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1 Outline 
Slide 1 

•	 Gram-Schmidt (GS) Orthogonalization. 

•	 Reduced bases for lattices. 

•	 Simultaneous Diophantine approximation. 

2 GS orthogonalization 
Slide 2 

•	 Input: n linearly independent vectors b1 , . . . , bn ∈ Qn 

•	 Output: n linearly independent vectors b̃
1 
, . . . , b̃

n 
that are orthogonal and span


the same linear  space. 


•	 Algorithm: 

1. (Initialization) b̃
1 

= b1 . 

2. (Main iteration) For i = 2, . . . , n, set:  

(bi)′b̃
j 

μi,j = 
j for j = 1, . . . , i − 1, 

||b̃ ||2 

i−1 

b̃
i 

= bi − 
∑ 

μi,j b̃
j 
. 

j=1 

2.1 Intuition 
Slide 3 

•	 To initialize b̃
1 

= b1 . 

•	 Decompose b2 = v + u, such that v = λb1 for some λ ∈ R  and u is orthogonal

to b1, i.e., u ′b1 = 0. 


•	 Multiplying b2 = v + u by b1, (b2)′b1 = λ||b1||2: 
(b2)′b1 

λ = ,||b1||2 

b̃
2 

= u = b2 − v = b2 − λb1 

•	 Geometrically b̃
2 

corresponds to projecting b2 to the subspace that is orthogonal

to b1 .


2.2 Properties 
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•	 (˜
i 
)′b̃

j �b = 0  for  all  i = j. 

•	
{ 
x ∈ Rn | x = 

∑k 
λib

i , λ ∈ Rk 
} 

= 
{ 
x ∈ Rn | x = 

∑k 
λib̃

i 
, λ ∈ Rk 

} 
for

i=1	 i=1 
k = 1, . . . , n. 

•	 det(L(b1 , . . . , bn)) = 
∏ n ||b̃j ||.

j=1 

• ||b̃j || ≤ ||bj || for j = 1, . . . , n. 
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2.3 Example 
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•	 b1 = (4, 1)′ and b2 = (1, 1)′ . 

•	 The GS orthogonalization: b̃
1 

= b1 and 

b̃
2 

= b2 − μ2,1 b̃
1 

= (1, 1)′ − 
5 

b̃
1 

= 
1

(−3, 12)′ ,
17 17 

•	 Note that b̃
1 
, b̃

2 
do not form a basis of L. 

•	 The GS orthogonalization depends on the order in which the vectors are pro­

cessed.


•	 Consider b1 = (1, 1)′ and b2 = (4, 1)′ . The GS orthogonalization b̃
1 

= b1 ,


μ2,1 = 5/2 and  b̃
2 

= (1/2)(3,−3)′


2.4 Nearest vector 
Slide 6 

Given x ∈ R: ⎧ 
1 ⎨ �x�, if 0 ≤ x − �x� ≤  ,
2�x� = ⎩ 1 �x�, if < x − �x� ≤ 1. 

2 
�1.5� = 1,  �3.7� = 4  and  �5.2� = 5.  

Let b1 , . . . , bn be a basis of the lattice L with GS b̃
1 
, . . . , b̃

n 
. 

•	 For every z ∈ L \ {0}, 

||z|| ≥ min{||b̃1 ||, . . . , ||b̃n ||}. 

˜•	 If b̃
1 
, . . . ,  b 

n 
is a basis of L, then the nearest vector in L to the vector x = ∑ n ˜j n
λj b , λ ∈ R is given by:


j=1 

n 

b ∗ = 
∑ 

μj b̃
j 
, where μj = �λj �. 

j=1 

2.5 Proof 
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•	 0 =� z = n

i=1 σib
i with σi ∈ Z, i = 1, . . . , n. 

•	 Let k be the largest index such that σk = 0, i.e., � |σk| ≥ 1, 

k i−1 

z = σi b̃
i 
+ μi,j b̃

j 

i=1 j=1 

k−1 k 

= σkb̃
k 

+ 
∑ 

σj + 
∑ 

σiμi,j b̃
j 

j=1 i=j+1 

k−1 

= σkb̃
k 

+ 
∑ 

λj b̃
j 
, 

j=1 ∑k
where λj = σj + 

i=j+1 σiμi,j . 
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•	 Since (b̃
i 
)′b̃

j 
= 0,  

k−1 

||z||2 = z ′ z = 
∑ 

λ2 
j ||b̃j ||2 + σk

2||b̃k ||2 ≥ σk
2||b̃k ||2 ≥ ||b̃k ||2 . 

j=1 

• ||z|| ≥ ||b̃k || ≥ min{||b̃1 ||, . . . , ||b̃n ||}. 
Slide 8 ∑ n j •	 b = 

j=1 νj b̃ with νj ∈ Z, be an arbitrary vector of the lattice L. ∑ n j •	 Let x = 
i=1 λj b̃ , λ ∈ Rn . Then, 

n	 n 

||b − x||2 = (νj − λj )
2||b̃j ||2 ≥ (μj − λj )

2||b̃j ||2 = ||b ∗ − x||2 . 
j=1	 j=1 

•	 For all b ∈ L, ||b − x|| ≥ ||b ∗ − x||. 
•	 Importance of orthogonality. 

3 Reduced Bases 

3.1 Definition 

Let L = L(b1 , . . . , bn) with  b1 ,  . . . ,  bn ∈ Qn and with GS: b̃
1 
, . . . ,  

{b1 , . . . , bn} is called reduced if the following conditions hold: 
1 •	 (a) |μi,j | ≤  , for all i, j with 1 ≤ j < i ≤ n,
2


˜
• (b) ||b̃i+1 
+ μi+1,ib 

i ||2 ≥ 
3 ||b̃i ||2, for all i = 1, . . . , n − 1. 
4 

3.2 Intuition 

Slide 9 
b̃

n 
. The basis 

Slide 10 
•	 Conditions (a) and (b) jointly imply that a reduced basis consists of nearly 

orthogonal vectors. 

•	 b̃
1 

= b1, condition (a) for i = 2 implies that 

(b2)′b1 1 
μ2,1 = ≤ . ||b1||2 2 

•	 From GS b2 = b̃ 
2 

+ μ2,1b̃
1 
, and thus (b) for i = 1  ||b2||2 ≥ 3 ||b1||2 .

4 

•	 Let θ be the angle between the two vectors b1 and b2. Then  

(b2)′b1 (b2)′b1 ||b1|| 1 2 1 
cosθ = = ≤ √ = √ . ||b2|| ||b1|| ||b1||2 ||b2|| 2 3 3 

√

This implies that θ ≥ cos −1(1/ 3) = 54.7o ,


•	 For the purpose of achieving a bigger angle between the two vectors, that is, 
bringing the vectors closer to orthogonality, we would like to have as high a 
constant c as possible. For c = 1, conditions (a) and (b) imply that an angle θ 
would be at least cos−1(1/2) = 60o . 
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3.3 Properties 
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For a reduced basis b1 , . . . , bn of a lattice L and its GS b̃
1 
, . . . , b̃

n 
: 

• (a) ||b̃j ||2 ≥ 2i−j ||b̃i ||2 for all 1 ≤ i < j  ≤ n. 

• (b) ||b1|| ≤ 2(n−1)/4 det(L)1/n . 

• (c) ||b1|| ≤ 2(n−1)/2 min{||b|| : b ∈ L \ {0}}. 
• (d) ||b1|| · · · ||bn|| ≤ 2(n(n−1))/4 det(L). 

3.4 Proof 
Slide 12 

•	 For all i = 1, . . . , n − 1:


3 i i+1 i
||b̃ ||2 ≤ ||b̃ + μi+1,ib̃ ||2 

4 

= ||b̃i+1 ||2 + μ2 
i+1,i||b̃i ||2 

≤ ||b̃i+1 ||2 +
1 ||b̃i ||2 . 
4


This gives


||b̃i+1 ||2 ≥ 
1 ||b̃i ||2 , for all i = 1, . . . , n − 1,

2


leading to


||b̃j ||2 ≥ 2i−j ||b̃i ||2 , for all 1 ≤ i < j  ≤ n.


• Applying part (a) for i = 1  we  obtain  

||b̃j ||2 ≥ 21−j ||b̃1 ||2 = 21−j ||b1||2 , for all 1 ≤ j ≤ n. 

From Proposition 6.2(c), we have 

n n 

det(L)2 = 
∏ 

||b̃j ||2 ≥ 
∏ 

21−j ||b1||2n = 
(

1 
)(n(n−1))/2 

||b1||2n ,
2 

j=1 j=1 

proving part (b). 

• From Proposition 6.3, we have that for every b ∈ L \ {0}, 
||b||2 ≥ min{||b̃j ||2 : j = 1, . . . , n} ≥  21−n||b1||2 , 

proving part (c). 

• From GS, Proposition 6.2 and the definition of a reduced basis we obtain 

i−1	 i−1 

||bi||2 = ||b̃i ||2 + μ2	 b
j ||2 ≤ ||b̃i ||2 +

1 ||b̃j ||2 
i,j ||˜ 4 

j=1 j=1 

i−1 

≤ ||b̃i ||2 +
1 ∑ 

2i−j ||b̃i ||2 

4 
j=1 

= ||b̃i ||2 
( 
1 +

1 
(2 + . . . + 2i−1 ) 

) 

4 

= ||b̃i ||2 
( 
1 +

1 
(2i − 2) 

) 

4 

≤ ||b̃i ||2 2i−1 . 
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Using Proposition 6.2(c) we obtain 

n	 n 

||bi||2 ≤ 2(n(n−1))/2 ||b̃i ||2 = 2(n(n−1))/2 det(L)2 , 
i=1	 i=1 

proving part (d). 

•	 From Minkowvski, L there exist a vector u ∈ L  such that ||u||∞ ≤ det(L)1/n. 
In contrast, ||b1||∞ ≤ ||b1||2 ≤ 2(n−1)/4 det(L)1/n is weaker. The key difference 
is that we can find the vector b1 in polynomial time. 

3.5 Algorithm 6.2 

•	 Input: A  basis  b1 , . . . , bn ∈ Zn of a lattice L. 

•	 Output: A  basis  of  L satisfying condition (a) 

•	 Algorithm: 

1.	 For i = 2, . . . , n 


For j = i − 1, . . . , 1


(a) If |μi,j | > 1/2, then set bi = bi − �μi,j �bj . 

(b) Compute the GS of b1 ,  . . . ,  bn and the corresponding multipliers μi,j . 

2.	 Return b1 , . . . , bn . 

3.6 Correctness 

•	 The basis returned by Algorithm 6.2 satisfies condition (a). 

•	 Algorithm 6.2 requires O(n 4) arithmetic operations. 

•	 Algorithm 6.2 has the invariance property that after each iteration the GS of 
the initial basis of L remains unchanged, i.e., 

b̃
i 
= q̃i for all i = 1, . . . , n.  

3.7 Basis Reduction 

•	 Input: A  basis  b1 , . . . , bn ∈ Zn of a lattice L. 

•	 Output: A  basis  of  L satisfying conditions (a) and (b). 

•	 Algorithm: 

1. Compute the Gram-Schmidt orthogonalization b̃
1 
, . . . ,  b̃

n 
of the vectors 

b1 , . . . , bn . 

2.	 Apply Algorithm 6.2. 

3.	 For i = 1, . . . , n  

If ||b̃i+1 
+ μi+1,ib̃ 

i ||2 < 3/4 ||b̃i ||2, then interchange bi and bi+1 and return to 
Step 1. 

4.	 Return b1 , . . . , bn . 
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3.8 Polynomiality 
nLet b1 , . . . , bn ∈ Z be a basis of the lattice L. The basis reduction algorithm returns 

a reduced basis of L by performing O(n 6 log2 bmax) arithmetic operations, where bmax 

is the largest integer (in absolute value) among the entries in b1 , . . . , bn . 

4 Simultaneous diophantine approximation 

•	 For given numbers α1, . . . , αn ∈ Q, 0  < ε < 1 and  a given  integer number  N >  1, 
find p1, . . . , pn ∈ Z  and q ∈ Z+ with 0 < q  ≤ N satisfying: 

∣ pi 
∣ ε 

αi − < for i ∈ {1, . . . , n}. (∗) 
q q 

•	 If N ≥ ε−n , then there exist p1, . . . , pn ∈ Z  and q ∈ Z+ with 0 < q  ≤ N 
satisfying (*). 

•	 Proof We define a lattice L = L(b0 , . . . , bn) ⊆ Qn+1 where 

b0 = (α1, . . . , αn, δ)′ , bi = −ei, i = 1, . . . , n,  

δ = εn+1 . 

•	 Since det(L) =  δ = εn+1 and dim(L) =  n + 1, from Convex body theorem we 
obtain that there exists an a ∈ L, a �= 0 with ||a||∞ ≤ (det(L))1/(n+1) = ε. 
Hence, there exist q, p1, . . . , pn ∈ Z  such that 

n 

a = qb0 + pib
i , 

i=1 

with |ai| ≤ ε, or equivalently  

|ai| = |qαi − pi| ≤ ε, i = 1, . . . , n  

an = qδ ≤ ε, i.e., q ≤ ε−n . 

•	 To complete the proof we need to check that q >  0. Note that we assume 
without loss of generality that q ≥ 0, since we can always take −a instead of a. 
If q = 0,  then  |pi| ≤ ε for all i. Since  pi ∈ Z  and 0 < ε <  1, we have pi = 0.  
This leads to a = 0, which is a contradiction since a �= 0. 

4.1 Using Basis Reduction 

•	 Theorem If N ≥ 2n(n+1)/4 ε−n, we can find in polynomial time p1, . . . , pn ∈ Z  
and q ∈ Z+ with 0 < q  ≤ N satisfying Eq. (*). 

•	 δ = 2−n(n+1)/4εn+1 in the basis for the lattice L defined earlier. 

•	 Applying Basis Reduction we find in polynomial time a reduced basis of L. The  
first vector c ∈ L in the reduced basis satisfies (recall that we use n + 1  instead  
of n, since  dim(L) =  n + 1)  

||c||∞ ≤ ||c||2 ≤ 2n/4 det(L)1/(n+1) = 2n/4δ1/(n+1) = ε. 
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Hence, we can find p1, . . . , pn ∈ Z  and q ∈ Z+ such that 

n 

c = qb0 + pib
i , 

i=1 

with |ci| ≤ ε, or equivalently  

|ci| = |qαi − pi| ≤ ε, i = 1, . . . , n  

cn = qδ ≤ ε, i.e., q ≤ 2n(n+1)/4ε−n . 
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