6.859/15.083 Integer Programming and Combinatorial Optimization Fall 2009

Lecture14: Algebraic Geometry I

Today...

e (0/l-integer programming and systems of polynomial equations
e The division algorithm for polynomials of one variable

e Multivariate polynomials

e Ideals and affine varieties

e A division algorithm for multivariate polynomials

e Dickson’s Lemma for monomial ideals

e Hilbert Basis Theorem

e Grobner bases

0/1-Integer Programming Feasibility

e Normally,
n
Zaija:j:bi i:1,...m
j=1
$j€{0,1} j=1....n
e Equivalently,
n
Zaij:rj—bi:() ézl,...m
j=1
J j ey

e Motivates study of systems of polynomial equations

Refresher: Polynomials of One Variable
Some basics:

Let f = apz™ + a12™ ' + - - - + ay,, where ag # 0.

We call m the degree of f, written m = deg(f).
e We say agz™ is the leading term of f, written LT(f) = apz™.

For example, if f = 223 — 42 + 3, then deg(f) = 3 and LT(f) = 223.



e If f and g are nonzero polynomials, then

deg(f) < deg(g) <= LT(f) divides LT(g).
The Division Algorithm:
In: g, f
Out: ¢, 7 such that f =qg+r and r = 0 or deg(r) < deg(g)

1.g:=0r:=f

2. WHILE r # 0 AND LT(g) divides LT(r) DO

3. q:=q+LT(r)/LT(g)

4. r:=r— (LT(r)/LT(g))g

Polynomials of More than One Variable
Fields:

e A field consists of a set k and two binary operations “” and “+” which satisfy the following
conditions:
—(a4+b)+c=a+(b+c)and (a-b)-c=a-(b-c),
—a+b=b+aanda-b=5b-a,
a-(b+c)=a-b+a-c,
there are 0,1 € k such that a+0=a-1=a,
— given a € k there is b € k such that a +b =0,

— given a € k, a # 0, there is ¢ € k such that a - ¢ = 1.

e Examples include Q, R, and C.

Monomials:
e A monomial in x1,...,x, is a product of the form
R R Ao
with aq,...,an € Z4.
e We also let a:= (aq,...,ay) and set
=t xf?
e The total degree of x is || := a1 + -+ - + .
Polynomials:



A polynomial in x1,...,xz, is a finite linear combination of monomials,
f = Z aOéxaa
a€cs
where aq € k for all « € S, and S C Z7! is finite.

We call a,, the coefficient of the monomial .

If aq # 0, then a,z® is a term of f.

The total degree of f, deg(f), is the maximum |«| such that a, # 0.
Example:

o f=2u3y%2+ %y3z3 — 3xyz + y?
e Four terms, total degree six
e Two terms of max total degree, which cannot happen in one variable

e What is the leading term?

Orderings on the Monomials in k[z1,...,z,]
e For the division algorithm on polynomials in one variable, --- > 2™+l > 2™ > ...
x> 1.
e In Gaussian elimination for systems of linear equations, x1 > xo > - > z,.

e Note that there is a one-to-one correspondence between the monomials in kfzq, ...

zn.

e A monomial ordering on k[x1,...,x,| is any relation > on Z that satisfies

1. > is a total ordering,
2. if > B and vy € Z7, then a4+ > 5+,

3. every nonempty subset of Z" has a smallest element under >.

Examples of Monomial Orderings

The set of all polynomials in x1, ..., z, with coefficients in k is denoted by k[z1,. ..

, ] and

e Lex Order: For o, 3 € Z'}, a >1ex B if the left-most nonzero entry of a — 3 is positive. We

write £ >iex 7 if & >1ex 0.

— For example, (1,2,0) >1ex (0,3,4) and (3,2,4) >iex (3,2, 1).

5.3
— Also, T1 >1ex T5T3.

o Graded Lex Order: For o, f € ZT}, a >gpiex 0 if || > |B] or || = |8] and o >1ex B

— For example, (1,2,3) >giex (3,2,0) and (1,2,4) >griex (1, 1,5).



Further Definitions
Let f =), aaxz® be a nonzero polynomial in k[z1,...,z,] and let > be a monomial order.

e The multidegree of f is
multideg(f) := m>ax{a €LY :aq #0}.

e The leading coefficient of f is
LC(f) = Omultideg(f)-

e The leading monomial of f is
LM(f) — xmultideg(f)_

e The leading term of f is
LT(f) := LC(f) - LM(f).

Example
Let f = 4xy?z + 422 — 523 + 72%2? and let > denote the lex order. Then

multideg(f) = (3,0,0),

LC(f) = -5,
LM(f) = 2*
LT(f) = —52°

The Basic Algebraic Object of this Lecture

e A subset I C k[z1,...x,] is an ideal if it satisfies:
1. 0el,
2. if f,ge I, then f+ge€l,
3. if feland h € k[xy,...xy], then h f € I.

o Let fi,...,fs € k[z1,...2p]. Then

(fioooo fs) == {Zhifi thi,... hs € k[a:l,...xn]}
i=1
is an ideal of k[z1,...x,]. (We call it the ideal generated by fi,..., fs.)

e Anideal I is finitely generated if I = (f1,..., fs), and we say that fi,..., fs are a basis of I.



Polynomial Equations
Given fi,..., fs € k[z1,...zp], we get the system of equations

f1:07"'7fs:0'

If we multiply the first equation by hi, the second one by hs, and so on, we obtain
hifi+hafa+ -+ hsfs =0,

which is a consequence of the original system.

Thus, we can think of (fi,..., fs) as consisting of all “polynomial consequences” of f; = fo =
co= fy=0.
o Let f1,...,fs € k[z1,...x,]). Then we set
V(flv"'7fs) = {(ala'--aan) ck": fi(ala'-'7a"rb) :OaZ: 7"'78}

and call V(f1,..., fs) an affine variety.

o If <f17"'7f5> = <gla'-'7gt>7 then V(flw“afS) :V(gla"'7gt>'

e Let V C k™ be an affine variety. Then we set

I(V):={f € klx1,...,zn] : f(a1,...,a,) =0 for all (a,...,a,) € V}.

e If V is an affine variety, then I(V') is an ideal.

Driving Questions

e Does every ideal have a finite generating set?

e Given f € k[z1,...,zp] and I = (f1,..., fs),1s f € I?

e Find all solutions in k" of a system of polynomial equations
filxr,...,zn) == fs(x1,...,25) = 0.

e Find a “nice” basis for (fi,..., fs).

A Division Algorithm in k[z1,...,z,]

e Goal: Divide f by f1,..., fs-

e Example 1: Divide f = 2y> + 1 by fi = zy+ 1 and fo» = y + 1, using lex order with = > y.
This leads to
e+ 1=y -(zy+1)+(-1)-(y+1)+2

e Example 2a: Divide f = 2%y 4+ zy? +y? by fi = 2y — 1 and f» = 3% — 1, using lex order with
x > y. This eventually leads to

Py+at+t=@+y) (y—-1)+1-2—-1)+z+y+1.



Theorem 1. Fiz a monomial order on Z, and let (f1,..., fs) be an ordered tuple of polynomials
in klx1,...,z,]. Then every f € k[x1,...,zy,] can be written as

f:al+"‘asfs+ra

where a;,r € k[z1,...,2y,]|, and either r =0 or r is a linear combination, with coefficients in k, of
monomials, none of which is divisible by any of LT(f1),..., LT(fs).
We call r a remainder of f on division by (f1,...,fs). If aifi # 0, then

multideg(f) > multideg(a; f;).

2.p:=f
3. WHILE p # 0 DO

4. 1:=1
5. WHILE 7 < s AND no division occurred DO
6. IF LT(f;) divides LT(p) THEN
7. a; = a; + LT(p) /LT(f;)
8. pi=p— (LT()/LT(f))/:
9. ELSE
10. ti=1+1
11. IF no division occured THEN
12. r:=r+LT(p)
13. p:=p—LT(p)

More Examples

e Example 2b: Divide f = 2%y + 2y?> + 4% by f1 = *> — 1 and f» = 2y — 1, using lex order with
x > y. This leads to

Pyt +yi=@+1) P -1)+z-(zy—1)+2z+ 1.

e The remainder is different from the one in Example 2a!

e Example 3a: Divide f = 2y?> — 2 by fi = zy + 1 and fo» = y*> — 1 with the lex order. The
result is
vy’ —z=y-(zy+1)+0-(y° = 1)+ (-2 —y).

e Example 3b: Divide f = 232 — 2 by f1 = y*> — 1 and f» = 2y + 1 with the lex order. The
result is
vy’ —r=x-(y*—1)+0-(zy+1)+0.

e The second calculation shows f € (f1, f2), but the first does not!



Monomial Ideals

e An ideal I is a monomial ideal if there is A C Z! such that I consists of all finite sums
Y aca haz®. We write I = (2% : a € A).

e Let I = (2% :a € A). Then z” € I iff 27 is divisible by z® for some a € A.
e 27 is divisible by z® iff # = a + v for some 7 € 7. Thus,
a+ZY
consists of the exponents of all monomials divisible by x®.
e If I is a monomial ideal, then f € I iff every term of f lies in [I.

Dickson’s Lemma

o Let ACZY. Then
U e+zz)

acA

can be expressed as the union of a finite subset of the o + Z}.

e A monomial ideal T = (z® : & € A) can be written in the form I = (z*1) ... 2%%)) where

a(l),...,a(s) € A.

Hilbert Basis Theorem: Preliminaries
Let I C k[x1,...,zy] be an ideal other than {0}.

e Let LT(I) = the set of leading terms of elements in I.
e (LT(I)) is a monomial ideal.
e There are g1,...,gs € I such that
(LT(1)) = (LT(g1), - .-, LT(gs))-

Hilbert Basis Theorem

Theorem 2 (Hilbert 1888). Every ideal I C klxi,...,xy,] has a finite generating set. That is,
I={g1,...,9s) for some g1,...,gs € I.

Hilbert Basis Theorem: Proof
e Let I # {0}. Recall that (LT(I)) = (LT(g1),.-.,LT(gs)).

e Claim: (I) = (g1,...,9s).



e Let f € I. If we divide f by ¢1,...,9s, we get
f=aig1+ - +asgs+r,

where no term of r is divisible by any of LT(g1),...,LT(gs).
e Claim: r =0.
e Suppose r # 0. Note that r € I.
e Hence, LT(r) € (LT(I)) = (LT(¢1),...,LT(gs)).
e So LT(r) must be divisible by some LT(g;). Contradiction!
e Thus, f =a1g91 + - + asgs, which shows I C (g1,...,gs).

Grobner Bases
Fix a monomial order.

e A subset {gi,...,9s} of an ideal [ is called a Grébner basis if

(LT(1)) = (LT(g1), ..., LT(gs))-

e Equivalently, {g1,...,9s} is a Grobner basis of I iff the leading term of any element in I is
divisible by one of the LT(g;).

e Note that every ideal I # {0} has a Grobner basis. Moreover, any Grobner basis of I is a
basis of I.

Next Time

e Properties of Grobner bases
e Computation of Grobner bases (Buchberger’s Algorithm)
e Solving 0/1-integer programs

e Solving (general) integer programs
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