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Lecture 10: Solving Relaxations



1

2.1

2.2

Outline

SLIDE 1
The key geometric result behind the ellipsoid method

The ellipsoid method for the feasibility problem
The ellipsoid method for optimization

Problems with exponentially many constraints

The Ellipsoid method

SLIDE 2
D is an n X n positive definite symmetric matrix

A set E of vectors in R™ of the form
E=E(z,D)={zeR"|(x—2)D "z —2) <1}

is called an ellipsoid with center z € "

The algorithm intuitively g )
LIDE

Problem: Decide whether a given polyhedron
P={xzeR"| Az > b}
is nonempty

Key property: We can find a new ellipsoid E;;1 that covers the half-
ellipsoid and whose volume is only a fraction of the volume of the previous
ellipsoid FE;
SLIDE 4

Key Theorem
SLIDE 5
E = E(z, D) be an ellipsoid in ®"; a nonzero n-vector.

H={zeR"|dz>az}

> — 24 1 Da
n+1va'Da’
2 !
— n 2 Daa'D
D = D — .
n2—1< n+1 a’Da>

The matrix D is symmetric and positive definite and thus E' = E(Z, D) is an
ellipsoid

ENnHCFE
Vol(E') < e~V +0) vol(E)
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2.3
24

Illustration
Assumptions
A polyhedron P is full-dimensional if it has positive volume

The polyhedron P is bounded: there exists a ball Eg = E(xg,r*I), with
volume V', that contains P

Either P is empty, or P has positive volume, i.e., Vol(P) > v for some
v >0

FEy, v, V, are a priori known

We can make our calculations in infinite precision; square roots can be
computed exactly in unit time

2.5 Input-Output
Input:
e A matrix A and a vector b that define the polyhedron P = {x € R" |
alx>b;, i=1,...,m}
e A number v, such that either P is empty or Vol(P) > v
e A ball Ey = E(xg,r*I) with volume at most V, such that P C Ey

Output: A feasible point «* € P if P is nonempty, or a statement that P is
empty

2.6

1.

The algorithm
(Initialization)
Let t* = [2(71 +1) log(V/v)-I; Eo = E(zo,7*I); Do = r’I; t = 0.
(Main iteration)
If ¢t = t* stop; P is empty.
If + € P stop; P is nonempty.
If ; ¢ P find a violated constraint, that is, find an 4 such that ajz; < b;.

Let Hy = {x € R" | a;x > ajz.}. Find an ellipsoid F:+1 containing E; N Hy:
Eiy1 = E(xi41, Dyy1) with

z o 1 Dtai
tyl = Tt + —— —F——,
n+1./a'D.a;
2 /
n 2 DtaiaiDt
D = D, — —rr .
i+ nZ—1 ( | a/D.a;

t:=t+ 1.
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2.7

Theorem: Let P be a bounded polyhedron that is either empty or full-dimensional

Correctness

and for which the prior information xq, r, v, V is available. Then, the ellipsoid
method decides correctly whether P is nonempty or not, i.e., if @41 ¢ P, then
P is empty

2.8

Proof

If €&, € P for t < t*, then the algorithm correctly decides that P is
nonempty

Suppose X, ..., T—1 ¢ P. We will show that P is empty.

We prove by induction on k that P C Ej for k = 0,1,...,t*. Note
that P C Ey, by the assumptions of the algorithm, and this starts the
induction.

Suppose P C E}, for some k < t*. Since @ ¢ P, there exists a violated
inequality: a;(k)a} > b be a violated inequality, i.e., a;(k)mk < bi(k),
where xj, is the center of the ellipsoid Ej

For any = € P, we have

Hence, P C Hy = {x € R" | )T = a;(k)wk}

Therefore, P C Ex, N Hy,

By key geometric property, Ex N Hy C Ejiy1; hence P C Ejy1 and the induction is
complete

If the ellipsoid method has not terminated after t* iterations, then Vol(P) < Vol(E¢«) <

Vol(Bi+1) _ —1/¢(n+1))
— < e
VOI(Et)

Vol(E;~) < ot/ 2(n+D)

VOI(EO)

Vol(E¢+) < Ve [2ntDlos T1/((nt1) < yyp=loay _ )

v. This implies that P is empty

2.9

Binary Search
P:{xe%|x20,x21,x§2,x§3}

Ey = [0, 5], centered at g = 2.5
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e Since z9 ¢ P, the algorithm chooses the violated inequality < 2 and
constructs E that contains the interval Ey N {z | z < 2.5} = [0,2.5]

e The ellipsoid E; is the interval [0, 2.5] itself
e Its center x; = 1.25 belongs to P

e This is binary search

2.10 Boundedness of P

SLIDE 15
Let A be an m x n integer matrix and let b a vector in ". Let U be the largest
absolute value of the entries in A and b.
Every extreme point of the polyhedron P = {& € R" | Ax > b} satisfies
—mU)" <z; <(@U)*, j=1,...,n
SLIDE 16
e All extreme points of P are contained in
Pg={xeP||z;|<(nU)", j=1,...,n}
e Since Pp C E(O, n(nU)2"I), we can start the ellipsoid method with Ey =
E(0,n(nU)*"I)
[ ]
Vol(Ey) <V = (2n(nU)")" = (2n)"(nU)"
2.11 Full-dimensionality
SLIDE 17

Let P = {x € R" | Az > b}. We assume that A and b have integer entries,
which are bounded in absolute value by U. Let

_ 1 " —(n+1)
6—2(n+1)(( +1)U) .

Let
PE:{mG%”|Aa:2bfee},
where e = (1,1,...,1).
(a) If P is empty, then P, is empty.
(b) If P is nonempty, then P, is full-dimensional. SLIDE 18

Let P = {a: ER"| Ax > b} be a full-dimensional bounded polyhedron, where
the entries of A and b are integer and have absolute value bounded by U. Then,

Vol(P) > v = n_"(nU)_"2("+1)



2.12 Complexity

3

P ={x € " | Az > b}, where A, b have integer entries with magni-
tude bounded by some U and has full rank. If P is bounded and either
empty or full-dimensional, the ellipsoid method decides if P is empty in
O(nlog(V/v)) iterations

v=n""(nU)"" ("1, V = (2n)"(nU)"
Number of iterations O(n*log(nU))

If P is arbitrary, we first form Pg, then perturb Pp to form Pg,. and apply the
ellipsoid method to Pp e

Number of iterations is O(n6 log(nU))A

Tt has been shown that only O(n®logU) binary digits of precision are needed,
and the numbers computed during the algorithm have polynomially bounded
size

The linear programming feasibility problem with integer data can be solved in
polynomial time

The ellipsoid method for optimization

min c=z max b'w
st. Ax > b, st. A'm = ¢
w >0

By strong duality, both problems have optimal solutions if and only if the following
system of linear inequalities is feasible:

b/p = C/:L‘7 Ax > b, A/p =c, p>0.

LO with integer data can be solved in polynomial time.

3.1

Sliding objective

We first run the ellipsoid method to find a feasible solution ¢y € P =
{:BE%"|A:BZb}.

We apply the ellipsoid method to decide whether the set
Pn{zeR"|dx < dxo}

is empty.

If it is empty, then xq is optimal. If it is nonempty, we find a new solution

x; in P with objective function value strictly smaller than ¢'xg.

More generally, every time a better feasible solution @, is found, we take
Pn{x e R |z <z} as the new set of inequalities and reapply the
ellipsoid method.
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X1 X <Xy

3.2 Performance in practice

e Very slow convergence, close to the worst case
e Contrast with simplex method

e The ellipsoid method is a tool for classifying the complexity of linear
programming problems

4 Problems

4.1 Example
minz Ci;
Zaixi > |5, for all subsets S of {1,...,n}
icS

e There are 2" constraints, but are described concisely in terms of the n
scalar parameters ay,...,a,

e Question: Suppose we apply the ellipsoid algorithm. Is it polynomial?

e In what?

4.2 The input

e Consider minc’x s.t. € € P

P belongs to a family of polyhedra of special structure

e A typical polyhedron is described by specifying the dimension n and an
integer vector h of primary data, of dimension O(n*), where k > 1 is some
constant.

e In example, h = (a1,...,a,) and k=1

Uy be the largest entry of h
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e Given n and h, P is described as Ax > b
e A has an arbitrary number of rows

e U largest entry in A and b. We assume

logU < Cn' 1oge Uy

5 The separation problem

Given a polyhedron P C ®" and a vector € R", the separation problem is
to:

e Either decide that x € P, or
e Find a vector d such that d'ax < d'y for all y € P
What is the separation problem for

> aiw; > S|, for all subsets S of {1,...,n}?
€S

6 Polynomial solvability

6.1 Theorem

If we can solve the separation problem (for a family of polyhedra) in time
polynomial in n and log U, then we can also solve linear optimization problems
in time polynomial in n and logU. If logU < Cnflog’ Uy, then it is also
polynomial in log U

e Proof ?
e Converse is also true

e Separation and optimization are polynomially equivalent

6.2 MST

IZMST = min Z Cele
ecE
st S w>1 VSCV,8#4£0,V
e€d(S)

Y xe=n—1

eclr

z. € {0,1}.

How can you solve the LP relaxation?

SLIDE 28

SLIDE 29

SLIDE 30



6.3 TSP

1, if edge e is included in the tour.
Te = .
0, otherwise.

min = Y ceZe
eckE
s.t. > x.>2, SCF
e€d(S)
S xe=2, i€V
e€d (i)
z. € {0,1}

How can you solve the LP relaxation?

6.4 Probability Theory
e Events A1, Ao
o P(A1) =05, P(As)=0.7, P(A N As) < 0.1
e Are these beliefs consistent?
e General problem: Given n events A; i € N = {1,...,n}, beliefs
P(AZ)Sp“ i €N,
P(AiﬂAj)Zpij7 i, €N, i <j.

e Given the numbers p; and p;;, which are between 0 and 1, are these beliefs
consistent?

6.4.1 Formulation

{SliesS}
> w(8) > py, i,j €N, i<,

{Sli,jes}

> as) =1,

S
z(S) > 0, v S.

The previous LP is feasible if and only if there does not exist a vector (u,y, z) such
that
Z Yij + ZuiJrzzO, v S,

0,J€5,i<] i€S

Z DijYi; + Zpiui + z < -1,

i,JEN,i<j iEN

vij <0, u; >0, 1,7 €N, 1 <]

SLIDE 31

SLIDE 32

SLIDE 33

SLIDE 34

SLIDE 35



Separation problem:

z*—l—mgnf(S): Z yz‘j—i—Zu;‘zO?

i,j€S,i<j i€s
Example: yjys = =2, yis = —4, iy = —4, y33 = —4, y5, = —1, y3, = —7,
ui =9, u5 =06, u; =4, u; =2, and z* =2 SLIDE 36

SLIDE 37
e The minimum cut corresponds to Sy = {3,4} with value ¢(Sy) = 21.
o f(So)= > wyh+ > ui=-T+4+2=-1
1,j€S0,1<j i€So
o f(S)+2z*>f(So)+z-=-14+2=1>0, v S
e Given solution (y*,u*, z*) is feasible
7 Conclusions
SLIDE 38

e Ellipsoid algorithm can characterize the complexity of solving LOPs with
an exponential number of constraints

e For practical purposes use dual simplex

e Ellipsoid method is an important theoretical development, not a practical
one
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