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Lecture 2: Efficient Algorithms
and Computational Complexity
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2.1

Outline

Efficient algorithms

Complexity

The classes P and NP

The classes N'P-complete and AP-hard
What if a problem is AP hard?

Efficient algorithms

The LO problem
min 'z
st. Az =0»
x>0
A LO instance
min 2z + 3y
st. x+ y <1
z, y=>0

A problem is a collection of instances

Size
The size of an instance is the number of bits used to describe the instance,
according to a prespecified format

A number r < U
r=ar2® +ar 12"+ + a2 +ao

is represented by (ao, a1, ...,ar) with k < |log, U |
Size of r is [log, U] + 2
Instance of LO: (¢, A, b)
Size is
(mn—l—m—i—n)(|_log2 U]+ 2)
What is an instance of the Traveling Salesman Problem (TSP)?

What is the size of such an instance?
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2.2 Running Time
SLIDE 4
Let A be an algorithm which solves the optimization problem II.

If there exists a constant a > 0 such that A terminates its computation after at most
a f(|I]) elementary steps for each instance I( |I| is the size of I), then A runs in O(f)
time.

Elementary operations are
e variable assignments e comparison of numbers

e random access to variables e arithmetic operations
e conditional jumps * ... SLIDE 5
A “brute force” algorithm for solving the min-cost flow problem:
Consider all spanning trees and pick the best tree solution among the feasible ones.
Suppose we had a computer to check 10'° trees in a second. It would need more than

10° years to find the best tree for a 25-node min-cost flow problem.
It would need 10%° years for a 50-node instance.

That’s not efficient! SLIDE 6
Ideally, we would like to call an algorithm “efficient” when it is sufficiently fast to be
usable in practice, but this is a rather vague and slippery notion.

The following notion has gained wide acceptance:

An algorithm is considered efficient if the number of steps it performs for
any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n>, or 10°n8.

2.3 The Tyranny of

Exponential Growth
SLIDE 7

H H 100nlogn ‘ 10n? ‘ n3s ‘ 2" ‘ n! ‘ nt 2 H
107 /sec 1.19-10° 600,000 | 3,868 | 41 [ 15 | 13
10" /sec || 1.08-10" | 1,897,370 | 7,468 | 45 | 16 | 13

Maximum input sizes solvable within one hour.

2.3.1 Pros of the Polynomial View
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e Extreme rates of growth, such as n®® or 2%/1% rarely come up in practice.

e Asymptotically, a polynomial function always yields smaller values than any
exponential function.

e Polynomial-time algorithms are in a better position to take advantage of tech-
nological improvements in the speed of computers.

e You can add two polynomials, multiply them, and compose them, and the result
will still be a polynomial.



2.4

2.5

Punch line

The equation
efficient = polynomial

has been accepted as the best available way of tying the empirical
notion of a “practical algorithm” to a precisely formalized mathe-
matical concept.

Definition

An algorithm runs in polynomial time if its running time is O(|I|¥), where |I|

is the input size, and all numbers in intermediate computations can be stored
with O(|I|*) bits.

3
3.1

3.2

3.3

Complexity Theory

Recognition Problems
A recognition problem is one that has a binary answer: YES or NO.
Example: Is the value of an IO problem less than or equal to B?
Example: Can a graph be colored with 4 colors?

Example: Is a number p composite?

Transformations-reductions

Definition: Let IT; and II2 be two recognition problems. We say that II; trans-
forms to II2 in polynomial if there exist a polynomial time algorithm that given
an instance I of of problem II;, outputs an instance I2 of Ils with the property
that I; is a YES instance of II; if and only if I2 is a YES instance of Ils.

Suppose there exists an algorithm for some problem IT; that consists of a polyno-
mial time computation in addition to a polynomial number of subroutine calls
to an algorithm for problem II,. We then say that problem II; reduces (in
polynomial time) to problem IIs.

Properties

Theorem: If problem II; transforms to problem Ils in polynomial time, and if
II; is solvable in polynomial time, then II; is also solvable in polynomial time.
Interpretation: a) II; is “no harder” than Ila; b) Il is “at least as hard” as Ily;
if there existed a polynomial time algorithm for Il2, then the same would be
true for I1;.

If we have some evidence that IIy ¢ P, a transformation of II; to IIs would
provide equally strong evidence that I ¢ P.

Property: If problem problem II; transforms to problem Il and problem Il2
transforms to problem Ils, then problem II; transforms to problem IIs.
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5.1

The classes P-NP

A recognition problem II is in P if it is solvable in polynomial time.
Is Ax = b, x > 0 feasible? It is in P.

A problem II belongs to NP if given an instance I of II, there exists a
certificate of size polynomial in the size of I, such that together with this
certificate we can decide, whether I is a YES instance in polynomial time.

BIO: is the problem Az < b, x € {0,1}" feasible?

Certificate: A feasible solution xg. We can check whether Axg < b.
TSP: Is there a tour of length less than or equal to L? Is TSP € N'P?
Property: P C NP.

Open problem: Is P = N'P?

The class N'P-complete

A problem II is N"P-complete if IT € AP and all other problems in NP poly-
nomially reduce to it.

Theorem: BIO is N'P-complete.
Theorem: TSP is N'P-complete.

A problem IT is N'P-hard if all other problems in AN'P polynomially reduce to
it.

A polynomial time algorithm for an A/P-hard problem would imply P = N'P.
Thousands of DOPs are N'P-hard. Examples: knapsack, facility location, set

covering, set packing, set partitioning, sequencing with setup times, and travel-
ing salesman problems.

Proving N'P-hardness

Theorem: Suppose that a problem IIy is NP-hard and that IIy can be
transformed (in polynomial time) to another problem II. Then, IT is N'P-
hard.

Useful theorem as there are thousands of A'P-hard problems. Any one of
these problems can play the role of IIy, and this provides us with a lot of
latitude when attempting to prove A’P-hardness of a given problem II.

Given a problem II whose NP-hardness we wish to establish, we search for
a known ANP-hard problem Iy that appears to be closely related to II. We
then attempt to construct a transformation of ITp to II. Coming up with such
transformations is mostly an art, based on ingenuity and experience, and there
are very few general guidelines.
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5.2

Example
ATSP: Given a complete undirected graph, a bound L and costs ¢;; = ¢j;:
Cij SCik‘i’C}w, VZ,],k

Does there exists a tour with cost less than or equal to L?
Theorem: ATSP is N'P-complete.
HAMILTON CIRCUIT: Given an undirected graph does there exists a tour?

We transform HAMILTON CIRCUIT to ATSP. Since HAMILTON CIRCUIT is N P-
hard, this will imply that ATSP is also NP-hard.

Given an instance G = (N, £) of HAMILTON CIRCUIT, with n nodes, we construct
an instance of ATSP, again with n nodes:

1, if {i,j} €E,
Cij =
J 2, otherwise.

We also let L = n.
This is an instance of ATSP.

The transformation can be carried out in polynomial time [O(n?) time suffices].

If we have a YES instance of HAMILTON CIRCUIT, there exists a tour that uses
the edges in £. Since these edges are assigned unit cost, we obtain a tour of cost
n, and we have a YES instance of ATSP.

This argument can be reversed to show that if we have a YES instance of ATSP,
then we also have a YES instance of HAMILTON CIRCUIT.

What if a problem is N'P-hard?

NP-hardness is not a definite proof that no polynomial time algorithm exists. It
is possible but unlikely that BIOE€ P, and P = N'P. Nevertheless, N'P-hardness
suggests that we should stop searching for a polynomial time algorithm, unless
we are willing to tackle the P = NP question.

NP-hardness can be viewed as a limitation on what can be accomplished; very
different from declaring the problem “intractable” and refraining from further
work. Many A'P-hard problems are routinely solved in practice. Even when
solutions are approximate, without any quality guarantees, the results are often
good enough to be useful in a practical setting.

Not all N’P-complete problems are equally hard. The knapsack problem can be
solved in time O('I”LQCmax), exponential in the size O(n(log Cmax + 10g Wmax) +
log K) of the input data; the running time may be acceptable for the range of
values of cmax that arise in certain applications.

In the knapsack problem, NP-hardness is only due to large numerical input
data. Other problems, however, remain A/P-hard even if the numerical data are
restricted to take small values. The ATSP where the costs c;; are either 1 or 2
is N'P-hard. Complexity due to combinatorial structure not numerical data.
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