
15.083J/6.859J Integer Optimization

Lecture 2: Efficient Algorithms
and Computational Complexity

1 Outline
Slide 1

•	 Efficient algorithms

•	 Complexity

•	 The classes P and NP

•	 The classes NP-complete and NP-hard

•	 What if a problem is NP hard?

2 Efficient algorithms
Slide 2

•	 The LO problem
min c�x
s.t. Ax = b

x ≥ 0

A LO instance •
min 2x + 3y
s.t. x + y ≤ 1

x , y ≥ 0

•	 A problem is a collection of instances

2.1 Size
Slide 3

•	 The size of an instance is the number of bits used to describe the instance,

according to a prespecified format

•	 A number r ≤ U

r = ak2k + ak−12
k−1 + + a12

1 + a0· · ·

is represented by (a0, a1, . . . , ak) with k ≤ �log2 U�

•	 Size of r is �log2 U� + 2

•	 Instance of LO: (c, A, b)

•	 Size is � �

(mn + m + n) �log2 U� + 2

•	 What is an instance of the Traveling Salesman Problem (TSP)?

What is the size of such an instance?
•

1

2.2	 Running Time
Slide 4

Let A be an algorithm which solves the optimization problem Π.

If there exists a constant α > 0 such that A terminates its computation after at most

α f(|I|) elementary steps for each instance I(|I| is the size of I), then A runs in O(f)

time.

Elementary operations are
•	 variable assignments • comparison of numbers

•	 random access to variables • arithmetic operations

•	 conditional jumps • . . . Slide 5
A “brute force” algorithm for solving the min-cost flow problem:

Consider all spanning trees and pick the best tree solution among the feasible ones.

Suppose we had a computer to check 1015 trees in a second. It would need more than

109 years to find the best tree for a 25-node min-cost flow problem.

It would need 1059 years for a 50-node instance.

That’s not efficient!	 Slide 6
Ideally, we would like to call an algorithm “efficient” when it is sufficiently fast to be
usable in practice, but this is a rather vague and slippery notion.

The following notion has gained wide acceptance:

An algorithm is considered efficient if the number of steps it performs for

any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n 3, or 106 n 8 .

2.3	 The Tyranny of
Exponential Growth

Slide 7
100 n log n 10 n 2 n 3.5 2n n! n n−2

109/sec 1.19 · 109 600, 000 3, 868 41 15 13
1010/sec 1.08 · 1010 1, 897, 370 7, 468 45 16 13

Maximum input sizes solvable within one hour.

2.3.1 Pros of the Polynomial View
Slide 8

Extreme rates of growth, such as n 80 or 2n/100, rarely come up in practice. •

•	 Asymptotically, a polynomial function always yields smaller values than any

exponential function.

•	 Polynomial-time algorithms are in a better position to take advantage of tech­

nological improvements in the speed of computers.

•	 You can add two polynomials, multiply them, and compose them, and the result

will still be a polynomial.

2

2.4 Punch line
Slide 9

The equation

efficient = polynomial

has been accepted as the best available way of tying the empirical

notion of a “practical algorithm” to a precisely formalized mathe­

matical concept.

2.5 Definition
Slide 10

An algorithm runs in polynomial time if its running time is O(|I|k), where |I|
is the input size, and all numbers in intermediate computations can be stored
with O(|I|k) bits.

3 Complexity Theory

3.1 Recognition Problems
Slide 11

•	 A recognition problem is one that has a binary answer: YES or NO.

•	 Example: Is the value of an IO problem less than or equal to B?

•	 Example: Can a graph be colored with 4 colors?

•	 Example: Is a number p composite?

3.2 Transformations-reductions
Slide 12

•	 Definition: Let Π1 and Π2 be two recognition problems. We say that Π1 trans­

forms to Π2 in polynomial if there exist a polynomial time algorithm that given

an instance I1 of of problem Π1, outputs an instance I2 of Π2 with the property

that I1 is a YES instance of Π1 if and only if I2 is a YES instance of Π2.

•	 Suppose there exists an algorithm for some problem Π1 that consists of a polyno­

mial time computation in addition to a polynomial number of subroutine calls

to an algorithm for problem Π2. We then say that problem Π1 reduces (in

polynomial time) to problem Π2.

3.3 Properties
Slide 13

•	 Theorem: If problem Π1 transforms to problem Π2 in polynomial time, and if

Π2 is solvable in polynomial time, then Π1 is also solvable in polynomial time.

•	 Interpretation: a) Π1 is “no harder” than Π2; b) Π2 is “at least as hard” as Π1;

if there existed a polynomial time algorithm for Π2, then the same would be

true for Π1.

•	 If we have some evidence that Π1 / to Π2∈ P, a transformation of Π1 would

provide equally strong evidence that Π2 /
∈ P.

•	 Property: If problem problem Π1 transforms to problem Π2 and problem Π2

transforms to problem Π3, then problem Π1 transforms to problem Π3.

3

4 The classes P-NP	
Slide 14

•	 A recognition problem Π is in P if it is solvable in polynomial time.

•	 Is Ax = b, x ≥ 0 feasible? It is in P.

•	 A problem Π belongs to NP if given an instance I of Π, there exists a

certificate of size polynomial in the size of I, such that together with this

certificate we can decide, whether I is a YES instance in polynomial time.

•	 BIO: is the problem Ax ≤ b, x ∈ {0, 1}n feasible?

•	 Certificate: A feasible solution x0. We can check whether Ax0 ≤ b.

•	 TSP: Is there a tour of length less than or equal to L? Is TSP ∈ NP?

•	 Property: P ⊆ NP.

•	 Open problem: Is P = NP?

5 The class NP-complete
Slide 15

•	 A problem Π is NP-complete if Π ∈ NP and all other problems in NP poly­

nomially reduce to it.

•	 Theorem: BIO is NP-complete.

•	 Theorem: TSP is NP-complete.

•	 A problem Π is NP-hard if all other problems in NP polynomially reduce to

it.

•	 A polynomial time algorithm for an NP-hard problem would imply P = NP.

•	 Thousands of DOPs are NP-hard. Examples: knapsack, facility location, set

covering, set packing, set partitioning, sequencing with setup times, and travel­

ing salesman problems.

5.1 Proving NP-hardness
Slide 16

•	 Theorem: Suppose that a problem Π0 is NP-hard and that Π0 can be

transformed (in polynomial time) to another problem Π. Then, Π is NP-

hard.

•	 Useful theorem as there are thousands of NP-hard problems. Any one of

these problems can play the role of Π0, and this provides us with a lot of

latitude when attempting to prove NP-hardness of a given problem Π.

Slide 17

•	 Given a problem Π whose NP-hardness we wish to establish, we search for

a known NP-hard problem Π0 that appears to be closely related to Π. We

then attempt to construct a transformation of Π0 to Π. Coming up with such

transformations is mostly an art, based on ingenuity and experience, and there

are very few general guidelines.

4

�

�

5.2 Example

• ΔTSP: Given a complete undirected graph, a bound L and costs cij = cji:

cij ≤ cik + ckj , ∀ i, j, k.

Does there exists a tour with cost less than or equal to L?

•	 Theorem: ΔTSP is NP-complete.

•	 Hamilton circuit: Given an undirected graph does there exists a tour?

•	 We transform Hamilton circuit to ΔTSP. Since Hamilton circuit is NP-
hard, this will imply that ΔTSP is also NP-hard.

•	 Given an instance G = (N , E) of Hamilton circuit, with n nodes, we construct
an instance of ΔTSP, again with n nodes:

1, if {i, j} ∈ E,
cij =

2, otherwise.

We also let L = n.

This is an instance of ΔTSP.•

The transformation can be carried out in polynomial time [O(n 2) time suffices]. •

•	 If we have a yes instance of Hamilton circuit, there exists a tour that uses
the edges in E . Since these edges are assigned unit cost, we obtain a tour of cost
n, and we have a yes instance of ΔTSP.

•	 This argument can be reversed to show that if we have a yes instance of ΔTSP,
then we also have a yes instance of Hamilton circuit.

6 What if a problem is NP-hard?

•	 NP-hardness is not a definite proof that no polynomial time algorithm exists. It
is possible but unlikely that BIO∈ P, and P = NP. Nevertheless, NP-hardness
suggests that we should stop searching for a polynomial time algorithm, unless
we are willing to tackle the P = NP question.

•	 NP-hardness can be viewed as a limitation on what can be accomplished; very
different from declaring the problem “intractable” and refraining from further
work. Many NP-hard problems are routinely solved in practice. Even when
solutions are approximate, without any quality guarantees, the results are often
good enough to be useful in a practical setting.

Not all NP-complete problems are equally hard. The knapsack problem can be •
2	

�
solved in time O(n cmax), exponential in the size O n(log cmax + log wmax) +

log K of the input data; the running time may be acceptable for the range of
values of cmax that arise in certain applications.

•	 In the knapsack problem, NP-hardness is only due to large numerical input
data. Other problems, however, remain NP-hard even if the numerical data are
restricted to take small values. The ΔTSP where the costs cij are either 1 or 2
is NP-hard. Complexity due to combinatorial structure not numerical data.

5

Slide 18

Slide 19

Slide 20

Slide 21

Slide 22

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

