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1 Structure of Class
SLIDE 1

e Formulations, complexity and relaxations, Lec. 1-9
e Robust Discrete Optimization, Lec. 10-11

e Algebra and geometry of 10, Lec. 12-15

e Algorithms for 10, Lec. 16-23

e Mixed Integer Optimization, Lec. 24-25

2 Requirements

SLIDE 2
e Homeworks: 30%

o Midterm Exam: 30%
e Final Exam: 40%

e Contributions to class: An important tie breaker

Use of CPLEX for solving IO problems

3 Todays Lecture

SLIDE 3
e Modeling with integer variables

e What is a good formulation?

e Theme: The Power of Formulations

4 Integer Optimization

4.1 Mixed IO
(MIO) max c'z=+h'y
st. Ax+By<b
® € 7% (& >0,z integer)
y € Ry (y>0)

SLIDE 4



4.2 Pure 10

SLIDE 5
(I0) max =
st. Ax<b
e SAN
Important special case: Binary Optimization
(BO) max c'=»
st. Ax<b
x € {0,1}"
4.3 LO
SLIDE 6
(LO) max c'=
st. By<b
ye R}
5 Modeling with Binary Variables
5.1 Binary Choice
SLIDE 7
c 1, if event occurs
v 0, otherwise
Example 1: 1O formulation of the knapsack problem
n: projects, total budget b
a; :  cost of project j
c; : value of project j SLIDE 8
- _ ] 1, if project j is selected.
A 0, otherwise.
max y, ¢z;
j=1
st Dajx; <b
;€ {0, 1}
5.2 Modeling relations
SLIDE 9

e At most one event occurs

Zl‘jgl
J

e Neither or both events occur

l‘z—l‘lzo



e If one event occurs then, another occurs

0<l‘2<l‘1

e If 2 =0, then y = 0; if z = 1, then y is uncontrained

0<y<Ur, zef{01}

5.3 The assignment problem

SLIDE 10
n people
m  jobs
ci; ©  cost of assigning person j to job i.
1 person jis assigned to job ¢
Ty = 0
min Zci]x,‘]
s.t. Z x;; =1 each job is assigned
=1
Z xi; <1 each person can do at most one job.
=1
Tig € {07 1}
5.4 Multiple optimal solutions
SLIDE 11
e Generate all optimal solutions to a BOP.
max c'=z
st. Ax<b
x € {0,1}"
e Generate third best?
e Extensions to MIO?
5.5 Modeling nonconvex objective functions
SLIDE 12
e How to model min ¢(x), where ¢(@) is piecewise linear but not convex?
6 What is a good formulation?
6.1 Facility Location
SLIDE 13

e Data
N ={1...n} potential facility locations

I={1...m} set of clients
c; « cost of facility placed at j
hij  cost of satisfying client ¢ from facility j.



e Decision variables

- _ | 1, afacility is placed at location j
o= 0, otherwise
yi; = fraction of demand of client ¢
satisfied by facility j.
SLIDE 14
IZl = min chl‘]‘i‘ Z th]yz]
i=1j=
s.t. Z Yij = 1
j=1
Yij S xj
. . . SLIDE 15
Consider an alternative formulation.
IZQZHHH chl‘]‘i‘ Z th]yz]
i=1j=
s.t. Z Yij = 1
j=1
Z Yij Sm-xj
€{0,1},0<y;; <1.
Are both valid?
Which one is preferable?
6.2 Observations 11D 16
e [71 = IZ,, since the integer points both formulations define are the same.
®
_ Ny g <, 0 <
P = {(az,y) ~Z;y23 = laym < Tj, 0 < vij < 1 }
]:
PZ—{wy Zyzg—lzyzgﬁml‘g,
j=1
0 S €Ty S 1
0<y; <1
SLIDE 17
o Let
Z1 = mince + hy, 75 = mincx + hy
(il’,y)epl (way)EPZ

o 7y < 21 <12 =17,



6.3 Implications

SLIDE 18
e Finding 17, (= I7,) is difficult.
e Solving to find 71, Z» is a LOP. Since Z; 1s closer to 17, several methods
(branch and bound) would work better (actually much better).
e Suppose that if we solve minex + hy, (x,y) € P; we find an integral
solution. Have we solved the facility location problem?
SLIDE 19
e Formulation 1 is better than Formulation 2. (Despite the fact that 1 has
a larger number of constraints than 2.)
e What is then the criterion?
6.4 Ideal Formulations
SLIDE 20
e Let P be a linear relaxation for a problem
o Let
H={(e,y):x{0,1}"}NnP
e Consider Convex Hull (H)
={x:x= Zx\ixi,Z/\i =1,\>02 € H}
SLIDE 21
e The extreme points of CH(H) have {0, 1} coordinates.
e So, if we know C'H(H) explicitly, then by solving minex + hy, (x,y) €
CH(H) we solve the problem.
e Message: Quality of formulation is judged by closeness to C'I ().
CHH)C P, C P,
7 Minimum Spanning
Tree (MST)
SLIDE 22
e How do telephone companies bill you?
e It used to be that rate/minute: Boston — LA proportional to distance in
MST
e Other applications: Telecommunications, Transportation (good lower bound
for TSP)
SLIDE 23



e Given a graph G = (V, E) undirected and Costs ¢., € € E.
e Find a tree of minimum cost spanning all the nodes.

1, if edge e 1s included in the tree

e Decision variables z, = { 0 therar
otherwise
)

e The tree should be connected. How can you model this requirement?

e Let S be a set of vertices. Then S and V'\ S should be connected
R e s

o Let 6(S)={e=1(i,j) e E: Jev\s }

e Then,

Z r, > 1

€€d(5)
e What is the number of edges in a tree?

e Then, >~ zc.=n-—1
=

7.1 Formulation
IZyst = min Y coxe
=
Soowe>1 VSCV,S#0,V
c€d(5)
H S xe=n—1
=
z. € {0,1}.

Is this a good formulation?
Poi={xecRP: 0<a<e,

er:n—l

=

>z >1VSCV,S£0,V}
e€6(5)

Is Peyt the CH(H)?

SLIDE 24
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7.2 What is CH(H)?

SLIDE 27
Let
Psub:{azERlEl :er:n—l
=
Z xe§|5|_1vsgva S#@,V}
e€E(S)
_ . tES
By ={e=6: 125}
Why is this a valid IO formulation? SLIDE 28
e Theorem: Py, = CH(H).
e = Pgp 1s the best possible formulation.
e MESSAGE: Good formulations can have an exponential number of con-
straints.
8 The Traveling Salesman
Problem
SLIDE 29
Given G = (V, E) an undirected graph. V. ={1,...,n}, costs ¢, Y e € E. Find
a tour that minimizes total length.
8.1 Formulation I SL1DE 30
1, if edge e is included in the tour.
T, = .
0, otherwise.
min Y cexe
=
st. > xe>2, SCFE
c€5(S)
Yo xe=2, i€V
e€d(i)
z, €{0,1}
8.2 Formulation II
SLIDE 31
min Y ecexe
st >z <|S]-1, SCEFE
e€E(S)
S xe=2, 1€V
e€d(i)
z. €40,1}
SLIDE 32



PLiP = {ze Rl ¥ w.>2, 3 wo=2

cut

e€4(5) e€d(1)
0<a. <1}
PISP — fecRIPL, ST 2, =2
e€s(i)
> we <[S[-1
€6(5)
0<a. <1}
SLIDE 33
e Theorem: PL3F = PT3P 3 CH(H)
e Nobody knows C'H(H) for the TSP
9 Minimum Matching
SLIDE 34
e Given GG = (V, E);c. costs on e € E. Find a matching of minimum cost.
e Formulation:
min Y eete
st. > we=1, i€V
e€s(i)
Te € {Oa 1}
e Is the linear relaxation C'H(H)?
SLIDE 35
Let
Pyrar = {l‘ERlEl Z e =1
e€s(i)
SToxe>1 |S|=2k4+1,5S#£0
€6 (S)
z. >0}
Theorem: Pyjar = CH(H)
10 Observations
SLIDE 36

e For MST, Matching there are efficient algorithms. C'H(H) is known.

e For TSP A efficient algorithm. TSP is an NP — hard problem. CH(H)
is not known.

e Conjuecture: The convex hull of problems that are polynomially solvable
are explicitly known.
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Summary

. Modeling with binary variables allows a lot of modelling power.

. An 10O formulation is better than another one if the polyhedra of their

linear relaxations are closer to the convex hull of the 10.

. A good formulation may have an exponential number of constraints.

Conjecture: Formulations characterize the complexity of problems. If a
problem is solvable in polynomial time, then the convex hull of solutions
is known.

SLIDE 37
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