- Add $f_5 = -2y^2 + x$ to the generating set F.
- \bullet The resulting set F satisfies the "S-pair criterion," so it is a Gröbner basis.

Buchberger's Algorithm

The algorithm:

In:
$$F = (f_1, \dots, f_t)$$
 {defining $I = \langle f_1, \dots, f_t \rangle$ }

Out: Gröbner basis $G=(g_1,\ldots,g_s)$ for I, with $F\subseteq G$

- 1. G := F
- 2. REPEAT
- 3. G' := G
- 4. FOR each pair $p \neq q$ in G' DO
- 5. S := remainder of S(p,q) on division by G'
- 6. IF $S \neq 0$ THEN $G := G \cup \{S\}$
- 7. UNTIL G = G'

Buchberger's Algorithm

Proof of correctness:

• The algorithm terminates when G = G', which means that G satisfies the S-pair criterion. \square

Proof of finiteness:

• The ideals $\langle LT(G') \rangle$ from successive iterations form an ascending chain.

- Let us call this chain $J_1 \subset J_2 \subset J_3 \subset \cdots$.
- Their union $J = \bigcup_{i=1}^{\infty} J_i$ is an ideal as well. By Hilbert's Basis Theorem, it is finitely generated: $J = \langle h_1, \dots, h_r \rangle$.
- Each of the h_{ℓ} is contained in one of the J_i . Let N be the maximum such index i.
- Then $J = \langle h_1, \dots, h_r \rangle \subseteq J_N \subset J_{N+1} \subset \dots \subset J$.
- So the chain stabilizes with J_N , and the algorithm terminates after a finite number of steps.

Minimal Gröbner Basis

- Let G be a Gröbner basis for I, and let $p \in G$ be such that $LT(p) \in \langle LT(G \setminus \{p\}) \rangle$. Then $G \setminus \{p\}$ is also a Gröbner basis for I.
- \bullet A minimal Gröbner basis for an ideal I is a Gröbner basis G for I such that
 - 1. LC(p) = 1 for all $p \in G$.
 - 2. For all $p \in G$, $LT(p) \notin \langle LT(G \setminus \{p\}) \rangle$.
- A given ideal may have many minimal Gröbner bases. But we can single one out that is "better" than the others:
- A reduced Gröbner basis for an ideal I is a Gröbner basis G for I such that
 - 1. LC(p) = 1 for all $p \in G$.
 - 2. For all $p \in G$, no monomial of p lies in $\langle LT(G \setminus \{p\}) \rangle$.

Reduced Gröbner Basis

Lemma 4. Let $I \neq \{0\}$ be an ideal. Then, for a given monomial ordering, I has a unique reduced Gröbner basis.

(One can obtain a reduced Gröbner basis from a minimal one by replacing $g \in G$ by the remainder of g on division by $G \setminus \{g\}$, and repeating.)

Elimination Theory

- Systematic methods for eliminating variables from systems of polynomial equations.
- For example, consider

$$x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 + 15x_6 - 15 = 0, x_1^2 - x_1 = 0, \dots, x_6^2 - x_6 = 0.$$

- The reduced Gröbner basis with respect to lex order is $G = \{x_6^2 x_6, x_5 + x_6 1, x_4 + x_6 1, x_3 + x_6 1, x_2 + x_6 1, x_1 + x_6 1\}.$
- So the original system has exactly two solutions: $\bar{x} = (1, 1, 1, 1, 1, 0)$ or $\bar{x} = (0, 0, 0, 0, 0, 1)$

• Given $I = \langle f_1, \dots, f_s \rangle \subseteq k[x_1, \dots, x_n]$, the ℓ -th elimination ideal I_ℓ is the ideal of $k[x_{\ell+1}, \dots, x_n]$ defined by

$$I_{\ell} = I \cap k[x_{\ell+1}, \dots, x_n].$$

- I_{ℓ} consists of all consequences of $f_1 = f_2 = \cdots = f_s = 0$ which eliminate the variables x_1, \ldots, x_{ℓ} .
- Eliminating x_1, \ldots, x_ℓ means finding nonzero polynomials in I_ℓ .

Theorem 5. Let $I \subseteq k[x_1, ..., x_n]$ be an ideal, and let G be a Gröbner basis of I with respect to lex order where $x_1 > x_2 > \cdots > x_n$. Then, for every $0 \le \ell \le n-1$, the set

$$G_{\ell} = G \cap k[x_{\ell+1}, \dots, x_n]$$

is a Gröbner basis of the ℓ -th elimination ideal I_{ℓ} .

Proof:

- It suffices to show that $\langle LT(I_{\ell}) \rangle \subseteq \langle LT(G_{\ell}) \rangle$.
- We show that LT(f), for $f \in I_{\ell}$ arbitrary, is divisible by LT(g) for some $g \in G_{\ell}$.
- Note that LT(f) is divisible by LT(g) for some $g \in G$.
- Since $f \in I_{\ell}$, this means that LT(g) involves only $x_{\ell+1}, \ldots, x_n$.
- Any monomial involving x_1, \ldots, x_ℓ is greater than all monomials in $k[x_{\ell+1}, \ldots, x_n]$.
- Hence, $LT(g) \in k[x_{\ell+1}, \dots, x_n]$ implies $g \in k[x_{\ell+1}, \dots, x_n]$.
- Therefore, $g \in G_{\ell}$.

The Weak Nullstellensatz

• Recall that a variety $V \subseteq k^n$ can be studied via the ideal

$$I(V) = \{ f \in k[x_1, \dots, x_n] : f(x) = 0 \text{ for all } x \in V \}.$$

- This gives a map $V \longrightarrow I(V)$.
- On the other hand, given an ideal I,

$$V(I) = \{x \in k^n : f(x) = 0 \text{ for all } f \in I\}.$$

is an affine variety, by Hilbert's Basis Theorem.

- This gives a map $I \longrightarrow V(I)$.
- Note that the map "V" is not one-to-one: for example, $V(x) = V(x^2) = \{0\}.$
- Recall that k is algebraically closed if every nonconstant polynomial in k[x] has a root in k.

- Also recall that \mathbb{C} is algebraically closed (Fundamental Theorem of Algebra).
- Consider 1, $1 + x^2$, and $1 + x^2 + x^4$ in $\mathbb{R}[x]$. They generate different ideals:

$$I_1 = \langle 1 \rangle = \mathbb{R}[x], \quad I_2 = \langle 1 + x^2 \rangle, \quad I_3 = \langle 1 + x^2 + x^4 \rangle.$$

However, $V(I_1) = V(I_2) = V(I_3) = \emptyset$.

- This problem goes away in the one-variable case if k is algebraically closed:
- Let I be an ideal in k[x], where k is algebraically closed.
- Then $I = \langle f \rangle$, and V(I) are the roots of f.
- Since every nonconstant polynomial has a root, $V(I) = \emptyset$ implies that f is a nonzero constant.
- Hence, $1/f \in k$. Thus, $1 = (1/f) \cdot f \in I$.
- Consequently, $g \cdot 1 = g \in I$ for all $g \in k[x]$.
- It follows that I = k[x] is the only ideal of k[x] that represents the empty variety when k is algebraically closed.
- The same holds when there is more than one variable!

Theorem 6. Let k be an algebraically closed field, and let $I \subseteq k[x_1, ..., x_n]$ be an ideal satisfying $V(I) = \emptyset$. Then $I = k[x_1, ..., x_n]$.

(Can be thought of as the "Fundamental Theorem of Algebra for Multivariate Polynomials:" every system of polynomials that generates an ideal smaller than $\mathbb{C}[x_1,\ldots,x_n]$ has a common zero in \mathbb{C}^n .)

• The system

$$f_1 = 0, f_2 = 0, \dots, f_s = 0$$

does not have a common solution in \mathbb{C}^n iff $V(f_1,\ldots,f_s)=\emptyset$.

- By the Weak Nullstellensatz, this happens iff $1 \in \langle f_1, \dots, f_s \rangle$.
- Regardless of the monomial ordering, $\{1\}$ is the only reduced Gröbner basis for the ideal $\langle 1 \rangle$.

Proof:

- Let g_1, \ldots, g_s be a Gröbner basis of $I = \langle 1 \rangle$.
- Thus, $1 \in \langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_s) \rangle$.
- Hence, 1 is divisible by some $LT(g_i)$, say $LT(g_1)$.
- So $LT(g_1)$ is constant.
- Then every other $LT(g_i)$ is a multiple of that constant, so g_2, \ldots, g_s can be removed from the Gröbner basis.

• Since $LT(g_1)$ is constant, g_1 itself is constant.

0/1-Integer Programming: Feasibility

• Normally,

$$\sum_{j=1}^{n} a_{ij} x_j = b_i$$

$$i = 1, \dots m$$

$$x_j \in \{0, 1\}$$

$$j = 1, \dots, n$$

• Equivalently,

$$f_i := \sum_{j=1}^n a_{ij} x_j - b_i = 0$$
 $i = 1, ..., m$
 $g_j := x_j^2 - x_j = 0$ $j = 1, ..., m$

An algorithm:

In:
$$A \in \mathbb{Z}^{m \times n}$$
, $b \in \mathbb{Z}^m$

Out: a feasible solution \bar{x} to $Ax = b, x \in \{0, 1\}^n$

1.
$$I := \langle f_1, \ldots, f_m, g_1, \ldots, g_n \rangle$$

2. Compute a Gröbner basis G of I using lex order

3. IF
$$G = \{1\}$$
 THEN

4. "infeasible"

5. ELSE

6. Find
$$\bar{x}_n$$
 in $V(G_{n_1})$

7. FOR
$$l = n - 1$$
 TO 1 DO

8. Extend
$$(\bar{x}_{l+1}, \dots, \bar{x}_n)$$
 to $(\bar{x}_l, \dots, \bar{x}_n) \in V(G_{l-1})$

Example:

• Consider

$$x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 + 15x_6 = 15$$

 $x_1, x_2, \dots, x_6 \in \{0, 1\}$

- The reduced Gröbner basis is $G = \{x_6^2 x_6, x_5 + x_6 1, x_4 + x_6 1, x_3 + x_6 1, x_2 + x_6 1, x_1 + x_6 1\}$
- $G_5 = \{x_6^2 x_6\}$, so $\bar{x}_6 = 0$ and $\bar{x}_6 = 1$ are possible solutions

• We get
$$\bar{x} = (1, 1, 1, 1, 1, 0)$$
 or $\bar{x} = (0, 0, 0, 0, 0, 1)$

Structural insights:

- The polynomials in the reduced Gröbner basis can be partitioned into n sets:
 - S_n contains only one polynomial, which is either x_n , $x_n 1$, or $x_n^2 x_n$.
 - $-S_i$, for $1 \leq i \leq n-1$, contains polynomials in x_n, \ldots, x_i .
- Similar to row echelon form in Gaussian elimination.
- Allows solving the system variable by variable.

Example:

• Consider

$$x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 = 6, \quad x_1, \dots, x_5 \in \{0.1\}$$

• The reduced Gröbner basis is

$$\left\{x_5^2 - x_5, x_4 x_5, x_4^2 - x_4, x_3 + x_4 + x_5 - 1, x_2 + x_5 - 1, x_1 + x_4 + x_5 - 1\right\}$$

• The sets are

$$S_5 = \{x_5^2 - x_5\}$$

$$S_4 = \{x_4x_5, x_4^2 - x_4\}$$

$$S_3 = \{x_3 + x_4 + x_5 - 1\}$$

$$S_2 = \{x_2 + x_5 - 1\}$$

$$S_1 = \{x_1 + x_4 + x_5 - 1\}$$

0/1-Integer Programming: Optimization

Modify the algorithm as follows:

- Let $h = y \sum_{j=1}^{n} c_j x_j$.
- Consider $k[x_1, \ldots, x_n, y]$ and $V(f_1, \ldots, f_m, g_1, \ldots, g_m, h)$.
- Use lex order with $x_1 > \cdots > x_n > y$.
- The reduced Gröbner basis is either $\{1\}$ or its intersection with k[y] is a polynomial in y.
- Every root of this polynomial is an objective function value that can be feasibly attained.
- Find the minimum root, and work backwards to get the associated values of x_n, \ldots, x_1 . Example:
- $\min \{x_1 + 2x_2 + 3x_3 : x_1 + 2x_2 + 2x_3 = 3, x_1, \dots, x_3 \in \{0, 1\}\}.$
- The reduced Gröbner basis is

$$\{12-7y+y^2, 3+x_3-y, -4+x_2+y, 1-x_1\}.$$

- The two roots of $12 7y + y^2$ are 3 and 4.
- The minimum value is y = 3, and the corresponding solution is (1, 1, 0).

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.