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Lecture 3: Methods to enhance formulations



1 Outline

e Polyhedral review
e Methods to generate valid inequalities

e Methods to generate facet defining inequalities

2 Polyhedral review

2.1 Dimension of polyhedra
e Definition: The vectors ',...,2* € R" are affinely independent if the

unique solution of the linear system

K
a;xt = 0, a; =0,
> >
i i=1

isa; =0foralli=1,... k.

e Proposition: The vectors !,..., " € R" are affinely independent if and

only if the vectors &> — ', ..., x* — 2! are linearly independent.

e Definition: Let P = {& € R" | Ax > b}. Then, the polyhedron P has
dimension k, denoted dim(P) = k, if the maximum number of affinely
independent points in P is k + 1.

o P={(z1,22) |21 —22=0, 0< 2y <1, 0 <y <1}, dim(P) =?

2.2 Valid Inequalities
2.2.1 Definitions

e a’xr > bis called a valid inequality for a set P if it is satisfied by all
points in P.

e Let f'z > g be a valid inequality for a polyhedron P, and let F = {x €
P | f'z = g}. Then, F is called a face of P and we say that f'x > g
represents F'. A face is called proper if F' # O, P.

o A face F of P represented by the inequality f'a > g, is called a facet of
P if dim(F) = dim(P) — 1. We say that the inequality f'z > g is facet
defining.
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2.2.2 Theorem

e For each facet F' of P, at least one of the inequalities representing F' is
necessary in any description of P.

e Every inequality representing a face of P of dimension less than dim(P)—1
is not necessary in the description of P, and can be dropped.

2.2.3 Example
o S = {(:El,l’Q) S z2 | 1 <3,x1 > 1, —x1+2x2 < 4,201 +22 <8, 14222 > 3}
e Facets for conv(S): 1 <3, 21 > 1, 21 + 222 > 3, 21 + 22 <5, —z1 + a2 < —1.

e Faces of dimension one: —x1 + 2z < 4, and 2x1 + x2 < 8.

3 Methods to generate valid inequalities

3.1 Rounding

e Choose u = (u1,...,umn) > 0; Multiply ith constraint with u; and sum:

n

Z(U/Aj)xj <u'b.

j=1
e Since [u'A;| <u'A; and z; > 0:
Z (Lu/AjJ)xj <u'b.
j=1

e Asz e Zl: Y " (Lu’A]-j)mj < |u'b|.

j=1
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3.1.1 Matching g 5
LIDE

o S = {me {0, 1} Zeeﬁ({i})xe <1, i€ V}.

e U CV,|U|=2k+1. For each i € U, multiply
add:

ces({i}) Te <1 by 1/2, and

1 1
Z 1}e+§ Z $5§§|U|
ceB(U) e€d(U)
e Since ze > 0, ZeeE(U) z. < 3|U|.
e Round to (|U] is odd)
1 _Ul-1
> @< |50l =S,
ecE(U)
3.2 Superadditivity
3.2.1 Definition

SLIDE 9
A function F : D C R"™ — R is superadditive if for a;,as € D,: a1 +as € D :

F(a1) + F(az) < F(a1 + a2),
It is nondecreasing if

F(a1) < F(ag), if a1 < as for all a1,a4 € D.

3.2.2 Theorem SLIDE 10

If F: R™ +— Ris superadditive and nondecreasing with F(0) = 0, 2?21 F(Aj)z; <
F(b) is valid for the set S = {w € Z} | Az < b}.

3.2.3 Proof
SLIDE 11
By induction on z;, we show: F(A;)z; < F(Ajzx;). For z; = 0 it is clearly
true. Assuming it is true for z; = k — 1, then
F(Ajk = F(A;j) + F(A;j)(k—1)
< F(A;)+F(A;j(k—1))
< F(A; + A;(k 1)),
by superadditivity, and the induction is complete. SLIDE 12

Therefore,

Y F(Ajz; <) F(Ajz).
j=1 j=1



By superadditivity,
j=1 j=1

Since Ax < b and F' is nondecreasing

F(Az) < F(b).

3.3 Modular arithmetic

. SLIDE 13
SZ{IEZJT: Zaj:vj:ao},
j=1
d € Zy. We write aj = b; + u;d, where b; (0 <b; <d, b; € Z;). Then,
Z bjx; = by + rd, for some integer 7.
j=1
Since Z;L:l bjz; > 0 and by < d, we obtain 7 > 0. Then, Z;L:l bjx; > bo is valid for
S.
3.3.1 Examples
SLIDE 14
e S ={x ¢ Zi | 27z1 + 1722 — 6423 + 24 = 203}. For d = 13, inequality
x1 + 42 + x3 + x4 > 8 is valid for S.
e For d = 1, and a; are not integers. In this case, since > 0, we obtain
Z?ZILGle'j < ag. Since x € Z, Z?Zl laj]z; < |ao], and thus the following
inequality is valid for S
> (a; = las))z; > a0 — lao].
j=1
3.4 Disjunctions
3.4.1 Proposition
SLIDE 15

If the inequality Z;.Lzl ajz; < b is valid for S; C R, and the inequality
2?21 cjr; < dis valid for So C R}, then the inequality

Z min(a;, ¢;)z; < max(b,d)
j=1

is valid for S; U Ss.



3.4.2 Theorem

SLIDE 16
If the inequality Z;L:1 ajr; —d(zr —a) < bis valid for S for some d > 0, and the
inequality Z;L:1 ajrj + c(xr —a — 1) < bis valid for S for some ¢ > 0, then the
inequality Z;L:1 ajr; <bis valid for S.
Example: In previous example, we write —x1 + 222 < 4 and —x1 < —1 as follows:
(71’1 -+ 1'2) -+ (1'2 — 3) <1, (71’1 +1’2) — (1’2 — 2) <1.
a=2, —x1 +x2 <1 is valid.
3.5 Mixed integer rounding
3.5.1 Proposition
SLIDE 17
e ForveR, f(v)=v—|v],v" = max {0,v}.
« X ={(z,y)€ Z xRy |x—y<b}
7 |
T—y= %
3
5
2
2 —
3 _ —
S L r—2y=2
1 e
L /-
2 1/
-] | | -
L3 2 3 4 =z
e The inequality = — %f(b) y < |b] is valid for conv(X).
3.5.2 Proof
roo SLIDE 18

e P =Xn{(z,y) |z < |b]},
o P2=Xn{(z,y)| x> [b +1}.

Add 1— f(b) times the inequality x — [b] < 0and 0 <y: (x—[b]) (1—f(b)) <y
is valid for P*.

e For P? we combine —(z — [b]) < —1 and z — y < b with multipliers f(b) and
1: (z — |[b])(1 — f(b)) < y. By disjunction, (z — [b])(1 — f(b)) < y is valid for
conv(P' U P?) = conv(X).



3.5.3 Theorem

S{meZﬁ

Z?Zl Ajz; < b, j = 1,...,n}. For every uw € Q' the

A fu'b)t
1-f(ub)

inequality 327, (Lu'AjJ T ) z; < |u'b] is valid for conv(S).

4 Facets

4.1 By the definition
4.1.1 Stable set

max E Wi Ty

eV
s.t. @+ <1, vV {i,j} €E,
x; € {0,1}, i€V

A collection of nodes U, such that for all i,j € U, {i,j} € E is called a clique.
in <1, for any clique U (x)
e’

is valid.

A clique U is maximal if for all i € V' \ U, U U {3} is not a clique.

(*) is facet defining if and only if U is a maximal clique.
U=/{1,...,k}. Then, e;, i =1,...,k satisfy (*) with equality.
e For each i ¢ U, there is a node j = r(i) € U, such that (i,7(i)) ¢ E. x" with

i = 1, xi(i) = 1, and zero elsewhere is in S, and satisfies inequality (*) with
equality.
e e1,...,er, " .. " are linearly independent; hence, affinely independent.

Conversely, since U is not maximal, there is a node ¢ ¢ U such that UU{i} is a clique,

and thus ZjEUU{i}
—z; < 0 and inequality (**), then (*) is not facet defining.

x; <1 (%) is valid for conv(S). Since inequality (*) is the sum of

4.2 Lifting

i=1
1 + x2 + x3 <1
1 + x3 + x4 <1
1 + T4 + Ts <1
r1 + x5 + g < 1
1 + X2 + x26 < 1

o

unique optimal solution (1/2)(0,1,1,1,1,1)". Do maximal clique inequalities

8
I

describe convex hull?
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e ¥ does not satisfy

T2+ 23+ xa + 5 + 26 < 2. (1)

e Stable sets {2,4}, {2,5}, {3,5}, {3,6}, {4, 6} satisfy it with equality. Not facet,
since there are no other stable sets that satisfy (1) with equality.

e (1) is facet defining for SN {m €{0,1}° |21 = 0}.
e Consider ax1 + x2 + 3 + x4+ x5 + 16 < 2, a > 0.
e Select a in order for (1) to be still valid, and to define a facet for S.

e For z; =0, (1) is valid for all a.

e Ifx1=1,a<2—w2—x3—xa—25— 6. Since z1 = 1 implies z2 = -+ = x6 = 0,
then a < 2. Therefore, if 0 < a <2, (1) is valid.

e For a =2, {2,4}, {2,5}, {3,5}, {3,6}, {4,6}, and {1} satisfy it with equality.
e 2101 + x2 + 3+ x4 + x5 + w6 < 2, is valid and defines a facet conv(S).

4.2.1 General principle
Suppose S C {0,1}", §* = Sﬂ{w e {0,1}" | x1 = i}, t=0,1,and 2?22 ajz; < ao (2)
is valid for S°.
o If S' = @, then z; <0 is valid for S.
o If S #£ @, then a121 + 2?22 ajz; < ao (3) is valid for S for any a1 < ag — Z,
Z=3" ax;st. xS
j=

o If a1 = ap — Z and (2) defines a face of dimension k of conv(S?), then (3) gives
a face of dimension k + 1 of conv(S).

4.2.2 Geometry
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a1T1 + agxe + azrs < ap

7/

7/
asxs + azrsz < ag

x2

4.2.3 Order of lifting g 50
LIDE

e P =conv{x € {0,1}% | 5z1 + 5x2 + 5xz + 54 + 35 + 8w < 17}.
o 11 + a2 + 23+ x4 < 3is valid for PN {x5 = a6 = 0}.
e Lifting on x5 and then on xg, yields x1 + x2 + x3 + 24 + x5 + 26 < 3.

e Lifting on x4 and then on x5, yields x1 + xo + x3 + x4 + 224 < 3.
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1 Outline

e Integer points in lattices.

e Is {x € Z" | Ax = b} nonempty?

2 Integer points in lattices
e B= [bl, cee bd] e R™*d_p' . b? are linearly independent.
L=L(B)={yeR"|y=Bv, ve 2%

is called the lattice generated by B. B is called a basis of L(B).

e bl=e¢;,,i=1,...,n e is the i-th unit vector, then Ler,...,e,)=2Z".

e x,y<c L(B)and \,u € Z, \x + py € L(B).

2.1 Multiple bases
b' = (1,2)", b*> = (2,1), b*> = (1,—1)". Then, L(b",b%) = L(b*,b°).

2y A
o 4 °
3 [ ]
bl
. 2 b
b3
1 2
T T T T ® T >
-2 -1 1 2 3 4 I
° -1 A ° °
® -2 [ ]
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2.2

Alternative bases

Let B = [b',...,b%] be a basis of the lattice £.

24

If U € R4 is unimodular, then B = BU is a basis of the lattice £.

If B and B are bases of £, then there exists a unimodular matrix U such that
B = BU.

If B and B are bases of £, then |det(B)| = |det(B)).

Proof

For all z € £: = = Bv with v € Z%.
det(U) = 1, and det(U™") = 1/ det(U) = £1.
x=BUU 'w.

From Cramer’s rule, U ' has integral coordinates, and thus w = U v is
integral.

B = BU. Then, £ = Bw, with w € Z¢, which implies that B is a basis of £.
B=1[',...,bYand B = [El, e ,Ed] be bases of £. Then, the vectors b', ..., b%
and the vectors El, . ,Ed are both linearly independent.
V={By|yeR"}={By|yecR"}.

There exists an invertible d x d matrix U such that
B=BU and B=BU'.
b =BU,, U, € 2*and b = BU; ", U; ' € 2%

U and U™~ ! are both integral, and thus both det(U) and det(U ~') are integral,
leading to det(U) = £1.

|det(B)| = |det(B)||det(U)] = |det(B)|.

Convex Body Theorem

Let £ be a lattice in R™ and let A € R™ be a convex set such that vol(A4) >
2"det(L) and A is symmetric around the origin, i.e., z € Aif and only if —z € A.
Then A contains a non-zero lattice point.

2.5

Integer normal form

A € Z™*" of full row rank is in integer normal form, if it is of the form [B, 0],
where B € Z™*™ is invertible, has integral elements and is lower triangular.

Elementary operations:

(a) Exchanging two columns;

(b) Multiplying a column by —1.

(c) Adding an integral multiple of one column to another.

Theorem: (a) A full row rank A € Z™*™ can be brought into the integer normal

form [B, 0] using elementary column operations;
(b) There is a unimodular matrix U such that [B,0] = AU.
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2.6

Proof

We show by induction that by applying elementary column operations (a)-(c),
we can transform A to
a 0
et (1)

where a € 24\ {0}, v € 2™ and C € 2"~ V*("=1 g of full row rank. By
proceeding inductively on the matrix C we prove part (a).

By iteratively exchanging two columns of A (Operation (a)) and possibly multi-
plying columns by —1 (Operation (b)), we can transform A (and renumber the
column indices) such that

a1 > ai2 > ... >ain > 0.
Since A is of full row rank, ai,; > 0. Let k = max{i : a1,; > 0}. If k = 1, then

we have transformed A into a matrix of the form (1). Otherwise, k > 2 and by
applying k — 1 operations (c) we transform A to

A= {Al {EJ Ao, .o Ay — {MJ Ap, A, Apsr, -, An

ai,k

Repeat the process to A, and exchange two columns of A such that
a1 >a12 > ... 2> ai, > 0.

max{i: a1; >0} <k

k
E a1 <
i—1

which implies that after a finite number of iterations A is transformed by ele-
mentary column operations (a)-(c) into a matrix of the form (1).

e

—1 k
(a1,i —a1,it1) +are =a1,1 < E ai,i,
1

i=1

2

Each of the elementary column operations corresponds to multiplying matrix A
by a unimodular matrix as follows:

(i) Exchanging columns k and j of matrix A corresponds to multiplying
matrix A by a unimodular matrix Uy = T+ 1y j+ 1 — Ik —1I; ;. det(Uy) =
—1.

(ii) Multiplying column j by —1 corresponds to multiplying matrix A by a
unimodular matrix Us = I —21; ;, that is an identity matrix except that element
(4,7) 1s —1. det(U2) = —1.

(iii) Adding f € Z times column k to column j, corresponds to multiplying
matrix A by a unimodular matrix Us = I + fIj ;. Since det(Us) = 1, Us is
unimodular.

Performing two elementary column operations corresponds to multiplying the
corresponding unimodular matrices resulting in another unimodular matrix.
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2.7 Example

o SLIDE 9
3 -4 27  [43 2
1 0 7 0o 1 7
[ ]
1 1 2
-1 -6 7
e Reordering the columns
2 1 1
7T -6 -1
e Replacing columns one and two by the difference of the first and twice the second
column and the second and third column, respectively, yields
0 0 1
19 -5 -1 |°
e Reordering the columns
1 0 0
-1 19 -5 |°
e Continuing with the matrix C = [19, —5], we obtain successively, the matrices
(19, 5], [4,5], [5,4], [1,4], [4,1], [0,1], and [1,0]. The integer normal form is:
1 0 0
-1 1 0 |
2.8 Characterization
SLIDE 10
A € 2™ full row rank; [B,0] = AU. Let b€ Z™ and S = {x € Z" | Az = b}.
(a) The set S is nonempty if and only if B™'b € Z™.
(b) If S # 0, every solution of S is of the form
z=U1B 'b+Usz, 2€ 2" ™,
where U1, Ua: U = [U1,U3].
(c) L={x € 2" | Ax = 0} is a lattice and the column vectors of Uy constitute a
basis of L.
2.9 Proof
SLIDE 11

e y =U 'z. Since U is unimodular, y € Z" if and only if € Z™. Thus, S is
nonempty if and only if there exists a y € Z" such that [B, 0]y = b. Since B is
invertible, the latter is true if and only B™1b € 2™,



e We can express the set S as follows:

S ={xe€Z"| Ar =b}
{x€e Z" |x=Uy, [B,0ly=>b, yc Z"}
={xecZ'"|e=Uw+Uszz, Bw=b, we Z", zc Z"" ™}

Thus, if S # (), then B~'b € Z™ from part (a) and hence,
S={xeczZ"|e=UB 'b4+Usz, z€ 2" ™}
o Let L= {xz € Z" | Ax = 0}. By setting b = 0 in part (b) we obtain that
L=AxzeZ"|x=Uszz, z€ Z" "}
Thus, by definition, £ is a lattice with basis U .

2.10 Example
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o Is S = {x € 2% | Az = b} is nonempty
3 6 1 3
A:{4 5 5} andb:{Q].
e Integer normal form: [B,0] = AU, with
0 9 —-25
po=[1 0] andU:[o L 11].
1 -3 9
Note that det(U) = —1. Since B~'b = (3,—13)' € 22, S # 0.
e All integer solutions of S are given by
0 9 3 —25 —117 — 25z
r=|0 —4 {13}+ 11 z = 52 + 11z |, z€ Z.
1 -3 9 42 + 9z
2.11 Integral Farkas lemma
SLIDE 13
Let A€ Zm*" be Z™and S ={x € 2" | Az = b}.
e The set S = () if and only if there exists a y € Q™, such that y’A € Z™
and y'b ¢ Z.
e The set S = 0 if and only if there exists a y € Q™, such that y > 0,
yAecZ™and y'b ¢ Z.
2.12 Proof SLIDE 14

e Assume that S # ). If there exists y € Q™, such that y’A € Z™ and y'b ¢ Z,
then y' Az = y'b with y’ Az € Z and y'b ¢ Z.

e Conversely, if S = (), then by previous theorem, u = B~ 'b ¢ Z™, that is there
exists an ¢ such that u; ¢ Z. Taking y to be the ith row of B! proves the
theorem.



2.13 Reformulations
SLIDE 15

e max c'x, x € S={x € Z} | Ax = b}.
[B,0] = AU. There exists z° € Z": Az =biff B"'b¢ Z™.

zelS <— z=2"+y: Ay=0, —z° <y.

Let
L={yeZ"| Ay =0}.

Let U3 be a basis of L, i.e.,

L=AyeZ" |y=Uszz, z€ Z" ™}

max cUsz
st Usz > —z°
zeZ"m,

Different bases give rise to alternative reformulations
max ¢ Bz
st. Bz > —z°
zeZ"m,
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