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Lecture 3: Methods to enhance formulations 



∑ ∑ 

1 Outline 
Slide 1 

•	 Polyhedral review 

•	 Methods to generate valid inequalities 

•	 Methods to generate facet defining inequalities 

2 Polyhedral review 

2.1 Dimension of polyhedra 

•	 Definition: The vectors x1 , . . . , xk ∈ �n 

unique solution of the linear system 

k 

aix i = 0, 
i=1 

is ai = 0  for  all  i = 1, . . . , k. 

Slide 2 
are affinely independent if the 

k 

ai = 0, 
i=1 

•	 Proposition: The vectors x1 , . . . , xk ∈ �n are affinely independent if and

only if the vectors x2 − x1 , . . . , xk − x1 are linearly independent.


Slide 3 

n•	 Definition: Let P = {x ∈ � | Ax ≥ b}. Then, the polyhedron P has

dimension k, denoted dim(P ) =  k, if the maximum number of affinely

independent points in P is k + 1. 


•	 P = {(x1, x2) | x1 − x2 = 0, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, dim(P ) =?  

2.2 Valid Inequalities 

2.2.1 Definitions 
Slide 4 

•	 a′x ≥ b is called a valid inequality for a set P if it is satisfied by all

points in P .


•	 Let f ′ x ≥ g be a valid inequality for a polyhedron P , and  let  F = {x ∈

P | f ′ x = g}. Then, F is called a face of P and we say that f ′ x ≥ g

represents F . A face is called proper if F = Ø� , P .


•	 A face  F of P represented by the inequality f ′ x ≥ g, is called a facet of

P if dim(F ) =  dim(P ) − 1. We say that the inequality f ′ x ≥ g is facet

defining.
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2.2.2 Theorem 
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•	 For each facet F of P , at least one of the inequalities representing F is

necessary in any description of P .


•	 Every inequality representing a face of P of dimension less than dim(P )−1

is not necessary in the description of P , and can be dropped.


2.2.3 Example 
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•	 S = {(x1, x2) ∈ Z2 | x1 ≤ 3, x1 ≥ 1, −x1 +2x2 ≤ 4, 2x1 + x2 ≤ 8, x1 +2x2 ≥ 3}. 
•	 Facets for conv(S): x1 ≤ 3, x1 ≥ 1, x1 + 2x2 ≥ 3, x1 + x2 ≤ 5, −x1 + x2 ≤ −1. 

•	 Faces of dimension one: −x1 + 2x2 ≤ 4, and 2x1 + x2 ≤ 8. 

3 Methods to generate valid inequalities 

3.1 Rounding 
Slide 7 

•	 Choose u = (u1, . . . , um)′ ≥ 0; Multiply ith constraint with ui and sum: 

n 

(u ′Aj )xj ≤ u ′b. 
j=1 

•	 Since �u ′Aj � ≤ u ′Aj and xj ≥ 0: 

n 

�u ′Aj � xj ≤ u ′b. 
j=1 

n n •	 As x ∈ Z+: 
∑ 

j=1 �u ′Aj � xj ≤ �u ′b�. 
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3.1.1 Matching { ∣ }	 Slide 8 

•	 S = x ∈ {0, 1}|E| ∣∣ ∑ 
e∈δ({i}) xe ≤ 1, i ∈ V . 

•	 U ⊂ V , |U | = 2k + 1.  For  each  i ∈ U , multiply 
e∈δ({i}) xe ≤ 1 by  1/2, and


add:
 ∑ 1 ∑ 1 
xe + xe ≤ |U |. 

2 2 
e∈E(U) e∈δ(U) 

•	 Since xe ≥ 0, xe ≤ 1 |U |. 
e∈E(U) 2 

•	 Round to (|U | is odd) 

xe ≤ 
1 |U | = 

|U | − 1 
,

2 2 
e∈E(U) 

3.2 Superadditivity 

3.2.1 Definition 
Slide 9 

A function F : D ⊂ � �n → � is superadditive if for a1, a2 ∈ D,: a1 + a2 ∈ D : 

F (a1) +  F (a2) ≤ F (a1 + a2), 

It is nondecreasing if 

F (a1) ≤ F (a2), if a1 ≤ a2 for all a1, a2 ∈ D. 

3.2.2 Theorem 
Slide 10 

If F : �m �	 ∑
j
n 
=1 F (Aj )xj ≤→ � is superadditive and nondecreasing with F (0) =  0,  

n ∣F (b) is valid for the set S = x ∈ Z+ Ax ≤ b . 

3.2.3 Proof 
Slide 11 

By induction on xj , we  show:  F (Aj )xj ≤ F (Aj xj ). For xj = 0 it is clearly 
true. Assuming it is true for xj = k − 1, then 

F (Aj )k = F (Aj ) +  F (Aj )(k − 1) 
≤ F (Aj ) +  F (Aj (k − 1)) 
≤ F (Aj + Aj (k − 1)), 

by superadditivity, and the induction is complete. Slide 12 
Therefore, 

n n 

F (Aj )xj ≤ F (Aj xj ). 
j=1 j=1 
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By superadditivity, 
⎛ ⎞ 

n	 n ⎝F (Aj xj ) ≤ F Aj xj ⎠ = F (Ax). 
j=1	 j=1 

Since Ax ≤ b and F is nondecreasing 

F (Ax) ≤ F (b). 

3.3 Modular arithmetic 
Slide 13 { ∣ n } 

nS = x ∈ Z+ aj xj = a0 , 
j=1 

d ∈ Z+. We  write  aj = bj + uj d, where  bj (0 ≤ bj < d, bj ∈ Z+). Then, 

n 

bj xj = b0 + rd, for some integer r. 
j=1 

n	 n
Since 

j=1 bj xj ≥ 0 and  b0 < d, we obtain  r ≥ 0. Then, 
j=1 bj xj ≥ b0 is valid for 

S. 

3.3.1 Examples 
Slide 14 

4 •	 S = {x ∈ Z+ | 27x1 + 17x2 − 64x3 + x4 = 203}. For d = 13, inequality

x1 + 4x2 + x3 + x4 ≥ 8 is valid for S.


•	 For d = 1,  and  aj are not integers. In this case, since x ≥ 0, we  obtain  
n	 n�aj �xj ≤ a0. Since  x ∈ Z, �aj �xj ≤ �a0�, and thus the following 
j=1	 j=1

inequality is valid for S 

n 

(aj − �aj �)xj ≥ a0 − �a0�. 
j=1 

3.4 Disjunctions 

3.4.1 Proposition 
Slide 15 

If the inequality 
∑n ≤ b is valid for S1 ⊂ �n , and the inequality j=1 aj xj	 +

n	 n 
j=1 cj xj ≤ d is valid for S2 ⊂ � , then the inequality +

n 

min(aj , cj )xj ≤ max(b, d) 
j=1 

is valid for S1 ∪ S2. 
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3.4.2 Theorem 
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If the inequality n

j=1 aj xj − d(xk − α) ≤ b is valid for S for some d ≥ 0, and the 

inequality n

j=1 aj xj + c(xk − α − 1) ≤ b is valid for S for some c ≥ 0, then the 

inequality n

j=1 aj xj ≤ b is valid for S. 
Example: In previous example, we write −x1 + 2x2 ≤ 4 and  −x1 ≤ −1 as follows: 

(−x1 + x2) + (x2 − 3) ≤ 1, (−x1 + x2) − (x2 − 2) ≤ 1. 

α = 2,  −x1 + x2 ≤ 1 is valid. 

3.5 Mixed integer rounding 

3.5.1 Proposition 
Slide 17 

•	 For v ∈ �, f(v) =  v − �v�, v+ = max  {0, v}. 
•	 X = {(x, y) ∈ Z × �+ | x − y ≤ b} 

y 

3
2

x − y =

3 

1 

3
2 

5
2

2 
3 x − 2y = 2  
2 

1 
1
2 

2 3 4 x 

• The inequality x − 1 
1−f (b) y ≤ �b� is valid for conv(X). 

3.5.2 Proof 
Slide 18 

•	 P 1 = X ∩ {(x, y) | x ≤ �b�}, 
•	 P 2 = X ∩ {(x, y) | x ≥ �b� + 1} . 

•	 Add 1 −f(b) times the inequality x −�b� ≤ 0 and  0  ≤ y: (x −�b�) (1  −f(b)) ≤ y

is valid for P 1 .


•	 For P 2 we combine −(x − �b�) ≤ −1 and  x − y ≤ b with multipliers f(b) and  
1: (x − �b�)(1 − f(b)) ≤ y. By disjunction, (x − �b�)(1 − f(b)) ≤ y is valid for

conv(P 1 ∪ P 2) = conv(X).
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3.5.3 Theorem { ∣	 } Slide 19 

S	 = x ∈ Zn ∣ ∑n Aj xj ≤ b, j  = 1, . . . , n  . For every u ∈ Qm the+ ∣ j=1	 + 

inequality n
j=1 

( 
�u′Aj � + [f (u� 

1

A
−

j 

f 

)

(

−
u
f 
�
(

b
u
) 

� b)]+ 
) 

xj ≤ �u′b� is valid for conv(S). 

4 Facets  

4.1 By the definition 

4.1.1 Stable set 
Slide 20 

max wixi


i∈V


s. t. xi + xj ≤ 1, ∀ {i, j} ∈ E, 

xi ∈ {0, 1}, i ∈ V. 

A collection of nodes U , such that for all i, j ∈ U, {i, j} ∈ E is called a clique. 

xi ≤ 1, for any clique U (∗) 
i∈U 

is valid.	 Slide 21 

•	 A clique U is maximal if for all i ∈ V \ U , U ∪ {i} is not a clique. 

•	 (*) is facet defining if and only if U is a maximal clique. 

•	 U = {1, . . . , k}. Then, ei, i = 1, . . . , k  satisfy (*) with equality. 

•	 For each i 
∈ U , there  is  a node  j = r(i) ∈ U , such that (i, r(i)) ∈
 E. x i with

x ii = 1,  x ir(i) = 1, and zero elsewhere is in S, and satisfies inequality (*) with

equality.


•	 e1, . . . , ek, x k+1 , . . . , x n are linearly independent; hence, affinely independent. 
Slide 22 

Conversely, since U is not maximal, there is a node i /∈ U such that U ∪{i} is a clique, 
and thus 

j∈U∪{i} xj ≤ 1 (∗∗) is valid for conv(S). Since inequality (*) is the sum of 
−xi ≤ 0 and inequality (**), then (*) is not facet defining. 

4.2 Lifting 
Slide 23 

6 ∑	 Slide 24 
max xi 

i=1 

x1 + x2 + x3 ≤ 1 

x1 + x3 + x4 ≤ 1 

x1 + x4 + x5 ≤ 1 

x1 + x5 + x6 ≤ 1 

x1 + x2 + x6 ≤ 1. 

unique optimal solution x 0 = (1/2)(0, 1, 1, 1, 1, 1)′ . Do maximal clique inequalities 
describe convex hull? Slide 25 
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•	 x 0 does not satisfy

x2 + x3 + x4 + x5 + x6 ≤ 2. (1)


•	 Stable sets {2, 4}, {2, 5}, {3, 5}, {3, 6}, {4, 6} satisfy it with equality. Not facet,

since there are no other stable sets that satisfy (1) with equality.


•	 (1) is facet defining for S ∩ x ∈ {0, 1}6 | x1 = 0  . 

•	 Consider ax1 + x2 + x3 + x4 + x5 + x6 ≤ 2, a > 0. 

•	 Select a in order for (1) to be still valid, and to define a facet for S. 
Slide 26 

•	 For x1 = 0, (1) is valid for all a. 

•	 If x1 = 1,  a ≤ 2 −x2 −x3 −x4 −x5 −x6. Since  x1 = 1 implies x2 = · · · = x6 = 0, 

then a ≤ 2. Therefore, if 0 ≤ a ≤ 2, (1) is valid.


•	 For a = 2,  {2, 4}, {2, 5}, {3, 5}, {3, 6}, {4, 6}, and  {1} satisfy it with equality. 

•	 2x1 + x2 + x3 + x4 + x5 + x6 ≤ 2, is valid and defines a facet conv(S). 

4.2.1 General principle { ∣ } ∑	 Slide 27 
Suppose S ⊂ {0, 1}n, Si = S∩ x ∈ {0, 1}n ∣ x1 = i , i = 0, 1, and n 

aj xj ≤ a0 (2) 
j=2 

is valid for S0 . 

•	 If S1 = Ø,  then  x1 ≤ 0 is valid for S. 

• If S1 
 1x	
∑ n

j=2 a j ≤ a0 (3) is valid for S for any a1 ≤ a ,= Ø,  then  a 1 + j x 0 − Z


Z = 
∑ n

j=2 aj xj s.t. x ∈ S1 .


•	 If a1 = a0 −Z and (2) defines a face of dimension k of conv(S0), then (3) gives

a face of dimension k + 1  of  conv(S).


4.2.2 Geometry 
Slide 28 
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a1x1 + a2x2 + a3x3 ≤ a0 

x1 

x2 

x3 

a2x2 + a3x3 ≤ a0 

4.2.3 Order of lifting 
Slide 29 

• P = conv  {x ∈ {0, 1}6 | 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17}. 
• x1 + x2 + x3 + x4 ≤ 3 is valid for P ∩ {x5 = x6 = 0}. 
• Lifting on x5 and then on x6, yields x1 + x2 + x3 + x4 + x5 + x6 ≤ 3. 

• Lifting on x6 and then on x5, yields x1 + x2 + x3 + x4 + 2x6 ≤ 3. 
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1 Outline 
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• Integer points in lattices. 

n• Is {x ∈ Z  | Ax = b} nonempty? 

2 Integer points in lattices 
Slide 2 

• B = [b1 , . . . , bd] ∈ Rn×d , b1 , . . . , bd are linearly independent. 

nL = L(B) =  {y ∈ R  | y = Bv, v ∈ Zd}
 

is called the lattice generated by B. B is called a basis of L(B).
 

n• bi = ei, i = 1, . . . , n  ei is the i-th unit vector, then L(e1, . . . , en) =  Z . 

• x, y ∈ L(B) and  λ, μ ∈ Z, λx + μy ∈ L(B). 

2.1 Multiple bases 
Slide 3 

b1 = (1, 2)′ , b2 = (2, 1)′ , b3 = (1,−1)′ . Then, L(b1 , b2) =  L(b2 , b3). 

11101 2 00000 10 

01 0011 

01 
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11 

11 
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2.2 Alternative bases 
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Let B = [b1 , . . . , bd] be a basis of the lattice L. 

•	 If U ∈ Rd×d is unimodular, then B = BU is a basis of the lattice L. 

•	 If B and B are bases of L, then there exists a unimodular matrix U such that
 
B = BU .
 

•	 If B and B are bases of L, then  |det(B)| = |det(B)|. 

2.3 Proof 
Slide 5 

•	 For all x ∈ L: x = Bv with v ∈ Zd . 

•	 det(U ) =  ±1, and det(U−1) = 1/ det(U ) =  ±1. 

•	 x = BUU−1 v. 

•	 From Cramer’s rule, U−1 has integral coordinates, and thus w = U−1 v is
 
integral.
 

•	 B = BU . Then, x = Bw, with  w ∈ Zd, which implies that B is a basis of L. 

•	 B = [b1 , . . . , bd] and  B = [b 
1 
, . . . , b 

d 
] be bases of L. Then, the vectors b1 , . . . , bd 

1 d 
and the vectors b , . . . , b are both linearly independent. 

•	 V = {By | y ∈ Rn} = {By | y ∈ Rn}. 
•	 There exists an invertible d × d matrix U such that 

B = BU and B = BU−1 . 

	 bi d 1 , U− d • = BU i, U i ∈ Z and b 
i 
= BU− 

i i 
1 ∈ Z . 

•	 U and U−1 are both integral, and thus both det(U ) and det(U−1) are integral,
 
leading to det(U ) =  ±1.
 

• |det(B)| = |det(B)||det(U )| = |det(B)|. 

2.4 Convex Body Theorem 
Slide 6 

n nLet L be a lattice in R and let A ∈ R  be a convex set such that vol(A) > 
2ndet(L) and  A is symmetric around the origin, i.e., z ∈ A if and only if −z ∈ A. 
Then A contains a non-zero lattice point. 

2.5 Integer normal form 
Slide 7 

•	 A ∈ Zm×n of full row rank is in integer normal form, if  it  is  of  the  form  [B,0],
 
where B ∈ Zm×m is invertible, has integral elements and is lower triangular.
 

•	 Elementary operations: 
(a) Exchanging two columns; 
(b) Multiplying a column by −1. 
(c) Adding an integral multiple of one column to another. 

•	 Theorem: (a) A full row rank A ∈ Zm×n can be brought into the integer normal
 
form [B,0] using elementary column operations;
 
(b) There is a unimodular matrix U such that [B,0] =  AU . 

2 



2.6 Proof 
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•	 We show by induction that by applying elementary column operations (a)-(c),
 
we can transform A to � �
 

α 0 
v C  

,	 (1) 

m−1where α ∈ Z+ \ {0} ∈ Z and C ∈ Z(m−1)×(n−1) is of full row rank. By, v
proceeding inductively on the matrix C we prove part (a). 

•	 By iteratively exchanging two columns of A (Operation (a)) and possibly multi­
 
plying columns by −1  (Operation (b)),  we  can transform  A (and renumber the
 
column indices) such that
 

a1,1 ≥ a1,2 ≥ . . . ≥ a1,n ≥ 0. 

•	 Since A is of full row rank, a1,1 > 0. Let k = max{i : a1,i > 0}. If  k = 1,  then  
  
we have transformed A into a matrix of the form (1). Otherwise, k ≥ 2 and  by  
  
applying k − 1 operations (c) we transform A to
 

� � � � �	 � 
A = A1 −	 

a1,1 
A2, . . . , Ak−1 − 

a1,k−1 
Ak, Ak, Ak+1, . . . , An . 

a1,2 a1,k 

•	 Repeat the process to A, and exchange two columns of A such that 

a1,1 ≥ a1,2 ≥ . . . ≥ a1,n ≥ 0. 

•	 max{i : a1,i > 0} ≤ k 

k k−1	 k � �	 � 
a1,i ≤ (a1,i − a1,i+1) +  a1,k = a1,1 < a1,i, 

i=1 i=1	 i=1 

which implies that after a finite number of iterations A is transformed by ele­
mentary column operations (a)-(c) into a matrix of the form (1). 

•	 Each of the elementary column operations corresponds to multiplying matrix A
 
by a unimodular matrix as follows:
 

(i) Exchanging columns k and j of matrix A corresponds to multiplying 
matrix A by a unimodular matrix U 1 = I + Ik,j + Ij,k −Ik,k −Ij,j . det(U 1) =  
−1. 

(ii) Multiplying column j by −1 corresponds to multiplying matrix A by a 
unimodular matrix U 2 = I−2Ij,j , that is an identity matrix except that element 
(j, j) is  −1. det(U 2) =  −1. 

(iii) Adding f ∈ Z  times column k to column j, corresponds to multiplying 
matrix A by a unimodular matrix U 3 = I + fIk,j . Since  det(U 3) =  1,  U 3 is 
unimodular. 

•	 Performing two elementary column operations corresponds to multiplying the
 
corresponding unimodular matrices resulting in another unimodular matrix.
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2.7 Example 
Slide 9 • 

3 −4 2  4 3 2  −→ 
1 0 7 0 1 7  

• 

1 1 2 
−1 −6 7  

•	 Reordering the columns 
2 1 1 
7 −6 −1 

•	 Replacing columns one and two by the difference of the first and twice the second
 
column and the second and third column, respectively, yields
 

0 0 1 
. 

19 −5 −1 

•	 Reordering the columns 
1 0 0 

. −1 19  −5 

•	 Continuing with the matrix C = [19, −5], we obtain successively, the matrices
 
[19, 5], [4, 5], [5, 4], [1, 4], [4, 1], [0, 1], and [1, 0]. The integer normal form is:
 

1 0 0  
. −1 1 0  

2.8 Characterization 
Slide 10 

A ∈ Zm×n , full row  rank; [B, 0] =  AU . Let  b ∈ Zm and S = {x ∈ Zn | Ax = b}. 
m(a) The set S is nonempty if and only if B−1b ∈ Z  . 

(b) If S �= ∅, every solution of S is of the form 

x = U 1B
−1b + U 2z, z ∈ Zn−m , 

where U 1, U 2: U = [U 1, U 2]. 

(c) L = {x ∈ Zn | Ax = 0} is a lattice and the column vectors of U 2 constitute a 
basis of L. 

2.9 Proof 
Slide 11 

n	 n •	 y = U−1 x. Since  U is unimodular, y ∈ Z  if and only if x ∈ Z  . Thus,  S is
 
nonempty if and only if there exists a y ∈ Zn such that [B, 0]y = b. Since B is
 

minvertible, the latter is true if and only B−1b ∈ Z  . 
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•	 We can express the set S as follows:
 

S = {x ∈ Zn | Ax = b}
 

= {x ∈ Zn | x = Uy, [B, 0]y = b, y ∈ Zn}
 

= {x ∈ Zn | x = U 1w + U 2z, Bw = b, w ∈ Zm , z ∈ Zn−m}.
 
mThus, if S �= ∅, then  B−1b ∈ Z from part (a) and hence,


S = {x ∈ Zn | x = U 1B
−1b + U 2z, z ∈ Zn−m}.


•	 Let L = {x ∈ Zn | Ax = 0}. By setting b = 0 in part (b) we obtain that 

L = {x ∈ Zn | x = U 2z, z ∈ Zn−m}.
 
Thus, by definition, L is a lattice with basis U 2.
 

2.10	 Example 
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•	 Is S = {x ∈ Z3 | Ax = b} is nonempty 

3 6 1  3 
A = and b = . 

4 5 5  2 

•	 Integer normal form: [B, 0] =  AU , with  

� � 0 9 −25 
1 0 0  

[B, 0] =  and U = 0 −4  11  . 
5 1 0  

1 −3 9
 

Note that det(U ) =  −1. Since B−1b = (3, −13)′ ∈ Z2 , S � ∅.
=

•	 All integer solutions of S are given by 

0 9	 −25 −117 − 25z 
3 

x = 0 −4 + 11 z = 52 + 11z , z ∈ Z. −13 
1 −3	 9 42 + 9z 

2.11	 Integral Farkas lemma 
Slide 13 

Let A ∈ Zm×n , b ∈ Zm and S = {x ∈ Zn | Ax = b}. 
m•	 The set S = ∅ if and only if there exists a y ∈ Qm, such that y′A ∈ Z 
  

and y′b /
∈ Z.
 

•	 The set S = ∅ if and only if there exists a y ∈ Qm, such that y ≥ 0,
 
my′A ∈ Z 	  and y ∈ Z 
′b / . 

2.12	 Proof 
Slide 14 

m •	 Assume that S = ∅. If  there  exists  y ∈ Qm, such that y ′A ∈ Z  and y ∈ Z,
� ′b /

then y ′Ax = y ′ ′Ax ∈ Z  and y ′b /
b with y ∈ Z.
 

m •	 Conversely, if S = ∅, then by previous theorem, u = B−1b ∈ Z/ , that is there
 
exists an i such that ui ∈ Z/ . Taking  y to be the ith row of B−1
 proves the
 
theorem.
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2.13 Reformulations 
Slide 15 

′ n • max c x, x ∈ S = {x ∈ Z+ | Ax = b} . 
n m • [B, 0] =  AU . There  exists  x 0 ∈ Z  : Ax0 = b iff B−1b ∈ Z/ .


•

x ∈ S ⇐⇒ x = x 0 + y : Ay = 0, −x 0 ≤ y.
 

Let
 
L = {y ∈ Zn | Ay = 0}.
 

Let U 2 be a basis of L, i.e.,
 

L = {y ∈ Zn | y = U 2z, z ∈ Zn−m}. 

• 
max c ′U 2z 

s.t U 2z ≥ −x 0 

z ∈ Zn−m . 

• Different bases give rise to alternative reformulations 

max c ′Bz 

s.t. Bz ≥ −x 0 

z ∈ Zn−m . 

6 



MIT OpenCourseWare
http://ocw.mit.edu 

15.083J / 6.859J Integer Programming and Combinatorial Optimization 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

