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1 Outline 
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•	 Efficient algorithms 

•	 Complexity 

•	 The classes P and NP 

•	 The classes NP-complete and NP-hard 

•	 What if a problem is NP hard? 

2 Efficient algorithms 
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•	 The LO problem 
min c�x 
s.t. Ax = b 

x ≥ 0 

A LO instance • 
min 2x + 3y 
s.t. x + y ≤ 1 

x , y ≥ 0 

•	 A problem is a collection of instances 

2.1 Size 
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•	 The size of an instance is the number of bits used to describe the instance,

according to a prespecified format


•	 A number r ≤ U 

r = ak2k + ak−12
k−1 + + a12

1 + a0· · ·


is represented by (a0, a1, . . . , ak) with k ≤ �log2 U�

•	 Size of r is �log2 U� + 2 

•	 Instance of LO: (c, A, b) 

•	 Size is � �

(mn + m + n) �log2 U� + 2


•	 What is an instance of the Traveling Salesman Problem (TSP)?


What is the size of such an instance?
• 
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2.2	 Running Time 
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Let A be an algorithm which solves the optimization problem Π.

If there exists a constant α > 0 such that A terminates its computation after at most

α f(|I|) elementary steps for each instance I( |I| is the size of I), then A runs in O(f)

time.


Elementary operations are 
•	 variable assignments • comparison of numbers 

•	 random access to variables • arithmetic operations 

•	 conditional jumps • . . . Slide 5 
A “brute force” algorithm for solving the min-cost flow problem:


Consider all spanning trees and pick the best tree solution among the feasible ones.


Suppose we had a computer to check 1015 trees in a second. It would need more than

109 years to find the best tree for a 25-node min-cost flow problem.

It would need 1059 years for a 50-node instance.


That’s not efficient!	 Slide 6 
Ideally, we would like to call an algorithm “efficient” when it is sufficiently fast to be 
usable in practice, but this is a rather vague and slippery notion. 

The following notion has gained wide acceptance: 

An algorithm is considered efficient if the number of steps it performs for

any input is bounded by a polynomial function of the input size.


Polynomials are, e.g., n, n 3, or 106 n 8 . 

2.3	 The Tyranny of 
Exponential Growth 

Slide 7 
100 n log n 10 n 2 n 3.5 2n n! n n−2 

109/sec 1.19 · 109 600, 000 3, 868 41 15 13 
1010/sec 1.08 · 1010 1, 897, 370 7, 468 45 16 13 

Maximum input sizes solvable within one hour. 

2.3.1 Pros of the Polynomial View 
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Extreme rates of growth, such as n 80 or 2n/100, rarely come up in practice. • 

•	 Asymptotically, a polynomial function always yields smaller values than any

exponential function.


•	 Polynomial-time algorithms are in a better position to take advantage of tech­

nological improvements in the speed of computers.


•	 You can add two polynomials, multiply them, and compose them, and the result

will still be a polynomial.
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2.4 Punch line 
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The equation

efficient = polynomial


has been accepted as the best available way of tying the empirical

notion of a “practical algorithm” to a precisely formalized mathe­

matical concept.


2.5 Definition 
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An algorithm runs in polynomial time if its running time is O(|I|k), where |I|
is the input size, and all numbers in intermediate computations can be stored 
with O(|I|k) bits. 

3 Complexity Theory 

3.1 Recognition Problems 
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•	 A recognition problem is one that has a binary answer: YES or NO. 

•	 Example: Is the value of an IO problem less than or equal to B? 

•	 Example: Can a graph be colored with 4 colors? 

•	 Example: Is a number p composite? 

3.2 Transformations-reductions 
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•	 Definition: Let Π1 and Π2 be two recognition problems. We say that Π1 trans­

forms to Π2 in polynomial if there exist a polynomial time algorithm that given

an instance I1 of of problem Π1, outputs an instance I2 of Π2 with the property

that I1 is a YES instance of Π1 if and only if I2 is a YES instance of Π2.


•	 Suppose there exists an algorithm for some problem Π1 that consists of a polyno­

mial time computation in addition to a polynomial number of subroutine calls

to an algorithm for problem Π2. We then say that problem Π1 reduces (in

polynomial time) to problem Π2.


3.3 Properties 
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•	 Theorem: If problem Π1 transforms to problem Π2 in polynomial time, and if

Π2 is solvable in polynomial time, then Π1 is also solvable in polynomial time.


•	 Interpretation: a) Π1 is “no harder” than Π2; b) Π2 is “at least as hard” as Π1;

if there existed a polynomial time algorithm for Π2, then the same would be

true for Π1.


•	 If we have some evidence that Π1 / to Π2∈ P, a transformation of Π1 would

provide equally strong evidence that Π2 /
∈ P. 

•	 Property: If problem problem Π1 transforms to problem Π2 and problem Π2


transforms to problem Π3, then problem Π1 transforms to problem Π3.
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4 The classes P-NP	
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•	 A recognition problem Π is in P if it is solvable in polynomial time. 

•	 Is Ax = b, x ≥ 0 feasible? It is in P. 

•	 A problem Π belongs to NP if given an instance I of Π, there exists a

certificate of size polynomial in the size of I, such that together with this

certificate we can decide, whether I is a YES instance in polynomial time.


•	 BIO: is the problem Ax ≤ b, x ∈ {0, 1}n feasible? 

•	 Certificate: A feasible solution x0. We can check whether Ax0 ≤ b. 

•	 TSP: Is there a tour of length less than or equal to L? Is TSP ∈ NP? 

•	 Property: P ⊆ NP. 

•	 Open problem: Is P = NP? 

5 The class NP-complete 
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•	 A problem Π is NP-complete if Π ∈ NP and all other problems in NP poly­

nomially reduce to it.


•	 Theorem: BIO is NP-complete. 

•	 Theorem: TSP is NP-complete. 

•	 A problem Π is NP-hard if all other problems in NP polynomially reduce to

it.


•	 A polynomial time algorithm for an NP-hard problem would imply P = NP. 

•	 Thousands of DOPs are NP-hard. Examples: knapsack, facility location, set

covering, set packing, set partitioning, sequencing with setup times, and travel­

ing salesman problems.


5.1 Proving NP-hardness 
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•	 Theorem: Suppose that a problem Π0 is NP-hard and that Π0 can be

transformed (in polynomial time) to another problem Π. Then, Π is NP-

hard.


•	 Useful theorem as there are thousands of NP-hard problems. Any one of

these problems can play the role of Π0, and this provides us with a lot of

latitude when attempting to prove NP-hardness of a given problem Π.


Slide 17 

•	 Given a problem Π whose NP-hardness we wish to establish, we search for

a known NP-hard problem Π0 that appears to be closely related to Π. We

then attempt to construct a transformation of Π0 to Π. Coming up with such

transformations is mostly an art, based on ingenuity and experience, and there

are very few general guidelines.
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5.2 Example 

• ΔTSP: Given a complete undirected graph, a bound L and costs cij = cji: 

cij ≤ cik + ckj , ∀ i, j, k. 

Does there exists a tour with cost less than or equal to L? 

•	 Theorem: ΔTSP is NP-complete. 

•	 Hamilton circuit: Given an undirected graph does there exists a tour? 

•	 We transform Hamilton circuit to ΔTSP. Since Hamilton circuit is NP-
hard, this will imply that ΔTSP is also NP-hard. 

•	 Given an instance G = (N , E) of Hamilton circuit, with n nodes, we construct 
an instance of ΔTSP, again with n nodes: 

1, if {i, j} ∈ E, 
cij = 

2, otherwise. 

We also let L = n. 

This is an instance of ΔTSP.• 

The transformation can be carried out in polynomial time [O(n 2) time suffices]. • 

•	 If we have a yes instance of Hamilton circuit, there exists a tour that uses 
the edges in E . Since these edges are assigned unit cost, we obtain a tour of cost 
n, and we have a yes instance of ΔTSP. 

•	 This argument can be reversed to show that if we have a yes instance of ΔTSP, 
then we also have a yes instance of Hamilton circuit. 

6 What if a problem is NP-hard? 

•	 NP-hardness is not a definite proof that no polynomial time algorithm exists. It 
is possible but unlikely that BIO∈ P, and P = NP. Nevertheless, NP-hardness 
suggests that we should stop searching for a polynomial time algorithm, unless 
we are willing to tackle the P = NP question. 

•	 NP-hardness can be viewed as a limitation on what can be accomplished; very 
different from declaring the problem “intractable” and refraining from further 
work. Many NP-hard problems are routinely solved in practice. Even when 
solutions are approximate, without any quality guarantees, the results are often 
good enough to be useful in a practical setting. 

Not all NP-complete problems are equally hard. The knapsack problem can be • 
2	

� 
solved in time O(n cmax), exponential in the size O n(log cmax + log wmax) + 

log K of the input data; the running time may be acceptable for the range of 
values of cmax that arise in certain applications. 

•	 In the knapsack problem, NP-hardness is only due to large numerical input 
data. Other problems, however, remain NP-hard even if the numerical data are 
restricted to take small values. The ΔTSP where the costs cij are either 1 or 2 
is NP-hard. Complexity due to combinatorial structure not numerical data. 
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