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Lecture 13: Lattices I



1 Outline

e Integer points in lattices.

e Is {x € Z" | Ax = b} nonempty?

2 Integer points in lattices
e B= [bl, cee bd] e R™*d_p' . b? are linearly independent.
L=LB)={yeR"|y=Bv, ve 2%

is called the lattice generated by B. B is called a basis of L(B).

e bl=e¢;,,i=1,...,n e is the i-th unit vector, then Ler,...,e,) =2

e x,y<c L(B)and \,u € Z, \x + py € L(B).

2.1 Multiple bases
b' = (1,2)", b*> = (2,1), b*> = (1,—1)". Then, L(b",b%) = L(b*,b°).
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2.2

Alternative bases

Let B = [b',...,b%] be a basis of the lattice £.

24

If U € R4 is unimodular, then B = BU is a basis of the lattice £.

If B and B are bases of £, then there exists a unimodular matrix U such that
B =BU.

If B and B are bases of £, then |det(B)| = |det(B)).

Proof

For all z € £: = = Bv with v € Z%.
det(U) = 1, and det(U™") = 1/ det(U) = £1.
x=BUU 'w.

From Cramer’s rule, U ' has integral coordinates, and thus w = U ‘v is
integral.

B = BU. Then, £ = Bw, with w € Z¢, which implies that B is a basis of £.
B=1[',...,bYand B = [El, e ,Ed] be bases of £. Then, the vectors b', ..., b%
and the vectors El, . ,Ed are both linearly independent.
V={By|yeR"}={By|yecR"}.

There exists an invertible d x d matrix U such that
B=BU and B=BU'.
b =BU,, U, € 2*and b = BU,; ", U; ' € 2%

U and U™~ ! are both integral, and thus both det(U) and det(U ~') are integral,
leading to det(U) = £1.

|det(B)| = |det(B)||det(U)] = |det(B)|.

Convex Body Theorem

Let £ be a lattice in R™ and let A € R™ be a convex set such that vol(A4) >
2"det(L) and A is symmetric around the origin, i.e., z € Aif and only if —z € A.
Then A contains a non-zero lattice point.

2.5

Integer normal form

A € Z™*" of full row rank is in integer normal form, if it is of the form [B, 0],
where B € Z™*™ is invertible, has integral elements and is lower triangular.

Elementary operations:

(a) Exchanging two columns;

(b) Multiplying a column by —1.

(c) Adding an integral multiple of one column to another.

Theorem: (a) A full row rank A € Z™*™ can be brought into the integer normal

form [B, 0] using elementary column operations;
(b) There is a unimodular matrix U such that [B,0] = AU.
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2.6

Proof

We show by induction that by applying elementary column operations (a)-(c),
we can transform A to
a 0
et (1)

where a € 24\ {0}, v € 2™ and C € 2"~ V*("=1 g of full row rank. By
proceeding inductively on the matrix C we prove part (a).

By iteratively exchanging two columns of A (Operation (a)) and possibly multi-
plying columns by —1 (Operation (b)), we can transform A (and renumber the
column indices) such that

a1 > ai2 > ... >ain > 0.
Since A is of full row rank, ai,; > 0. Let k = max{i : a1,; > 0}. If k = 1, then

we have transformed A into a matrix of the form (1). Otherwise, k > 2 and by
applying k — 1 operations (c) we transform A to

A= {Al {EJ Ao, .o Ay — {MJ Ap, A, Apsr, -, An

ai,k

Repeat the process to A, and exchange two columns of A such that
a1 >a12 > ... 2> ai, > 0.

max{i: a1; >0} <k

k
E a1 <
i—1

which implies that after a finite number of iterations A is transformed by ele-
mentary column operations (a)-(c) into a matrix of the form (1).

e

—1 k
(a1,i —a1,it1) +are =a1,1 < E ai,i,
1

i=1

2

Each of the elementary column operations corresponds to multiplying matrix A
by a unimodular matrix as follows:

(i) Exchanging columns k and j of matrix A corresponds to multiplying
matrix A by a unimodular matrix Uy = T+ 1y j+ 1 — Ik —1I; ;. det(Uy) =
—1.

(ii) Multiplying column j by —1 corresponds to multiplying matrix A by a
unimodular matrix Us = I —21; ;, that is an identity matrix except that element
(4,7) 1s —1. det(U2) = —1.

(iii) Adding f € Z times column k to column j, corresponds to multiplying
matrix A by a unimodular matrix Us = I + fIj ;. Since det(Us) = 1, Us is
unimodular.

Performing two elementary column operations corresponds to multiplying the
corresponding unimodular matrices resulting in another unimodular matrix.
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2.7 Example

o SLIDE 9
3 -4 27  [43 2
1 0 7 0o 1 7
[ ]
1 1 2
-1 -6 7
e Reordering the columns
2 1 1
7T -6 -1
e Replacing columns one and two by the difference of the first and twice the second
column and the second and third column, respectively, yields
0 0 1
19 -5 -1 |°
e Reordering the columns
1 0 0
-1 19 -5 |°
e Continuing with the matrix C = [19, —5], we obtain successively, the matrices
[19, 5], [4,5], [5,4], [1,4], [4,1], [0, 1], and [1,0]. The integer normal form is:
1 0 0
-1 1 0 |
2.8 Characterization
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A € 2™ full row rank; [B,0] = AU. Let b€ Z™ and S = {x € Z" | Az = b}.
(a) The set S is nonempty if and only if B™'b € Z™.
(b) If S # 0, every solution of S is of the form
z=U1B 'b+Usz, 2€ 2" ™,
where U1, Ua: U = [U1,U3].
(c) L={x € 2" | Ax = 0} is a lattice and the column vectors of Uy constitute a
basis of L.
2.9 Proof
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e y =U 'z. Since U is unimodular, y € Z" if and only if € Z™. Thus, S is
nonempty if and only if there exists a y € Z" such that [B, 0]y = b. Since B is
invertible, the latter is true if and only B™1b € 2™,



e We can express the set S as follows:

S ={xe€Z"| Ar =b}
{x€e Z" |x=Uy, [B,0ly=>b, yc Z"}
={xecZ'"|e=Uw+Uszz, Bw=b, we Z", zc Z"" ™}

Thus, if S # (), then B~'b € Z™ from part (a) and hence,
S={xeczZ"|e=UB 'b4+Usz, z€ 2" ™}
o Let L= {xz € Z" | Ax = 0}. By setting b = 0 in part (b) we obtain that
L=AxzeZ"|x=Uszz, z€ Z" "}
Thus, by definition, £ is a lattice with basis U .

2.10 Example
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o Is S = {x € 2% | Az = b} is nonempty
3 6 1 3
A:{4 5 5} andb:{Q].
e Integer normal form: [B,0] = AU, with
0 9 —-25
po=[1 0] andU:[o L 11].
1 -3 9
Note that det(U) = —1. Since B™'b = (3,—13)' € 22, S # {).
e All integer solutions of S are given by
0 9 3 —25 —117 — 25z
r=|0 —4 {13}+ 11 z = 52 + 11z |, z€ Z.
1 -3 9 42 + 9z
2.11 Integral Farkas lemma
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Let A€ Zm*" be Z™and S ={x € 2" | Az = b}.
e The set S = () if and only if there exists a y € Q™, such that y’A € Z™
and y'b ¢ Z.
e The set S = 0 if and only if there exists a y € Q™, such that y > 0,
yYAecZ™and y'b ¢ Z.
2.12 Proof SLIDE 14

e Assume that S # ). If there exists y € Q™, such that y’A € Z™ and y'b ¢ Z,
then y' Az = y'b with y’ Az € Z and y'b ¢ Z.

e Conversely, if S = (), then by previous theorem, u = B~ 'b ¢ Z™, that is there
exists an ¢ such that u; ¢ Z. Taking y to be the ith row of B! proves the
theorem.



2.13 Reformulations
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e max c'x, x € S={x € Z} | Ax = b}.
[B,0] = AU. There exists z° € Z": Az =biff B"'b¢ Z™.

zelS <— z=a"+y: Ay=0, —z° <y.

Let
L={yeZ"| Ay =0}.

Let U3 be a basis of L, i.e.,

L=AyeZ" |y=Uszz, z€ Z" ™}

max cUsz
st Usz > —z°
zeZ"m,

Different bases give rise to alternative reformulations
max ¢ Bz
st. Bz > —z°
zeZ"m,
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