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6.859/15.083 Integer Programming and Combinatorial Optimization	 Fall 2009


Lecture  Algebraic Geometry I 

Today... 

•	 0/1-integer programming and systems of polynomial equations 

•	 The division algorithm for polynomials of one variable 

•	 Multivariate polynomials


Ideals and affine varieties
• 

•	 A division algorithm for multivariate polynomials


Dickson’s Lemma for monomial ideals
• 

Hilbert Basis Theorem • 

Gröbner bases • 

0/1-Integer Programming Feasibility 

•	 Normally, 

n

aij xj = bi i = 1, . . . m 
j=1 

xj ∈ {0, 1}	 j = 1, . . . , n 

•	 Equivalently, 

n

aij xj − bi = 0 i = 1, . . . m 
j=1 

xj 
2 − xj = 0 j = 1, . . . , n 

•	 Motivates study of systems of polynomial equations 

Refresher: Polynomials of One Variable 
Some basics: 

Let f = a0x
m + a1x

m−1 + + am, where a0 = 0. •	 · · · �

•	 We call m the degree of f , written m = deg(f). 

m	 m •	 We say a0x is the leading term of f , written LT(f) = a0x . 

•	 For example, if f = 2x3 − 4x + 3, then deg(f) = 3 and LT(f) = 2x3 . 
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•	 If f and g are nonzero polynomials, then


deg(f) ≤ deg(g) ⇐⇒ LT(f) divides LT(g).


The Division Algorithm:


In: g, f 

Out: q, r such that f = q g + r and r = 0 or deg(r) < deg(g) 

1.	 q := 0; r := f 

2. WHILE r = 0 AND LT(�	 g) divides LT(r) DO 

3. q := q + LT(r)/LT(g) 

4. r := r − (LT(r)/LT(g))g 

Polynomials of More than One Variable 
Fields: 

•	 A field consists of a set k and two binary operations “·” and “+” which satisfy the following 
conditions: 

–	 (a + b) + c = a + (b + c) and (a b) c = a (b c),· · · · 
–	 a + b = b + a and a b = b a,· · 
–	 a (b + c) = a b + a c,· · · 
–	 there are 0, 1 ∈ k such that a + 0 = a 1 = a,· 
–	 given a ∈ k there is b ∈ k such that a + b = 0, 

–	 given a ∈ k, a = 0, there is � c ∈ k such that a · c = 1. 

• Examples include Q, R, and C.


Monomials:


•	 A monomial in x1, . . . , xn is a product of the form 

α1 α2 αnx1 x2 · . . . xn ,· · 

with α1, . . . , αn ∈ Z+. 

•	 We also let α := (α1, . . . , αn) and set


x α := x1 
α1 x2 

α2 · . . . xn
αn .
· · 

•	 The total degree of xα is |α| := α1 + · · · + αn. 

Polynomials:
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•	 A polynomial in x1, . . . , xn is a finite linear combination of monomials, 

f = aαx α , 
α∈S 

where aα ∈ k for all α ∈ S, and S ⊆ Zn is finite. + 

•	 The set of all polynomials in x1, . . . , xn with coefficients in k is denoted by k[x1, . . . , xn]. 

•	 We call aα the coefficient of the monomial xα . 

If aα = 0, then aαxα is a term of f . 

The total degree of f , deg(f), is the maximum α such that aα = 0. 

Example:


f = 2x3y2z + 3 y3z3 − 3xyz + y2
•	 2 

•	 Four terms, total degree six 

•	 Two terms of max total degree, which cannot happen in one variable 

•	 What is the leading term? 

Orderings on the Monomials in k[x1, . . . , xn] 

•	 For the division algorithm on polynomials in one variable, · · · > xm+1 > xm > · · · > x2 > 
x > 1. 

•	 In Gaussian elimination for systems of linear equations, x1 > x2 > · · · > xn. 

•	 Note that there is a one-to-one correspondence between the monomials in k[x1, . . . , xn] and 
Zn 

+. 

•	 A monomial ordering on k[x1, . . . , xn] is any relation > on Z+ 
n that satisfies 

1.	 > is a total ordering, 
2. if α > β and γ ∈ Zn , then α + γ > β + γ,+

3. every nonempty subset of Zn has a smallest element under >.+ 

Examples of Monomial Orderings 

•	 Lex Order: For α, β ∈ Zn 
+, α >lex β if the left-most nonzero entry of α − β is positive. We 

write xα >lex x
β if α >lex β. 

–	 For example, (1, 2, 0) >lex (0, 3, 4) and (3, 2, 4) >lex (3, 2, 1). 

–	 Also, x1 >lex x 52x 33. 

•	 Graded Lex Order: For α, β ∈ Z+
n , α >grlex β if |α| > |β| or |α| = |β| and α >lex β. 

–	 For example, (1, 2, 3) >grlex (3, 2, 0) and (1, 2, 4) >grlex (1, 1, 5). 
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Further Definitions 
Let f = α aαxα be a nonzero polynomial in k[x1, . . . , xn] and let > be a monomial order. 

•	 The multidegree of f is


multideg(f) := max {α ∈ Zn : aα = 0}.
+ 

•	 The leading coefficient of f is

LC(f) := amultideg(f ).


•	 The leading monomial of f is 
multideg(f )
LM(f) := x .


•	 The leading term of f is

LT(f) := LC(f) LM(f).
· 

Example 
Let f = 4xy2z + 4z2 − 5x3 + 7x2z2 and let > denote the lex order. Then 

multideg(f) = (3, 0, 0), 

LC(f) = −5, 

LM(f) = x 3 

LT(f) = −5x 3 . 

The Basic Algebraic Object of this Lecture 

• A subset I ⊆ k[x1, . . . xn] is an ideal if it satisfies: 

1. 0 ∈ I, 

2. if f, g ∈ I, then f + g ∈ I, 

3. if f ∈ I and h ∈ k[x1, . . . xn], then h f ∈ I. 

• Let f1, . . . , fs ∈ k[x1, . . . xn]. Then 

s

�f1, . . . , fs� := hi fi : h1, . . . , hs ∈ k[x1, . . . xn] 
i=1 

is an ideal of k[x1, . . . xn]. (We call it the ideal generated by f1, . . . , fs.) 

• An ideal I is finitely generated if I = �f1, . . . , fs�, and we say that f1, . . . , fs are a basis of I. 
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Polynomial Equations 
Given f1, . . . , fs ∈ k[x1, . . . xn], we get the system of equations 

f1 = 0, . . . , fs = 0. 

If we multiply the first equation by h1, the second one by h2, and so on, we obtain 

h1f1 + h2f2 + + hsfs = 0,· · · 

which is a consequence of the original system. 

Thus, we can think of �f1, . . . , fs� as consisting of all “polynomial consequences” of f1 = f2 = 
= fs = 0. · · · 

•	 Let f1, . . . , fs ∈ k[x1, . . . xn]. Then we set


V (f1, . . . , fs) := {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0, i = 1, . . . , s}


and call V (f1, . . . , fs) an affine variety. 

•	 If �f1, . . . , fs� = �g1, . . . , gt�, then V (f1, . . . , fs) = V (g1, . . . , gt). 

•	 Let V ⊆ kn be an affine variety. Then we set


I(V ) := {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.


•	 If V is an affine variety, then I(V ) is an ideal. 

Driving Questions 

•	 Does every ideal have a finite generating set? 

•	 Given f ∈ k[x1, . . . , xn] and I = �f1, . . . , fs�, is f ∈ I? 

•	 Find all solutions in kn of a system of polynomial equations


f1(x1, . . . , xn) = = fs(x1, . . . , xn) = 0.
· · · 

•	 Find a “nice” basis for �f1, . . . , fs�. 

A Division Algorithm in k[x1, . . . , xn] 

• Goal: Divide f	 by f1, . . . , fs. 

•	 Example 1: Divide f = xy2 + 1 by f1 = xy + 1 and f2 = y + 1, using lex order with x > y. 
This leads to


xy 2 + 1 = y (xy + 1) + (−1) (y + 1) + 2.
·	 · 

•	 Example 2a: Divide f = x2y + xy2 + y2 by f1 = xy − 1 and f2 = y2 − 1, using lex order with 
x > y. This eventually leads to 

x 2 y + xy 2 + y 2 = (x + y) (xy − 1) + 1 (y 2 − 1) + x + y + 1.· · 
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Theorem 1. Fix a monomial order on Zn , and let (f1, . . . , fs) be an ordered tuple of polynomials +

in k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn] can be written as 

f = a1 + asfs + r, · · · 

where ai, r ∈ k[x1, . . . , xn], and either r = 0 or r is a linear combination, with coefficients in k, of 
monomials, none of which is divisible by any of LT(f1), . . . , LT(fs). 

We call r a remainder of f on division by (f1, . . . , fs). If aifi = 0� , then 

multideg(f) ≥ multideg(aifi). 

1.	 a1 := 0; . . . , as := 0; r := 0 

2.	 p := f 

3. WHILE p = 0 DO �

4. i := 1 

5. WHILE i ≤ s AND no division occurred DO 

6. IF LT(fi) divides LT(p) THEN 

7. ai := ai + LT(p)/LT(fi) 

8. p := p − (LT(p)/LT(fi))fi 

9. ELSE 

10. i := i + 1 

11. IF no division occured THEN 

12. r := r + LT(p) 

13. p := p − LT(p) 

More Examples 

•	 Example 2b: Divide f = x2y + xy2 + y2 by f1 = y2 − 1 and f2 = xy − 1, using lex order with 
x > y. This leads to 

x 2 y + xy 2 + y 2 = (x + 1) (y 2 − 1) + x (xy − 1) + 2x + 1.· · 

•	 The remainder is different from the one in Example 2a! 

•	 Example 3a: Divide f = xy2 − x by f1 = xy + 1 and f2 = y2 − 1 with the lex order. The 
result is


xy 2 − x = y (xy + 1) + 0 (y 2 − 1) + (−x − y).
· · 

• Example 3b: Divide f = xy2 − x by f1 = y2 − 1 and f2 = xy + 1 with the lex order. The 
result is


xy 2 − x = x (y 2 − 1) + 0 (xy + 1) + 0.
· · 

•	 The second calculation shows f ∈ �f1, f2�, but the first does not! 
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Monomial Ideals 

An ideal I is a monomial ideal	 if there is A ⊆ Zn such that I consists of all finite sums 

α∈A hαxα . We write I = �xα : α ∈ A�. 

•	 Let I = �xα : α ∈ A�. Then xβ ∈ I iff xβ is divisible by xα for some α ∈ A. 

•	 xβ is divisible by xα iff β = α + γ for some γ ∈ Zn Thus, +. 

α + Zn 
+ 

consists of the exponents of all monomials divisible by xα . 

•	 If I is a monomial ideal, then f ∈ I iff every term of f lies in I. 

Dickson’s Lemma 

•	 Let A ⊆ Zn Then+. 

 
(α + Zn )+

α∈A


can be expressed as the union of a finite subset of the α + Zn

+. 

•	 A monomial ideal I = �xα : α ∈ A� can be written in the form I = �xα(1), . . . , xα(s)�, where 
α(1), . . . , α(s) ∈ A. 

Hilbert Basis Theorem: Preliminaries 
Let I ⊆ k[x1, . . . , xn] be an ideal other than {0}. 

•	 Let LT(I) = the set of leading terms of elements in I. 

•	 �LT(I)� is a monomial ideal. 

•	 There are g1, . . . , gs ∈ I such that


�LT(I)� = �LT(g1), . . . , LT(gs)�.


Hilbert Basis Theorem 

Theorem 2 (Hilbert 1888). Every ideal I ⊆ k[x1, . . . , xn] has a finite generating set. That is, 
I = �g1, . . . , gs� for some g1, . . . , gs ∈ I. 

Hilbert Basis Theorem: Proof 

Let I = {0}. Recall that �LT(I)� = �LT(g1), . . . , LT(gs)�. 

•	 Claim: �I� = �g1, . . . , gs�. 
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•	 Let f ∈ I. If we divide f by g1, . . . , gs, we get


f = a1g1 + + asgs + r,
· · · 

where no term of r is divisible by any of LT(g1), . . . , LT(gs).


Claim: r = 0.
•


Suppose r = 0. Note that r ∈ I.


•	 Hence, LT(r) ∈ �LT(I)� = �LT(g1), . . . , LT(gs)�. 

•	 So LT(r) must be divisible by some LT(gi). Contradiction! 

•	 Thus, f = a1g1 + · · · + asgs, which shows I ⊆ �g1, . . . , gs�. 

Gröbner Bases 
Fix a monomial order. 

•	 A subset {g1, . . . , gs} of an ideal I is called a Gröbner basis if


�LT(I)� = �LT(g1), . . . , LT(gs)�.


•	 Equivalently, {g1, . . . , gs} is a Gröbner basis of I iff the leading term of any element in I is 
divisible by one of the LT(gi). 

Note that every ideal I = {0} has a Gröbner basis. Moreover, any Gröbner basis of I is a •	
basis of I. 

�

Next Time 

•	 Properties of Gröbner bases 

•	 Computation of Gröbner bases (Buchberger’s Algorithm) 

•	 Solving 0/1-integer programs 

•	 Solving (general) integer programs 
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