15.083J/6.859J Integer Optimization

Lecture 2: Efficient Algorithms
and Computational Complexity

1

2.1

Outline

Efficient algorithms

Complexity

The classes P and NP

The classes N'P-complete and AP-hard
What if a problem is AP hard?

Efficient algorithms

The LO problem
min 'z
st. Az =0»
x>0
A LO instance
min 2z + 3y
st. x+ y <1
z, y=>0

A problem is a collection of instances

Size
The size of an instance is the number of bits used to describe the instance,
according to a prespecified format

A number r < U
r=ar2® +ar 12"+ + a2 +ao

is represented by (ao, a1, ...,ar) with k < |log, U |
Size of r is [log, U] + 2
Instance of LO: (¢, A, b)
Size is
(mn—l—m—i—n)(|_log2 U]+ 2)
What is an instance of the Traveling Salesman Problem (TSP)?

What is the size of such an instance?

SLIDE 1

SLIDE 2

SLIDE 3

2.2 Running Time
SLIDE 4
Let A be an algorithm which solves the optimization problem II.

If there exists a constant a > 0 such that A terminates its computation after at most
a f(|I]) elementary steps for each instance I(|I| is the size of I), then A runs in O(f)
time.

Elementary operations are
e variable assignments e comparison of numbers

e random access to variables e arithmetic operations
e conditional jumps * ... SLIDE 5
A “brute force” algorithm for solving the min-cost flow problem:
Consider all spanning trees and pick the best tree solution among the feasible ones.
Suppose we had a computer to check 10'° trees in a second. It would need more than

10° years to find the best tree for a 25-node min-cost flow problem.
It would need 10%° years for a 50-node instance.

That’s not efficient! SLIDE 6
Ideally, we would like to call an algorithm “efficient” when it is sufficiently fast to be
usable in practice, but this is a rather vague and slippery notion.

The following notion has gained wide acceptance:

An algorithm is considered efficient if the number of steps it performs for
any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n>, or 10°n8.

2.3 The Tyranny of

Exponential Growth
SLIDE 7

H H 100nlogn ‘ 10n? ‘ n3s ‘ 2" ‘ n! ‘ nt 2 H
107 /sec 1.19-10° 600,000 | 3,868 | 41 [15 | 13
10" /sec || 1.08-10" | 1,897,370 | 7,468 | 45 | 16 | 13

Maximum input sizes solvable within one hour.

2.3.1 Pros of the Polynomial View
SLIDE 8
e Extreme rates of growth, such as n®® or 2%/1% rarely come up in practice.

e Asymptotically, a polynomial function always yields smaller values than any
exponential function.

e Polynomial-time algorithms are in a better position to take advantage of tech-
nological improvements in the speed of computers.

e You can add two polynomials, multiply them, and compose them, and the result
will still be a polynomial.

2.4

2.5

Punch line

The equation
efficient = polynomial

has been accepted as the best available way of tying the empirical
notion of a “practical algorithm” to a precisely formalized mathe-
matical concept.

Definition

An algorithm runs in polynomial time if its running time is O(|I|¥), where |I|

is the input size, and all numbers in intermediate computations can be stored
with O(|I|*) bits.

3
3.1

3.2

3.3

Complexity Theory

Recognition Problems
A recognition problem is one that has a binary answer: YES or NO.
Example: Is the value of an IO problem less than or equal to B?
Example: Can a graph be colored with 4 colors?

Example: Is a number p composite?

Transformations-reductions

Definition: Let IT; and II2 be two recognition problems. We say that II; trans-
forms to II2 in polynomial if there exist a polynomial time algorithm that given
an instance I of of problem II;, outputs an instance I2 of Ils with the property
that I; is a YES instance of II; if and only if I2 is a YES instance of Ils.

Suppose there exists an algorithm for some problem IT; that consists of a polyno-
mial time computation in addition to a polynomial number of subroutine calls
to an algorithm for problem II,. We then say that problem II; reduces (in
polynomial time) to problem IIs.

Properties

Theorem: If problem II; transforms to problem Ils in polynomial time, and if
II; is solvable in polynomial time, then II; is also solvable in polynomial time.
Interpretation: a) II; is “no harder” than Ila; b) Il is “at least as hard” as Ily;
if there existed a polynomial time algorithm for Il2, then the same would be
true for I1;.

If we have some evidence that IIy ¢ P, a transformation of II; to IIs would
provide equally strong evidence that I ¢ P.

Property: If problem problem II; transforms to problem Il and problem Il2
transforms to problem Ils, then problem II; transforms to problem IIs.

SLIDE 9

SLIDE 10

SLIDE 11

SLIDE 12

SLIDE 13

4

5.1

The classes P-NP

A recognition problem II is in P if it is solvable in polynomial time.
Is Ax = b, x > 0 feasible? It is in P.

A problem II belongs to NP if given an instance I of II, there exists a
certificate of size polynomial in the size of I, such that together with this
certificate we can decide, whether I is a YES instance in polynomial time.

BIO: is the problem Az < b, x € {0,1}" feasible?

Certificate: A feasible solution xg. We can check whether Axg < b.
TSP: Is there a tour of length less than or equal to L? Is TSP € N'P?
Property: P C NP.

Open problem: Is P = N'P?

The class N'P-complete

A problem II is N"P-complete if IT € AP and all other problems in NP poly-
nomially reduce to it.

Theorem: BIO is N'P-complete.
Theorem: TSP is N'P-complete.

A problem IT is N'P-hard if all other problems in AN'P polynomially reduce to
it.

A polynomial time algorithm for an A/P-hard problem would imply P = N'P.
Thousands of DOPs are N'P-hard. Examples: knapsack, facility location, set

covering, set packing, set partitioning, sequencing with setup times, and travel-
ing salesman problems.

Proving N'P-hardness

Theorem: Suppose that a problem IIy is NP-hard and that IIy can be
transformed (in polynomial time) to another problem II. Then, IT is N'P-
hard.

Useful theorem as there are thousands of A'P-hard problems. Any one of
these problems can play the role of IIy, and this provides us with a lot of
latitude when attempting to prove A’P-hardness of a given problem II.

Given a problem II whose NP-hardness we wish to establish, we search for
a known ANP-hard problem Iy that appears to be closely related to II. We
then attempt to construct a transformation of ITp to II. Coming up with such
transformations is mostly an art, based on ingenuity and experience, and there
are very few general guidelines.

SLIDE 14

SLIDE 15

SLIDE 16

SLIDE 17

5.2

Example
ATSP: Given a complete undirected graph, a bound L and costs ¢;; = ¢j;:
Cij SCik‘i’C}w, VZ,],k

Does there exists a tour with cost less than or equal to L?
Theorem: ATSP is N'P-complete.
HAMILTON CIRCUIT: Given an undirected graph does there exists a tour?

We transform HAMILTON CIRCUIT to ATSP. Since HAMILTON CIRCUIT is N P-
hard, this will imply that ATSP is also NP-hard.

Given an instance G = (N, £) of HAMILTON CIRCUIT, with n nodes, we construct
an instance of ATSP, again with n nodes:

1, if {i,j} €E,
Cij =
J 2, otherwise.

We also let L = n.
This is an instance of ATSP.

The transformation can be carried out in polynomial time [O(n?) time suffices].

If we have a YES instance of HAMILTON CIRCUIT, there exists a tour that uses
the edges in £. Since these edges are assigned unit cost, we obtain a tour of cost
n, and we have a YES instance of ATSP.

This argument can be reversed to show that if we have a YES instance of ATSP,
then we also have a YES instance of HAMILTON CIRCUIT.

What if a problem is N'P-hard?

NP-hardness is not a definite proof that no polynomial time algorithm exists. It
is possible but unlikely that BIOE€ P, and P = N'P. Nevertheless, N'P-hardness
suggests that we should stop searching for a polynomial time algorithm, unless
we are willing to tackle the P = NP question.

NP-hardness can be viewed as a limitation on what can be accomplished; very
different from declaring the problem “intractable” and refraining from further
work. Many A'P-hard problems are routinely solved in practice. Even when
solutions are approximate, without any quality guarantees, the results are often
good enough to be useful in a practical setting.

Not all N’P-complete problems are equally hard. The knapsack problem can be
solved in time O('I”LQCmax), exponential in the size O(n(log Cmax + 10g Wmax) +
log K) of the input data; the running time may be acceptable for the range of
values of cmax that arise in certain applications.

In the knapsack problem, NP-hardness is only due to large numerical input
data. Other problems, however, remain A/P-hard even if the numerical data are
restricted to take small values. The ATSP where the costs c;; are either 1 or 2
is N'P-hard. Complexity due to combinatorial structure not numerical data.

SLIDE 18

SLIDE 19

SLIDE 20

SLIDE 21

SLIDE 22

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

