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Lecture 15: Algebraic Geometry II

Today...

e Ideals in k[x]

Properties of Grobner bases

Buchberger’s algorithm
e Elimination theory
e The Weak Nullstellensatz

e 0/1-Integer Programming

The Structure of Ideals in k[z]

Theorem 1. Ifk is a field, then every ideal of k[x] is of the form (f) for some f € k[x|. Moreover,
f is unique up to multiplication by a nonzero constant in k.

Proof:
o If I = {0}, then I = (0). So assume I # {0}.

e Let f be a nonzero polynomial of minimum degree in I. Claim: (f) = I.

Clearly, (f) C I. Let g € I be arbitrary.

e The division algorithm yields g = ¢ f + r, where either » = 0 or deg(r) < deg(f).

Iis anideal, so ¢ f € I, and, thus, r=g—q f € 1.

e By the choice of f, r =0.

e But then g =q f € (f). O
Reminder: Grobner Bases

e Fix a monomial order. A subset {gi1,...,gs} of an ideal I is a Grébner basis of I if

(LT(g1), ..., LT(gs)) = (LT(I)).

e Equivalently, {g1,...,9s} C I is a Grobner basis of I iff the leading term of any element in
is divisible by one of the LT(g;).



Properties of Grobner Bases I

Theorem 2. Let G = {g1,...,9s} be a Grébner basis for an ideal I, and let f € k[x1,...,xp].
Then the remainder r on division of f by G is unique, no matter how the elements of G are listed
when using the division algorithm.

Proof:

First, recall the following result: Let I = (z“ : @ € A) be a monomial ideal. Then a monomial
2P lies in I iff 2P is divisible by z® for some a € A.

Suppose f = aigi + -+ asgs + 1 = ayg1 + -+ + algs + ' with r £ 1’
Then r — ' € I and, thus, LT(r —r’) € (LT(I)) = (LT(g1),...,LT(gs))-
The lemma implies that LT(r — r’) is divisible by one of LT(g),...,LT(gs)-

This is impossible since no term of r, ' is divisible by one of LT(g1), ..., LT(gs)- O

S-Polynomials

Let I =(f1,..., fy)

We show that, in general, (LT([)) can be strictly larger than (LT(f1),...,LT(f)).
Consider I = (f1, fo), where f; = 2% — 22y and fo = 2%y — 2y? + 2 with grlex order.

Note that
2

v (@Y — 27 +3) —y- (2P — 2y) = a2,
so 22 € I. Thus 2% = LT(2?) € (LT(I)).
However, 22 is not divisible by LT(f1) = 2% or LT(f2) = 22y, so that 22 ¢ (LT(f1),LT(f2)).
What happened?
The leading terms in a suitable combination
az® f; — bal f;
may cancel, leaving only smaller terms.

On the other hand, az®f; — bz? f; € I, so its leading term is in (LT(I)).

This is an “obstruction” to {fi,..., fi} being a Grébner basis.

Let f,g € k[x1,...,z,] be nonzero polynomials with multideg(f) = o and multideg(g) = 5.
Let ; = max(«;, 5;). We call 27 the least common multiple of LM(f) and LM(g).

The S-polynomial of f and g is defined as
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An S-polynomial is designed to produce cancellation of leading terms.

Example:

Let f = 23y? — 229® + z and g = 32*y + y? with the grlex order.

Then v = (4, 2).
Moreover,
4,2 4,2
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Consider 2221 cifi, where ¢; € k and multideg(f;) = 6 € Z'} for all i.

If multideg(zj:1 ¢ifi) < 9, then 22:1 ¢; fi i1s a linear combination, with coefficients in k, of
the S-polynomials S(f;, f) for 1 < j,k < t.

Moreover, each S(fj, fr) has multidegree < 6.
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Theorem 3. A basis G = {g1,...,9s} for an ideal I is a Grébner basis iff for all pairs i # j, the
remainder on division of S(gi,gj) by G is zero.

Sketch of proof:

Let f € I be a nonzero polynomial. There are polynomials h; such that f =>"7 | h;g;.
It follows that multideg(f) < max(multideg(h;g;)).

If “<”, then some cancellation of leading terms must occur.

These can be rewritten as S-polynomials.

The assumption allows us to replace S-polynomials by expressions that involve less cancella-
tion.

We eventually find an expression for f such that multideg(f) = multideg(h;g;) for some 1.
It follows that LT(f) is divisible by LT(g;).

This shows that LT(f) € (LT(g1),...,LT(gs))- O



Buchberger’s Algorithm

e Consider I = (f1, fa), where f; = 23 — 22y and fo» = 2%y — 2y? + x with grlex order. Let
F = (fl) f2)

e S(f1, fo) = —a?; its remainder on division by F is —x2.

e Add f3 = —2? to the generating set F.

e S(f1,f3) = —2xy; its remainder on division by F' is —2zy.
e Add fy = —2xy to the generating set F'.

e S(f1, f1) = —2wy?; its remainder on division by F is 0.

e S(fo, f3) = —2y% + x; its remainder is —2y2 + .

e Add f5 = —2y® + x to the generating set F.

i

e The resulting set F' satisfies the “S-pair criterion,” so it is a Grobner basis.

Buchberger’s Algorithm
The algorithm:

In: F=(f1,..., [ {defining I = (f1,..., f)}

Out: Grobner basis G = (¢1,...,9s) for I, with F C G

1. G =F
2. REPEAT
3. G =G

4. FOR each pair p # ¢ in G’ DO
5. S := remainder of S(p, q) on division by G’
6. IF S # 0 THEN G := G U {S}

7. UNTIL G =&

Buchberger’s Algorithm
Proof of correctness:

e The algorithm terminates when G = G’, which means that G satisfies the S-pair criterion. [
Proof of finiteness:

e The ideals (LT(G")) from successive iterations form an ascending chain.



Let us call this chain J; C Jo C J3 C ---.

Their union J = U2, J; is an ideal as well. By Hilbert’s Basis Theorem, it is finitely generated:
J={(h1,...,hy).

Each of the hy is contained in one of the J;. Let N be the maximum such index 1.

ThenJ:<h1,...,h7~>gJNCJN_HC"'CJ.

So the chain stabilizes with Jy, and the algorithm terminates after a finite number of steps.
O

Minimal Grobner Basis

e Let G be a Grobner basis for I, and let p € G be such that LT(p) € (LT(G \ {p})). Then
G \ {p} is also a Grobner basis for I.

o A minimal Grébner basis for an ideal I is a Grobner basis G for I such that

1. LC(p) =1 for all p € G.
2. For all p € G, LT(p) ¢ (LT(G \ {p})).

e A given ideal may have many minimal Grébner bases. But we can single one out that is
“better” than the others:

o A reduced Grébner basis for an ideal I is a Grobner basis G for I such that

1. LC(p) =1 for all p € G.
2. For all p € G, no monomial of p lies in (LT(G \ {p})).

Reduced Grobner Basis

Lemma 4. Let I # {0} be an ideal. Then, for a given monomial ordering, I has a unique reduced
Groébner basis.

(One can obtain a reduced Grobner basis from a minimal one by replacing g € G by the remainder of g on

division by G \ {g}, and repeating.)
Elimination Theory
e Systematic methods for eliminating variables from systems of polynomial equations.
e For example, consider
xl+2x2+3x3+4x4+5x5+15x6—15:O,x%—x1 :O,...,mg—xe = 0.

e The reduced Grobner basis with respect to lex order is G = {:U% — X6, T5 + g — 1,24 + Tg —
l,zs+ax6— 1,20 +26 — 1,21 + 26 — 1}.

e So the original system has exactly two solutions: z = (1,1,1,1,1,0) or z = (0,0,0,0,0,1)



Given I = (f1,..., fs) C klz1,...,zy], the {-th elimination ideal Iy is the ideal of k[xyy1, .. ., xy)
defined by
Iy=1nN k[l’g_H, e :cn]

Iy consists of all consequences of fi = fo = -+ = fs = 0 which eliminate the variables
0 P i/
Eliminating 1, ..., x; means finding nonzero polynomials in I;.

Theorem 5. Let I C k[z1,...,x,] be an ideal, and let G be a Grobner basis of I with respect to
lex order where x1 > xo > -+ > xy. Then, for every 0 < £ <n —1, the set

Gy = Gﬂk[a}prl,...,xn]

is a Grobner basis of the £-th elimination ideal I.

Proof:

The

It suffices to show that (LT(1;)) C (LT(Gy)).

We show that LT(f), for f € I, arbitrary, is divisible by LT(g) for some g € Gy.
Note that LT(f) is divisible by LT (g) for some g € G.

Since f € Iy, this means that LT(g) involves only z¢i1,...,Zy.

Any monomial involving z1, ..., x, is greater than all monomials in k[zy1,...,2z,].
Hence, LT(g) € klxyt1,-..,xy) implies g € k[zoy1, ..., Tn).

Therefore, g € Gy. O

Weak Nullstellensatz
Recall that a variety V' C k™ can be studied via the ideal
I(V)={f€klzr,...,xn): f(x) =0forall z € V}.
This gives a map V — I(V).
On the other hand, given an ideal I,
VI)={ze€k™: f(x)=0forall fel}.
is an affine variety, by Hilbert’s Basis Theorem.
This gives a map [ — V/(I).
Note that the map “V” is not one-to-one: for example, V (x) = V(z?) = {0}.

Recall that k is algebraically closed if every nonconstant polynomial in k[x| has a root in k.



Also recall that C is algebraically closed (Fundamental Theorem of Algebra).
Consider 1, 1 + 22, and 1 + 22 + 2% in R[z]. They generate different ideals:
L=(1)=Rz], L=+ I={1+z>+2.
However, V(I) = V(I3) =V (I3) = 0.
This problem goes away in the one-variable case if k is algebraically closed:
Let I be an ideal in k[z], where k is algebraically closed.
Then I = (f), and V(I) are the roots of f.
Since every nonconstant polynomial has a root, V(I) = () implies that f is a nonzero constant.
Hence, 1/f € k. Thus, 1 = (1/f)- f € I.
Consequently, g- 1 =g € I for all g € k[x].

It follows that I = k[z] is the only ideal of k[x] that represents the empty variety when k is
algebraically closed.

The same holds when there is more than one variable!

Theorem 6. Let k be an algebraically closed field, and let I C k[xy,...,xz,] be an ideal satisfying
V(I)=0. Then I = k[z1,...,z,).

(Can be thought of as the “Fundamental Theorem of Algebra for Multivariate Polynomials:” every system of

polynomials that generates an ideal smaller than Clz1,...,z,] has a common zero in C".)

The system
fi=0,fa=0,...,fs=0

does not have a common solution in C™ iff V(fy,..., fs) = 0.
By the Weak Nullstellensatz, this happens iff 1 € (f,..., fs).

Regardless of the monomial ordering, {1} is the only reduced Grébner basis for the ideal (1).

Proof:

Let g1,...,gs be a Grobner basis of I = (1).
Thus, 1 € (LT({)) = (LT(g1),--.,LT(gs))-
Hence, 1 is divisible by some LT(g;), say LT(g1).
So LT(g1) is constant.

Then every other LT(g;) is a multiple of that constant, so ga, ..., gs can be removed from the
Grobner basis.

Since LT (g1) is constant, g; itself is constant. O



0/1-Integer Programming: Feasibility

e Normally,
n
Zaijznj:bi i:1,...m
j=1
xzj € {0,1} j=1,...,n
e Equivalently,
n
fi::Zaijxj—bizo izl,...m
j=1
g;=1j ;=0 j=1,...n

An algorithm:
In: AeZm=n bezm
Out: a feasible solution z to Az =b, x € {0,1}"

Lo I={fi, s fmrGis--s9n)

\V)

. Compute a Grobner basis G of I using lex order

w

. IF G = {1} THEN

4. “infeasible”

5. ELSE

6. Find z,, in V(G,,)

7. FORI=n—-1TO 1DO

8. Extend (Z4+1,...,%n) to (Z1,...,%,) € V(Gi—1)
Example:

e Consider

r1 + 229 + 3x3 + 44 + Dxs + 1526 = 15
r1,T2,...,Te € {0,1}

The reduced Groébner basis is G = {x% —xg, x5 +x6 — 1,24 + a6 — 1,23 + 26 — 1,20 + 6 —
1,21 4+ 6 — 1}

G5 = {22 — 26}, so T = 0 and Zg = 1 are possible solutions

We get Z = (1,1,1,1,1,0) or z = (0,0,0,0,0,1)



Structural insights:
e The polynomials in the reduced Grébner basis can be partitioned into n sets:

— S, contains only one polynomial, which is either x,, x, — 1, or 2 — z,.

— 5;, for 1 <4 <n—1, contains polynomials in x,, ..., z;.
e Similar to row echelon form in Gaussian elimination.
e Allows solving the system variable by variable.

Example:

e Consider
x1 + 2w9 + 3x3 + 4wy + 625 =6, w1,...,25 € {0.1}

e The reduced Grobner basis is
2 2
{x5 — T5,T4T5, Ty — T4, T3 + Ta+ 25 — 1,20+ 25 — 1,21 + 24 + 5 — 1}

e The sets are

S5 = {x}- a5}

Sy = {wyxs,z?— x4}

Ss = {zg+x4+xz5—1}
Sy = {xa+a5-1}

St = {xi+xa+as -1}

0/1-Integer Programming: Optimization
Modify the algorithm as follows:

o Let h=y— Z?:l CjT;.

e Consider k[z1,...,zn,y] and V(f1,..., fm:s 915+ Gm, h).

Use lex order with 1 > --- >z, > y.

The reduced Grébner basis is either {1} or its intersection with k[y| is a polynomial in y.
e Every root of this polynomial is an objective function value that can be feasibly attained.

e Find the minimum root, and work backwards to get the associated values of z,,...,x].
Example:

° min{xl + 2x9 + 323 : w1 + 229 + 223 = 3, 21,...,73 € {0,1}}.
e The reduced Groébner basis is

{12—7y—|—y2,3+x3 —y,—4+z2 49,1 —iL'l}.
e The two roots of 12 — 7y + y? are 3 and 4.

e The minimum value is y = 3, and the corresponding solution is (1, 1,0).
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