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Lecture 13: Lattices I
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1 Outline 
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• Integer points in lattices. 

n• Is {x ∈ Z | Ax = b} nonempty? 

2 Integer points in lattices 
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• B = [b1 , . . . , bd] ∈ Rn×d , b1 , . . . , bd are linearly independent. 

nL = L(B) =  {y ∈ R | y = Bv, v ∈ Zd}


is called the lattice generated by B. B is called a basis of L(B).


n• bi = ei, i = 1, . . . , n  ei is the i-th unit vector, then L(e1, . . . , en) =  Z . 

• x, y ∈ L(B) and  λ, μ ∈ Z, λx + μy ∈ L(B). 

2.1 Multiple bases 
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b1 = (1, 2)′ , b2 = (2, 1)′ , b3 = (1,−1)′ . Then, L(b1 , b2) =  L(b2 , b3). 
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2.2 Alternative bases 
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Let B = [b1 , . . . , bd] be a basis of the lattice L. 

•	 If U ∈ Rd×d is unimodular, then B = BU is a basis of the lattice L. 

•	 If B and B are bases of L, then there exists a unimodular matrix U such that

B = BU .


•	 If B and B are bases of L, then  |det(B)| = |det(B)|. 

2.3 Proof 
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•	 For all x ∈ L: x = Bv with v ∈ Zd . 

•	 det(U ) =  ±1, and det(U−1) = 1/ det(U ) =  ±1. 

•	 x = BUU−1 v. 

•	 From Cramer’s rule, U−1 has integral coordinates, and thus w = U−1 v is

integral.


•	 B = BU . Then, x = Bw, with  w ∈ Zd, which implies that B is a basis of L. 

•	 B = [b1 , . . . , bd] and  B = [b 
1 
, . . . , b 

d 
] be bases of L. Then, the vectors b1 , . . . , bd 

1 d 
and the vectors b , . . . , b are both linearly independent. 

•	 V = {By | y ∈ Rn} = {By | y ∈ Rn}. 
•	 There exists an invertible d × d matrix U such that 

B = BU and B = BU−1 . 

•	 bi = BU i, U i ∈ Zd and b 
i 
= BU−

i 
1 , U−

i 
1 ∈ Zd . 

•	 U and U−1 are both integral, and thus both det(U ) and det(U−1) are integral,

leading to det(U ) =  ±1.


• |det(B)| = |det(B)||det(U )| = |det(B)|. 

2.4 Convex Body Theorem 
Slide 6 

n nLet L be a lattice in R and let A ∈ R be a convex set such that vol(A) > 
2ndet(L) and  A is symmetric around the origin, i.e., z ∈ A if and only if −z ∈ A. 
Then A contains a non-zero lattice point. 

2.5 Integer normal form 
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•	 A ∈ Zm×n of full row rank is in integer normal form, if  it  is  of  the  form  [B,0],

where B ∈ Zm×m is invertible, has integral elements and is lower triangular.


•	 Elementary operations: 
(a) Exchanging two columns; 
(b) Multiplying a column by −1. 
(c) Adding an integral multiple of one column to another. 

•	 Theorem: (a) A full row rank A ∈ Zm×n can be brought into the integer normal

form [B,0] using elementary column operations;

(b) There is a unimodular matrix U such that [B,0] =  AU . 
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2.6 Proof 
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•	 We show by induction that by applying elementary column operations (a)-(c),

we can transform A to � �


α 0 
,	 (1) 

v C  

where α ∈ Z+ \ {0}, v ∈ Zm−1 and C ∈ Z(m−1)×(n−1) is of full row rank. By 
proceeding inductively on the matrix C we prove part (a). 

•	 By iteratively exchanging two columns of A (Operation (a)) and possibly multi­

plying columns by −1  (Operation (b)),  we  can transform  A (and renumber the

column indices) such that


a1,1 ≥ a1,2 ≥ . . . ≥ a1,n ≥ 0. 

•	 Since A is of full row rank, a1,1 > 0. Let k = max{i : a1,i > 0}. If  k = 1,  then 

we have transformed A into a matrix of the form (1). Otherwise, k ≥ 2 and  by 

applying k − 1 operations (c) we transform A to
� � � � �	 � 

A = A1 −	
a1,1 

A2, . . . , Ak−1 − 
a1,k−1 

Ak, Ak, Ak+1, . . . , An . 
a1,2 a1,k 

•	 Repeat the process to A, and exchange two columns of A such that 

a1,1 ≥ a1,2 ≥ . . . ≥ a1,n ≥ 0. 

•	 max{i : a1,i > 0} ≤ k 

k k−1	 k 

a1,i ≤ (a1,i − a1,i+1) +  a1,k = a1,1 < a1,i, 
i=1 i=1	 i=1 

which implies that after a finite number of iterations A is transformed by ele­
mentary column operations (a)-(c) into a matrix of the form (1). 

•	 Each of the elementary column operations corresponds to multiplying matrix A

by a unimodular matrix as follows:


(i) Exchanging columns k and j of matrix A corresponds to multiplying 
matrix A by a unimodular matrix U 1 = I + Ik,j + Ij,k −Ik,k −Ij,j . det(U 1) =  
−1. 

(ii) Multiplying column j by −1 corresponds to multiplying matrix A by a 
unimodular matrix U 2 = I−2Ij,j , that is an identity matrix except that element 
(j, j) is  −1. det(U 2) =  −1. 

(iii) Adding f ∈ Z  times column k to column j, corresponds to multiplying 
matrix A by a unimodular matrix U 3 = I + fIk,j . Since  det(U 3) =  1,  U 3 is 
unimodular. 

•	 Performing two elementary column operations corresponds to multiplying the

corresponding unimodular matrices resulting in another unimodular matrix.
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2.7 Example 
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3 −4 2  4 3 2  −→ 
1 0 7 0 1 7  

• 

1 1 2 
−1 −6 7  

•	 Reordering the columns 
2 1 1 
7 −6 −1 

•	 Replacing columns one and two by the difference of the first and twice the second

column and the second and third column, respectively, yields


0 0 1 
. 

19 −5 −1 

•	 Reordering the columns 
1 0 0 

. −1 19  −5 

•	 Continuing with the matrix C = [19, −5], we obtain successively, the matrices

[19, 5], [4, 5], [5, 4], [1, 4], [4, 1], [0, 1], and [1, 0]. The integer normal form is:


1 0 0  
. −1 1 0  

2.8 Characterization 
Slide 10 

A ∈ Zm×n , full row  rank; [B, 0] =  AU . Let  b ∈ Zm and S = {x ∈ Zn | Ax = b}. 
m(a) The set S is nonempty if and only if B−1b ∈ Z . 

(b) If S =� ∅, every solution of S is of the form 

x = U 1B
−1b + U 2z, z ∈ Zn−m , 

where U 1, U 2: U = [U 1, U 2]. 

(c) L = {x ∈ Zn | Ax = 0} is a lattice and the column vectors of U 2 constitute a 
basis of L. 

2.9 Proof 
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n	 n•	 y = U−1 x. Since  U is unimodular, y ∈ Z if and only if x ∈ Z . Thus,  S is

nonempty if and only if there exists a y ∈ Zn such that [B, 0]y = b. Since B is


minvertible, the latter is true if and only B−1b ∈ Z . 
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•	 We can express the set S as follows:


S = {x ∈ Zn | Ax = b}


= {x ∈ Zn | x = Uy, [B, 0]y = b, y ∈ Zn}


= {x ∈ Zn | x = U 1w + U 2z, Bw = b, w ∈ Zm , z ∈ Zn−m}.

Thus, if S � b ∈ Zm = ∅, then  B−1 from part (a) and hence, 

S = {x ∈ Zn | x = U 1B
−1b + U 2z, z ∈ Zn−m}. 

•	 Let L = {x ∈ Zn | Ax = 0}. By setting b = 0 in part (b) we obtain that 

L = {x ∈ Zn | x = U 2z, z ∈ Zn−m}.

Thus, by definition, L is a lattice with basis U 2.


2.10	 Example 
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•	 Is S = {x ∈ Z3 | Ax = b} is nonempty 

3 6 1  3 
A = and b = . 

4 5 5  2 

•	 Integer normal form: [B, 0] =  AU , with  � � 0 9 −25 
1 0 0  

[B, 0] =  and U = 0 −4  11  . 
5 1 0  

1 −3 9


Note that det(U ) =  −1. Since B−1b = (3, −13)′ ∈ Z2 , S =� ∅.

•	 All integer solutions of S are given by 

0 9	 −25 −117 − 25z 
3 

x = 0 −4 + 11 z = 52 + 11z , z ∈ Z. −13 
1 −3	 9 42 + 9z 

2.11	 Integral Farkas lemma 
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Let A ∈ Zm×n , b ∈ Zm and S = {x ∈ Zn | Ax = b}. 
m•	 The set S = ∅ if and only if there exists a y ∈ Qm, such that y′A ∈ Z 


and y′b / .
∈ Z
•	 The set S = ∅ if and only if there exists a y ∈ Qm, such that y ≥ 0,


m ∈ Z 
y′A ∈ Z 	 and y′b / . 

2.12	 Proof 
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m •	 Assume that S � . If  there  exists  y ∈ Qm, such that y ′b /= ∅ ′A ∈ Z and y ∈ Z,

then y ′Ax = y ′b with y ′Ax ∈ Z  and y ′ ∈ Z 
b / . 

•	 Conversely, if S = ∅, then by previous theorem, u = B−1 ∈ Zb / m , that is there

exists an i such that ui / proves the
∈ Z. Taking  y to be the ith row of B−1


theorem.
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2.13 Reformulations 
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′ n • max c x, x ∈ S = {x ∈ Z+ | Ax = b} . 
n m • [B, 0] =  AU . There  exists  x 0 ∈ Z : Ax0 = b iff B−1 ∈ Zb / . 

• 
x ∈ S ⇐⇒ x = x 0 + y : Ay = 0, −x 0 ≤ y.


Let

L = {y ∈ Zn | Ay = 0}.


Let U 2 be a basis of L, i.e.,


L = {y ∈ Zn | y = U 2z, z ∈ Zn−m}. 

• 
max c ′U 2z 

s.t U 2z ≥ −x 0 

z ∈ Zn−m . 

• Different bases give rise to alternative reformulations 

max c ′Bz 

s.t. Bz ≥ −x 0 

z ∈ Zn−m . 
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