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1 Outline

SLIDE 1
e Minimal counterexample
e Lift and project
2 Matching polyhedron
SLIDE 2
Pmatching = {:B Z Te = ]-7 i€ Va
ecd({i})
Y we>1,5C VS| odd, |S| >3,
e€d(S)
0<z. <1, eeE}.
e F set of perfect matchings in G.
e Theorem: For the perfect matching problem
Pratching = conv(F).
2.1 Proof Outline SLIDE 3

e conv(F) C Puatching-

e For reverse: Assume G = (V, E) is a graph such that Pyatching ¢ conv(F'), and
|[V|+ |E| is the smallest.

e x be an extreme point of Puatching 10t in conv(F).
e For each edge e = {u, v}, z. > 0, otherwise we could delete e from F.

e z. < 1, otherwise we could replace V by V \ {u,v} and E by all edges in E
incident to V' \ {u,v}.

e |E| > |V|; otherwise, either G is disconnected (in this case one of the components
of G will be a smaller counterexample), or G has a node of degree one (in this
case the edge e incident to v satisfies z. = 1), or G is the disjoint union of cycles
(in this case the theorem holds trivially).

e x extreme point of Pmatching, there are |E| linearly independent tight constraint.
e There exists a S C V with |S| odd, |S| >3, |V \ S| > 3, and

Z Te = 1.
e€s(S)

e Contract V' \ S to a single new node u, to obtain G’ = (S U {u}, E').
e x, =z, for all e € E(S), and for v € S,

’
Tlu,0) = Z T(v,j}-
(JeV\S.{v.j}€E}

z’ satisfies constraints with respect to G'.



e As G is a smallest counterexample, ' belongs to the convex hull of matchings

on G,
’ Z M’
r = )‘M’X .
M’

e Contract S to a single new node ¢ we obtain a graph G” = ((V '\ S) U {t}, E")

1"
and a vector x":
"o M
r = 122,220 G
1\4//

e “Glue together” perfect matchings M’ and M"

r = Z Z /\M’ml:M” XM

e€d(S) m perfect matching: Mns(s)={e}

3 Lift and project
o S={xcZ"| Az < b}.
e (Lift) Multiply Az < b by z; and 1 — z;
(A{I)).T]' < bmj (*)
(Az)(1 —z;) < b(1— ;)

and substitute y;; = zx; for 4,5 = 1,...,n, i # j and x; = 27. Let L;(P) be
the resulting polyhedron.

e (Project) Project L;(P) back to the x variables by eliminating variables y.
Let P; be the resulting polyhedron, i.e., P; = (L;(P))s.

3.1 Theorem
P; =conv(PNn{x e R" |z; € {0,1}})
Proof:
e ' c PN{xeR"|z; €{0,1}} and y;; = x}z).
e Since 2 = (2})® and Az’ < b, (z',y’) € L;(P) and thus =’ € P;. Hence,

conv(PN{x € R" | z; € {0,1}}) C P;.

o If PN{x € R" | z; =0} =0, then from the Farkas lemma there exists u > 0,
such that u'A = —e; and u’b = —1. Thus, for all = satisfying (*) we have

w Ax(1 —z;) < u'b(l — ;).
Hence, for all x € P;
—eja(l — ;) = —a;(1 - z;) < —(1 — ;).

Replacing m? by z;, we obtain that z; > 1 is valid for P;. Since, in addition,
P; C P, we conclude that

PCPn{zeR"|z;=1}=conv(PN{x € R" | z; € {0,1}}).
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o Similarly, if PN{x € R" | z; =1} = 0, then
P;j Cconv(PN{x € R" | z; € {0,1}}).

e Suppose PN{x e R" |2; =0} #0, PNn{x € R" | z; =1} #0.

e We prove that all valid inequalities for conv(P N {x € R" | z; € {0,1}}) are
also valid for P;.

e a’z < « a valid inequality for conv(P N {x € R" | z; € {0,1}}).
e xc P Ifz; =0,thenforall \ € R a'x + \z; =a'z < a.
e If z; > 0, then there exists A < 0, such that for all € P,

a'z + A r; <a.

e Analogously, since a’x < ais valid for PN{x € R" | z; = 1}, there exists some
v < 0 such that for all € P,

az+v(l-=z;) <a.
e For all = satisfying (*),

(1 — xj)(a’cc + )\JI’J)
zj(a'z +v(l — z;))

(1-2zj)a

<
< zjo.

e Hence,
a'z+ \+v)(z; —23) < a

e After setting 27 = z; we obtain that for all z € P;, 'z < «, thus all valid
inequalities for conv(P N{x € R"™ | z; € {0,1}}) are also valid for P;, and thus
P; Cconv(PN{x € R" | z; € {0,1}}).

3.2 Example

SLIDE 6
P={(z1,22) | 221 — 22 > 0,221 + 22 < 2,71 > 0,22 > 0}.
2¢? —x1x0 > 0
2z1(1 —z1) —z2(1— 1) > 0
2x%+x1x2 < 2z

201(1 —x1) +x2(1 —21) < 2(1 — 1)
z3 >0
zi(l—z1) >0
zoxr1 > 0
z2(l —z1) > 0.
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This implies that y = 0,

S
IV IV IA IV IV

which leads to

P = {(z1,22) |0 <21 <1, 22 = 0}

conv(P N {(z1,x2)" | x1 € {0,1}}).

3.3 Convex hull

® Piig,ir = ((Pi )iz -+ e
e Theorem: The polyhedron P, i, ..., satisfies:

Py, =conv(PN{x e R" | z; € {0,1}, i € {i1,...,it}}).

o P ..n=PFr.
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