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2.1

2.2

Outline

Gram-Schmidt (GS) Orthogonalization.
Reduced bases for lattices.

Simultaneous Diophantine approximation.

GS orthogonalization

Input: n linearly independent vectors b*,...,b" € Q"
Output: n linearly independent vectors l;l, A b" that are orthogonal and span
the same linear space.
Algorithm:
1. (Initialization) b =0
2. (Main iteration) For i = 2,...,n, set:
b)'b’
Wi = (~3 forj=1,...,i—1,
672
. Z_l .
i i 7
b= b > b
j=1
Intuition

To initialize b = b’.
Decompose b? = v + u, such that v = Ab* for some A € R and w is orthogonal
to b, ie., u'b! = 0.

Multiplying b> = v 4 u by b', (b%)'b! = A|[b![|%:

b2)/b1

>
Il
—

~2

b =u=>b"—v=>b"-\b'
Geometrically b corresponds to projecting b® to the subspace that is orthogonal

to bl.

Properties
(6")d' =0 for all i # ;.

{wGR"|m:Zf:1>\ibi, )\GRk}:{wER"|m:22€:1)\¢l~)i,)\€7€k} for
k=1,...,n.

det(£(b,..., ™) =TT}, 16|

7] < |Ib7]] for j =1,...,n.
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2.3

24

Example
b' = (4,1) and b* = (1,1)".
The GS orthogonalization: b =b' and

~2 2 ~1 , 5 -1 1 ,
b b H2,1 b (1,1) 17b 17( 3,12),
Note that I;l, b” do not form a basis of L.

The GS orthogonalization depends on the order in which the vectors are pro-
cessed.

Consider b' = (1,1)" and b* = (4,1). The GS orthogonalization b = b,
piza = 5/2 and b = (1/2)(3, —3)’

Nearest vector

Given z € R:

o), i0<w—lz] <,
lz] =
2], if%<m—[xj§1.

|1.5] =1, [3.7] =4 and [5.2] = 5.

Let b',...,b" be a basis of the lattice £ with GS I;l,...,b .

Fn
For every z € £\ {0},

. ~1 n
Izl = min{[[b-[[,..., [[67[]}.

...1 ~
e If b ,...,bn is a basis of £, then the nearest vector in £ to the vector x =

2.5

S Ab’, A € R™ is given by:

b = Zu]-i)j, where pj = | \;].
j=1

Proof

e 0£z=>" o witho,€Z,i=1,...,n
e Let k be the largest index such that o, # 0, i.e., |og| > 1,

k i—1
z = ZO’Z' (i)l =+ Z/Li,ji)j>
i—1 =1
k—1 k )
O'kgk +Z (Uj + Z 0'1'/141'7]'> i)]
j=1

i=j+1

k—1
=1

k
where \; = 0 + Zi:j+1 Oilli,j-
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3

Since (I;Z)’I;J =0,

k—1
=j =k ~k ~k
12> = 2"z = > A |> + oRl[B" > > o} |[B"] > ||
=1
~k . ~1 ~n
121l > 15| > min{[[B[],...,[6"]]}

b= Z;;l v;b’ with v; € Z, be an arbitrary vector of the lattice £.

Let ¢ = Y7 A;b’, A € R". Then,

16— a|* => (s = M) 1P =Y (1 = 2)? (I = [[b" — .
j=1

Jj=1

Forallbe L, ||b — x| > ||b* — ]|

Importance of orthogonality.

Reduced Bases

3.1 Definition
Let £ = L£(b',...,b") with b, ..., b" € Q" and with GS: b',...,b". The basis
{b',...,b"} is called reduced if the following conditions hold:

3.2

1
(a) || < 5, for all i, j with 1 < j <i <,

(b) |6 + payib'|? > % 1B°]12, for all i = 1,...,n — 1.

Intuition

Conditions (a) and (b) jointly imply that a reduced basis consists of nearly
orthogonal vectors.

b = b', condition (a) for i = 2 implies that
(b2)/b1
642

_ <1
2,1 = <5
From GS b2 = b’ +u2,1l~)1, and thus (b) for i =1 |[b?||*> > 3(|b"||>.
Let 0 be the angle between the two vectors b' and b%. Then
b>)'b! b>)'b ||b' 12 1
o = OO0 12 1
1L ] 1M (167 — 2v3 V3

This implies that 6 > cos™*(1//3) = 54.7°,
For the purpose of achieving a bigger angle between the two vectors, that is,
bringing the vectors closer to orthogonality, we would like to have as high a

constant ¢ as possible. For ¢ = 1, conditions (a) and (b) imply that an angle ¢
would be at least cos™(1/2) = 60°.
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3.3 Properties

Fn

For a reduced basis b',...,b" of a lattice £ and its GS I~)1, oob
(a) [|B°]]> > 27 ||B'|]* forall 1 < i < j < n.
o (b) |[b']] < 20" V" det(L)/
o (o) |p*]| <207Y7% min{||b]| : be £\ {0}}.

o () [[B']]--- (b < 2" det(L).
3.4 Proof
e Foralli=1,...,n—1:
3,54 ~it1 ~i
2o 12 < B + pirrib|
~it1 ~i
= 167 11” + pdallo |2
~it1 1, -
< BT + 1B
This gives
1B > SIBP, foralli=1,...n 1,
leading to

16712 > 2777 |b']|?, forall1<i<j<n.
e Applying part (a) for i = 1 we obtain

1B7]12 > 279 |B'|)2 =277 |pY?,  forall 1<j<n.

From Proposition 6.2(c), we have

no no 1 (n(n—1))/2
det(2)® = T I8P = (Hzlﬂ) B = (3) 6>,
i=1 =1
proving part (b).
e From Proposition 6.3, we have that for every b € £\ {0},
1Bl[* > min{[[5|* : j=1,...,n} > 27" |||,

proving part (c).
e From GS, Proposition 6.2 and the definition of a reduced basis we obtain

i—1
161 = 11611 + > w2, 116711 < 116"]” + an I1°
j=1

A

=12 1 i—j 152
< |Ip'] *zZQ 16
j=1
742 1 i—1
= |5 (HZ(”“'“ ))
=i 1 i
— 1B (145 @ -2)
< (B[P 2
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3.6

3.7

Using Proposition 6.2(c) we obtain
n n .
[T <200 T )" = 2077 det(c)?,
i=1 i=1

proving part (d).

From Minkowvski, £ there exist a vector u € £ such that ||u||e < det(£)Y/™.
In contrast, ||b||ee < ||BY]]2 < 2" 1/*det (L)Y ™ is weaker. The key difference
is that we can find the vector b in polynomial time.

Algorithm 6.2

Input: A basis b',...,b" € Z" of a lattice L.
Output: A basis of £ satisfying condition (a)
Algorithm:
1. Fori=2,...,n
For j=¢—1,...,1
(a) Tf |wi;| > 1/2, then set b = b' — [ju;,;]b7.
(b) Compute the GS of b', ..., b™ and the corresponding multipliers p; ;.
2. Return b',...,b".

Correctness

The basis returned by Algorithm 6.2 satisfies condition (a).
Algorithm 6.2 requires O(n?*) arithmetic operations.

Algorithm 6.2 has the invariance property that after each iteration the GS of
the initial basis of £ remains unchanged, i.e.,

l;izqi foralli=1,...,n.

Basis Reduction

Input: A basis b',...,b" € Z" of a lattice L.
Output: A basis of £ satisfying conditions (a) and (b).
Algorithm:

1. Compute the Gram-Schmidt orthogonalization l;l, e b" of the vectors
b,...,b"

2. Apply Algorithm 6.2.

3. Fori=1,...,n ,
If ||I~)ZJrl + pir1,ib']|? < 3/4 ||b']|?, then interchange b’ and b**' and return to
Step 1.

4. Return b',...,b"
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3.8

Polynomiality

Let b',...,b™ € Z™ be a basis of the lattice £. The basis reduction algorithm returns
a reduced basis of £ by performing O(n°log, bmax) arithmetic operations, where bumax

is the largest integer (in absolute value) among the entries in b', ..., b"™.

4

4.1

Simultaneous diophantine approximation

For given numbers a;,...,a, € Q,0 < € < 1 and a given integer number N > 1,
find p1,...,pn € Z and ¢ € Z4 with 0 < ¢ < N satisfying:

_ b
q

(€7

<< forie {1,...,n}. (%)
q

If N > e ™, then there exist p1,...,pn € Z and ¢ € 24 with 0 < ¢ < N
satisfying (*).

Proof We define a lattice £ = £(b°,...,b™) C Q™" where
b0 = (a1,...,am,6), b'=—e;,i=1,...,n,
§ ="

Since det(£) = § = "' and dim(£) = n + 1, from Convex body theorem we
obtain that there exists an @ € £, a # 0 with ||a|le < (det(£))Y ™) = ¢
Hence, there exist ¢, pi,...,pn € Z such that

a=qb’+ zn:pibi,
=1

with |a;| < €, or equivalently

lai| = |gas —pi| <e,  i=1,...,n

n

an =¢q6 <€, ie,qg<e€ .

To complete the proof we need to check that ¢ > 0. Note that we assume
without loss of generality that ¢ > 0, since we can always take —a instead of a.
If ¢ = 0, then |p;| < e for all . Since p; € Z and 0 < € < 1, we have p; = 0.
This leads to a = 0, which is a contradiction since a # 0.

Using Basis Reduction
Theorem If N > 2"(FD/4c=" e can find in polynomial time pi1,...,pn € Z
and g € Z4 with 0 < ¢ < N satisfying Eq. (*).
§ = 27 FD/AnF 4y the basis for the lattice £ defined earlier.

Applying Basis Reduction we find in polynomial time a reduced basis of £. The
first vector ¢ € L in the reduced basis satisfies (recall that we use n + 1 instead
of n, since dim(L) =n + 1)

llelso < [l < 274 det(£)Y (D) = gn/ast/ (4D — ¢
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Hence, we can find p1,...,p, € Z and q¢ € Z4 such that

c=qb’ + Zpibi,
i=1
with |¢;| < e, or equivalently
leil = qa —pil <€, i=1,...,n

en=q6 < ie., g<mtD/ATn
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